
Introduction

The metabolite pool of cells and tissues represents the end result
of metabolism determined by genetic, environmental and nutritional
factors. The metabolic profile of biological systems is closely
related to the individual phenotype and reflects the biological end-
point of a multitude of pathways and their interaction with any
confounding stimuli. Cancer cells exhibit activation of specific
metabolic pathways to compensate for their extremely high energy
demands. Indeed increased glucose uptake and lactate production
and decreased respiration are key phenomena of tumour cell

metabolism. In particular, the generation of an acidic microenvi-
ronment through increased lactate production, even under aerobic
conditions, may confer extracellular matrix degeneration and exert
toxic effects on surrounding cell populations, while being harm-
less for the cancer cell itself [1]. Thus, the metabolic adaptations
may indeed be critical for the development of accelerated prolifer-
ation and the invasive growth of tumour cell populations [1, 2].
The molecular mechanisms underlying the metabolic hallmarks of
cancer are still poorly understood, although genetic, epigenetic
and environmental factors driving cancer development and pro-
gression will interact to determine the metabolic phenotype of
tumour cells. Recent studies suggest that metabolic changes play
a pivotal role in the biology of renal cell carcinoma (RCC) – a
tumour entity that is largely resistant to conventional chemo- and
radiotherapy. The metabolic profile of renal tumours may thus
serve as a reliable biomarker of malignant transformation and 
biological behaviour.
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Abstract

Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC).
Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced
decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The
findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phos-
phate metabolism determined the metabolic profile of RCC. �-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-
1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The
identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metas-
tasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricar-
boxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated
data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds,
hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.
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Recent advances in metabolic profiling technologies by pro-
viding quantitative measures of metabolite profiles from gas
chromatography time-of-flight mass spectrometry (GC-TOF-MS)
based technology present the opportunity to apply this technique
in human specimens [3–5]. Global metabolic profiling has
emerged as a promising approach to characterize the metabolite
pool within a cell, tissue or bodily fluid under certain conditions,
such as health or disease status [4, 6, 7]. Metabolic profiling is
applied to monitor the health to disease continuum and has the
potential of increasing our understanding of the mechanisms of
disease [8]. Thus the characterization of the metabolic features
in tumours is expected to provide a better understanding of the
mechanisms of malignant transformation and progression and
may lead to the identification of metabolic biomarkers for cancer
detection and prognostication. However, comparative profiling of
low molecular weight compounds, such as sugars, lipids and
amino acids, in cancer as compared to the corresponding 
normal tissue is a rather unexplored area. The objective of this
study was to characterize the key metabolic features of RCC
using GC-TOF-MS and mutual information as well as decision
tree-based data analysis.

Material and methods

Study population and sample collection

Tumour tissue and specimens of normal renal cortex tissue were collected
from patients undergoing surgical treatment for primary RCC at the
Department of Urology, Charité-University Medicine Berlin between
November 1995 and November 2005. They included 29 female and 67 male
patients with a mean age of 62 years (range 36–87). Their use was
approved by the Ethics Committee of the Free University of Berlin, and all
patients gave their informed consent prior to surgery. Tissue samples were
obtained during radical nephrectomy following a standard operating pro-
cedure. All RCC specimens were derived from primary tumours. Tissue
specimens were dissected in the operating room immediately after removal
of the kidney, snap-frozen in liquid nitrogen and stored at �80�C until use.
RCC samples were serially sectioned before further processing. Additional
sections were stained with haematoxylin–eosin for histopathological eval-
uation. The histopathological classification and staging was based on the
1997 World Health Organization and TNM classification guidelines
(International Union Against Cancer, 1997): pT1 (n � 53), pT2 (n � 13),
pT3 (n � 30); M0 (n � 87), M1 (n � 9). Primary tumour tissue samples
and normal tissue samples from 57 patients (39 male; 18 female) were
chosen for the first round of metabolic analyses. Tumour characteristics
for these RCC patients were: pT1 (n � 30), pT2 (n � 12), pT3 (n � 15),
G1 or 2 (n � 36) and G3 (n � 21). Of these, 36 patients had localized
tumours and 21 had or developed metastasized RCC. Later, a second set
of samples was put together from 39 patients (29 male; 10 female; RCC: 
n � 39; normal tissue: n � 27) for validation purposes. Tumour character-
istics were: pT1 (n � 16), pT2 (n � 8), pT3 (n � 15), G1 or 2 (n � 22),
G3 (n � 17), localized RCC (n � 32) and metastasized RCC (n � 7). Most
of the tumour samples analysed belonged to the clear cell subtype of RCC
(n � 54 in the first set; n � 34 in the second set).

Sample preparation and GC-TOF-MS analysis

Frozen biopsy tissue was processed under standard operating procedures.
Samples were serially sectioned in a cryostat microtome to prevent thaw-
ing. A defined amount (30 mg) of sectioned tissue was then transferred to
a 2 ml centrifuge tube and homogenized. Samples were centrifuged at
14,000 rpm for 2 min. and the supernatant taken and dried to complete
dryness in a rotary evaporator in the glass vials used for GC-MS analysis.

GC-TOF-MS metabolite profiling was performed on a Leco Pegasus 3
time-of-flight mass spectrometer (Leco, St. Joseph, MI, USA) equipped
with a Direct Thermal Desorption injector (ATAS GL International, The
Netherlands) coupled to an HP 5890 gas chromatograph and a dual-arm
autosampler with automatic derivatization and liner exchange. This elimi-
nates both the impact of potential degradation/synthesis artefacts and
sample carry-over and means that no phase separation of samples is nec-
essary, thereby broadening the coverage of the profiling technique to non-
polar compounds. The method allows relative quantification of metabolites
which cover a large part of primary metabolism such as sugars, organic
acids, amino acids and alcohols in addition to sterols and free lipids.
Samples were derivatized in 10 �l methoxyamine hydrochloride in N, N-
dimethylformamide diethyl acetal (40 mg/ml) at 42�C for 180 min. followed
by 90 �l N-methyl-N-trimethylsilyltrifluoroacetamide at 37�C for 30 min.

A total of 1.5 �l samples were injected in splitless mode at 85�C, ramp-
ing to 290�C at 4�C/sec. The GC used a constant flow of 2 ml/min. helium
as carrier gas and a 30 m 320 �m ID MDN35 column. The column temper-
ature gradient was held at 85�C for 210 sec., followed by a linear gradient
of 15�C/min. reaching a target temperature of 360�C. A 230-sec. acquisition
delay was used and spectra subsequently acquired at the rate of 20/sec.

Chromatograms were processed using Leco ChromaTOF software
(version 3.25) and peaks with a signal to noise ratio �10 were exported
before using an algorithm developed in-house for dealing with the out-
put.txt files [9]. Mass spectra were compared to an in-house mass spec-
tral library for metabolite identification and peak heights expressed relative
to an internal standard (13C sorbitol-D).

Statistical analysis

In a univariate approach the non-parametric Mann-Whitney U-test was
applied to search for significant differences in relative concentrations of
metabolites between RCC and normal tissue samples, and between local-
ized and metastasized primary tumours. For key metabolites associations
of relative concentrations with tumour stage or grade were explored.

Metabolite profile data were normalized to an internal standard, log
transformed and scaled according to [9]. Metabolites with more than 20%
missing values were excluded and remaining missing values were esti-
mated via BPCA using the R package pcaMethods [10]. Differences were
expressed as median fold change and P-values Bonferroni corrected to
address the problem of multiple testing. These pairwise comparisons were
restricted to all metabolites that could be identified based on comparison
to the mass spectral library.

For multivariate supervised classification, all metabolites, irrespective
of their identified/non-identified status, were initially included. Data were
normalized to the internal standard and any variables containing missing
values were excluded. As an initial step the first dataset was used to deter-
mine metabolic signature differences in a two-group scenario between
tumour present/absent groups. Subsequently this was expanded to a
three-group scenario, in which tumour presence was further sub-divided
into metastasized/non-metastasized.
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A number of different mainly decision tree classification algorithms,
available in the WEKA platform [11], was used (random forest, random
tree, alternating decision tree (ADTree), sequential minimal optimization,
simple logistic and C4.5).

Data were segregated into learning (50%) and testing (50%) subsets
and models were validated using 10-fold cross-validation. As a second
step, the most promising model was then further validated using the fully
independent second dataset. In a further exploratory analysis, metabolites
that contributed most to the classification of localized versus metastasized
were tested as predictors of recurrence-free survival in Cox regression
analyses. For further information the maximal information gains for a deci-
sion in the classification of tumour presence/absence and metasta-
sized/non-metastasized were calculated for each single metabolite using
mutual information. As decision tree methods generate minimal classifica-
tion models metabolites with a high informational gain are not necessarily
all contained in the decision tree models.

Results

Comparative metabolic profiling of RCC 
and normal renal tissue

In the first round of analyses, RCC tissue samples and control cor-
tex specimens from 57 patients with RCC were investigated. The
cohort consisted of 36 patients with localized disease and 21 patients
with metastatic tumours either at time of diagnosis or who devel-

oped metastasis during follow-up. The mean follow-up was 
41 months (range 2–113 months). Data matrices consisted of 
188 metabolites, of which 74 could be identified, 25 putatively
identified, 37 which could be assigned a possible metabolite class
and 52 whose chemical structure remained unassigned.

All generated classification models describing tumour pres-
ence/absence performed satisfactorily on the first dataset.
Alternating decision trees (ADTree) are preferred due to the fewer
variables being necessary to yield the high prediction power of
95% correct assignment (Table 1, Fig. 1). Thus this model was
selected for validation using the second dataset, where it resulted
in 77% correct classification. This is less than the 95% observed
for the first dataset, but is however, very similar to the classifica-
tion reached within the second dataset itself (75% with the ADTree
with 10-fold cross-validation).

Tree-based learning algorithms in particular, are designed to
the selection of the single best classifier at each decision step
and therefore occasionally prone to the exclusion of others
which could themselves carry potentially meaningful information 
(Fig. 2). We therefore tested for differences between normal und
RCC specimens by pairwise comparison of the relative concen-
tration of all identifiable metabolites. These analyses were con-
fined to all metabolites detected in �80% of samples.
Metabolites with differences in relative concentrations are shown
in Table 2. These include metabolites which may not have been
detected in all samples and thus may not be contained in the
decision tree models, which are intolerant of missing values.
These compounds were subsequently assigned to common
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Table 1 Performance of the decision tree models for the discrimination between normal and RCC tumour samples

All metabolites Identified metabolites only

First dataset Validation dataset First dataset Validation dataset

Method* 50% crossfold10 50% crossfold10 50% crossfold10 50% crossfold10

Random Forest 86% 94% 74% 71% 91% 91% 50% 78%

Random Tree 52% 71% 82% 65% 71% 70% 56% 66%

ADTree 95% 95% 68% 75% 89% 92% 47% 73%

SMO 92% 97% 85% 88% 95% 92% 59% 81%

Simple Logistic 95% 95% 91% 84% 94% 85% 56% 85%

lower border**

most frequent class/total 66/132 40/68 65/130 39/67

float of lower border 50% 59% 50% 58%

*The correct classification returned by each of the five different classification methods used (random forest, random tree, ADTree, SMO and simple
logistic) upon treating the two-class problem (tumour yes/no) is shown as percentage. Results are shown having divided the dataset into 50% train-
ing and 50% testing sub-groups and having used 10-fold cross-validation.
**The lower border is the percentage of the total sample number represented by the most numerous class. This percentage correct classification
could therefore be achieved simply by always classifying unknown samples as belonging to this class. Therefore the success rate of the models
should exceed the lower border in order to be considered better than this overly simplistic selection method.
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Fig. 1 Decision Tree Model (ADTree) generated for the two-class problem of discriminating RCC and normal renal tissue samples (A), and localized
RCC and metastatic disease (B). Key metabolites are shown with the corresponding normalized relative peak intensity cut-offs. Each metabolite resem-
bles a decision node that is linked to two prediction nodes with the corresponding prediction values. Classification of a hypothetical sample would be
based on the sum of final attained prediction node values that are determined by applying the peak intensity cut-offs for all metabolites of the deci-
sion tree on the sample-specific data record. Any result 	 0 means a class prediction of 0 (A: normal tissue; B: localized tumour), any result � 0 a
class prediction of 1 (A: RCC, B: metastatic tumour). The model was trained with the first dataset and used all metabolites irrespective of identified
status.
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pathways according to the Kyoto Encyclopedia of Genes and
Genomes. The data indicate that the metabolic signature of RCC
tends to be characterized by metabolites associated with glucose
metabolism, such as glucose-1-phosphate, markers of fatty acid
and phospholipids metabolism, such as palmitate, arachidonic
acid and glycerol, and myoinositol belonging to the inositol
polyphosphate family of cell signalling molecules. Interestingly,
and consistent with the decision tree models, the metabolites
revealing the largest relative RCC versus control differences
were �-tocopherol and hippuric acid. Elevated levels of �-toco-

pherol were detected in RCC thereby pointing to a potential acti-
vation of vitamin E metabolism in tumour cells. When �-toco-
pherol was considered alone in a ROC analysis, correct classifi-
cation of 84.8% of RCC samples and 92.4% of normal tissue
samples was achieved (data not shown). Although similar accu-
racy could be achieved using hippuric acid as a marker, the rel-
evance of the greatly decreased concentration of this metabolite
in RCC is unknown. The descriptive statistics for selected
metabolites are shown in Fig. 3. In further data exploration we
tried to see whether or not metastasizing tumours could be
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Fig. 2 The information
gain for the two class
discrimination between
RCC and normal tissue
by key metabolites.
Metabolites with the
highest gain contribute
most to the correct 
discrimination. The 
theoretical maximum
gain � 1. The black bars
indicate metabolites that
were not detectable in all
samples and were there-
fore unable to be incor-
porated into the ADTree
model, but all of these
metabolites were detected
in over 90% of samples,
except for 6-phospho-
gluconic acid (88%).
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Table 2 Metabolites displaying relative concentration differences in RCC and control renal tissue samples

Compound
Median fold
change* 

P-value** Pathway

Training
set

Validation
set

Combined
set

�-tocopherol 5.2 <0.0007 <0.0007 <0.0007 Vitamin E metabolism

�-tocopherol acetate 4.0 <0.0007 n.s. <0.0007


-tocopherol 3.1 <0.0007 0.004 <0.0007

Arachidonic acid –2.6 <0.0007 <0.0007 <0.0007
Arachidonic acid metabolism (involved in VEGF signalling
pathway and angiogenesis)

Palmitate –1.5 <0.0007 0.02 <0.0007 Fatty acid metabolism

Tridecanoic acid –1.4 <0.0007 n.s. 0.0032

Glycerol –2.2 <0.0007 0.0008 <0.0007 Glycerolipid metabolism

Citric acid 1.6 0.001 n.s. <0.0007 TCA cycle

Fumaric acid –1.9 0.01 <0.0007 <0.0007

Succinic acid –3.4 <0.0007 0.003 <0.0007

Malic acid –1.7 <0.0007 0.01 <0.0007

Glucose 5.0 <0.0007 n.s. 0.0008 Glycolysis, Pentose phosphate pathway

Glucose (minor peak) 4.8 <0.0007 n.s. <0.0007

Glucose-1-phosphate 3.0 <0.0007 n.s. <0.0007
Glycolysis, Pentose phosphate pathway, Nucleotide sugars
metabolism, 

6-phosphogluconic acid 6.3 <0.0007 n.s. <0.0007
Glycolysis, Pentose phosphate pathway, byproduct of tyro-
sine kinase acticity

Fructose 2.0 <0.0007 n.s. <0.0007 Fructose and mannose metabolism

Fructose-1-phosphate 8.3 <0.0007 n.s. <0.0007

myo-Inositol –1.5 <0.0007 <0.0007 <0.0007
Phosphatidylinositol signalling system, Inositol phosphate
metabolism

Saccharic acid –2.6 <0.0007 n.s. <0.0007 Ascorbate and aldarate metabolism (linked to glycolysis)

N-Acetyl-D-glucosamine –1.7 0.034 <0.0007 <0.0007 Glutamate metabolism, Aminosugars metabolism


-alanine 2.5 <0.0007 n.s. <0.0007 Pyrimidine metabolism

Uracil –2.0 <0.0007 0.004 <0.0007

Uracil (second peak) –3.7 <0.0007 0.002 <0.0007

Hippuric acid –35.2 <0.0007 <0.0007 <0.0007 Phenylalanine metabolism

Oxoproline 1.4 <0.0007 n.s. 0.0037 Gluthathion metabolism (radical detoxification)

*Negative fold change indicates decreased relative concentration in RCC versus normal tissue.
**A P-value of <0.0007 indicates a significant difference upon Bonferroni correction for multiple testing.

 differentiated from localized ones. Applying an ADTree model did
not yield satisfactory results, largely due to the restrictive sam-
ple number, however a direct pairwise comparison of the relative
metabolite concentrations in both tumour phenotypes suggested
a number of differences (Table 3).

Independent validation of the RCC metabolic 
signature

Despite the reduced statistical power in this smaller second dataset,
we repeated pairwise comparisons of relative concentrations of
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known and interpretable metabolites to validate the findings of the
first dataset (Table 2). As expected due to the smaller sample size,
significant differences were seen in fewer metabolites in the sec-
ond dataset. However, all differences observed in the first dataset
were confirmed when the tests were repeated in the combined first
and second dataset (Table 2). Key metabolites in both datasets
were �-tocopherol, hippuric acid and myoinositol thus underlining
the notion that these are of importance for the metabolic signature
of RCC. The comparatively low number of metastasized samples
(n � 7) in the second dataset hampered the validation of meta-
bolic differences between these and non-metastasized tumours.

Pairwise comparisons in the combined dataset however, con-
firmed uracil as a key metabolite in distinguishing metastasized
and localized tumours. This metabolite is of relevance for the syn-
thesis of nucleic acids and may indicate a metabolic adaptation to
the increased transcriptional activity in aggressive, potentially
lethal tumours. The increased fatty acid content adds weight to the
theory that fatty acid degradation is reduced in tumour cells, but
this may be particularly pronounced in aggressive metastasized
tumours. The exploratory analysis revealed some other putative
metabolites which characterize metastasized disease, such as
myoinositol, arachidonic acid and several amino acids (isoleucine,
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Fig. 3 Descriptive statistics
of relative metabolite con-
centrations in tumour versus
normal tissue. Select key
metabolites are chosen
based on their high infor-
mational gain for the
tumour/normal discrimina-
tion and/or their identifica-
tion in the decision tree
analysis. Boxplots show
median, 25th and 75th per-
centiles, range, and extreme
values. For better illustra-
tion a logarithmic scale was
chosen for the relative con-
centration; absolute con-
centrations cannot be cal-
culated and therefore no
precise scale is given.

Table 3 Metabolites with relative concentration differences in localized and metastasized RCC samples

Compound Median fold change P-value Pathway

Uracil 1.9 	0.0007 Pyrimidine metabolism

Arachidonic acid 1.9 0.007 Arachidonic acid metabolism (involved in VEGF signalling pathway and angiogenesis)

Erythritol 1.7 0.002 Glycerolipid metabolism

3-Phospho-glycerate 1.9 0.005

Heptadecanoic acid 1.5 0.001 Fatty acid metabolism

Hexadecanoic acid 1.3 0.008

Tetradecanoic acid 1.4 0.01

Isoleucine 2.9 0.008 Valine, leucine and isoleucine meatbolism

Phenylalanine 2.4 0.003 Phenylalanine metabolism

Proline 2.5 0.006 Arginine and Proline metabolism

*A P-value of <0.0007 indicates a significant difference upon Bonferroni correction for multiple testing.
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phenylalanine and proline), but these findings require confirma-
tion in independent datasets as false positive test results cannot
be fully excluded. When differences in relative concentrations for
key metabolites, i.e. �-tocopherol, hippuric acid, glucose-1-phos-
phate, myoinositol and succinic acid, by tumour stage (pT1–2
versus pT3) were explored �-tocopherol was increased in pT3
tumours (P 	 0.05). No differences were observed by tumour
grade (G1–2 versus G3). The ADTree models performed insuffi-
ciently when tumour stage and grade were studied as classifiers.
The results were indicative of �-tocopherol, free fatty acids and
uracil contributing to the metabolic signature of advanced (pT3)
as compared to smaller tumours (pT1–2).

In addition we tested whether metabolites of the ADTree classify-
ing metastasized tumours were associated with the outcome of RCC
patients using univariate and multivariate Cox models. Only citric
acid was independently related to recurrence-free survival (data not
shown). Decreased citric acid concentrations could conceivably indi-
cate a deteriorating prognosis and although this finding is in line with
a switch towards increased glycolysis even under aerobic conditions
and therefore seems plausible, the data are purely exploratory and,
in view of the multiple testing problem, require confirmation.

Discussion

This study characterizes the metabolite pool of RCC as compared
to control renal cortex tissue using non-targeted metabolic profil-
ing and permitted the assignment of a specific metabolic signature
to RCC. This signature was not only validated with common test
procedures, but was also confirmed in an independent, subse-
quently compiled validation dataset. Thus a set of key metabolites
representing relevant metabolic pathways of RCC was established.
Our data together with a previous study [12] substantially extend
the knowledge on the small molecule component of RCC tissue.
These findings complement earlier studies on biomarker discov-
ery in RCC using ‘omics’ platforms [13–15].

As the metabolomics methodology used in this study captures
a large part of primary metabolism, our study for the first time
gives a comprehensive overview of the metabolic phenotype of
RCC tissue. This phenotype confirms presumed metabolic features
of cancer cells in general and RCC in particular. The marked differ-
ential concentration of glucose 1-phosphate and metabolites of the
tricarboxylic acid (TCA) cycle, such as succinate and malate, points
to a pivotal role of altered glucose and energy metabolism in RCC.
Remarkably, most substrates of the TCA cycle seemed to be
notably down-regulated in RCC compared to control tissue. Since
the TCA pathway is a catabolic pathway of aerobic respiration our
findings may reflect the shift towards an anaerobic energy metab-
olism and reduced respiration even in the presence of oxygen, also
referred to as aerobic glycolysis or as the Warburg effect [16].
Indeed, recent studies suggest that the up-regulation of hypoxia-
inducible factors (HIF) mediates the reprogramming of glucose and
energy metabolism including increased glycolysis and lactate pro-

duction in renal cancer cells [17, 18]. Using a combination of tran-
scriptomics and proteomics it has been recently confirmed that
genes and proteins involved in cellular metabolism play a crucial
part in the development and progression of RCC making them
promising candidates for biomarker identification [15].

To compensate for their high energy demands, cancer cells are
likely to exploit a multitude of energy sources including fatty acid
oxidation and other non-glycolytic pathways [19, 20]. According
to our findings, metabolites of fatty acid metabolism seem to play
a key part in RCC metabolism. A number of fatty acids were found
to be differentially concentrated, but uniformly down-regulated in
RCC. This finding may be the consequence of increased fatty acid
oxidation, which has also been described in other cancer types, in
particular prostate cancer [21, 22]. Studies identifying fatty acid
binding proteins (FABP) [23, 24] and fatty acid synthase [25] as
tumour markers of RCC underline the importance of fatty acid
metabolism in the biology of RCC. Interestingly, in our study up-
regulation of fatty acid concentration seemed to be specifically
associated with metastatic disease. This fact may indicate that an
increase in de-novo fatty acid synthesis or increased fatty acid
uptake and reduced mitochondrial 
-oxidation of fatty acids may
be rather late events in the progression of RCC to an invasive and
metastasized phenotype. Indeed, the lipogenic phenotype has
been linked to advanced and metastatic cancers [26], and the full
pattern of metabolic reprogramming may be associated with
advanced tumour progression. Our findings in metastasizing RCC,
in particular the accumulation of fatty acids, glycerolipid com-
pounds and TCA cycle intermediates such as succinate, are in line
with the hypothesis that mitochondrial dysfunction has a role in
tumour cell metastasis [27, 28].

Another remarkable finding was the profound up-regulation of
�-tocopherol concentration in RCC and despite previous allusions
to such an elevated vitamin E concentration [29, 30] this finding
has as yet not received particular attention. Among all metabolites
investigated in our study, �-tocopherol emerged as the most
important classifier of normal versus tumorous tissue and there-
fore underlines the putative importance of vitamin E in RCC biol-
ogy. The elevated concentration of vitamin E in RCC cells may just
be an epiphenomenon und indicate an increased uptake of lipids
and fatty acids through the up-regulation of rather unspecific
transfer proteins, lipases or lipoprotein receptors [31]. The
increased concentration of �-tocopherol has previously been
observed in ovarian carcinomas by using similar metabolomics
methodology and interpreted as an unspecific stress response [4].
As a potential alternative explanation, elevated vitamin E may
indeed play a functional role and render the tumour cell resistant
to increased oxidative stress toxic to surrounding normal cell pop-
ulations. Vitamin E and �-tocopherol in particular, is a potent,
lipid-soluble, chain-breaking antioxidant and additional vitamin E
has been shown to prevent mitochondrial dysfunction in the pres-
ence of severe oxidative stress [32]. However, the specific role of
vitamin E is likely not limited to its antioxidant function, but can
rather be extended to �-tocopherol serving as a transcriptional
regulator of gene expression [33]. Results which point to the
importance of �-tocopherol would seem to indicate that further
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studies are justified to clarify the phenomenon of tocopherol ele-
vation in RCC, which may ultimately be exploited for establishing
novel therapeutic targeting strategies [19]. Differentially regulated
metabolites may also include intracellular signalling molecules, as
indicated by the fact that myoinositol was one of the key metabo-
lites identified in our study. This compound belongs to the inosi-
tol polyphosphate family of small cytosolic molecules involved in
the control of a wide range of cellular processes [34]. Its down-
regulation has also been described in prostate cancer [35].

In our exploratory analysis of the metabolic signature of
metastatic tumours, intermediates of glucose metabolism, such
as succinate and glucose, proved to be key classifiers. These
findings are in line with the recent observation that the metasta-
tic progression of RCC is associated with a shift toward non-
oxidative glucose metabolism through the pentose phosphate
pathway [36]. In our study, the metabolic profile of metastasized
tumours could not be thoroughly validated as the number of

metastasized tumours was restrictive in the test dataset.
Nonetheless, it is worth mentioning that the concentration of
arachidonic acid was elevated in metastasized tumours, whereas
the concentration in RCC in general was lower than in normal
renal tissue. The increase of arachidonic acid in aggressive
metastasized tumours seems plausible, as this pro-inflammatory
fatty acid has been linked to the VEGF-signalling pathway and
tumour angiogenesis. Further, the activation of the inflammatory
cascade may indeed increase the metastatic potential of RCC
through dysregulation of the immune response in the tumour
microenvironment. In this context, the observed elevation of pro-
line levels in tumour tissue can be explained by the degradation
of collagen in the microenvironmental extracellular matrix pro-
moting invasive tumour growth [37]. The reduced proline oxidase
expression, as described in RCC cell lines [38], would be an alter-
native explanation. Altogether, the findings in metastatic RCC
merit further studies.
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