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Abstract
Molecular target therapy for cancer is characterized by unique adverse effects that are not

usually observed with cytotoxic chemotherapy. For example, the anaplastic lymphoma

kinase (ALK)-tyrosine kinase inhibitor crizotinib causes characteristic visual disturbances,

whereas such effects are rare when another ALK-tyrosine kinase inhibitor, alectinib, is

used. To elucidate the mechanism responsible for these visual disturbances, the responses

to light exhibited by retinal ganglion cells treated with these agents were evaluated using a

C57BL6 mouse ex vivomodel. Both crizotinib and alectinib changed the firing rate of ON

and OFF type retinal ganglion cells. However, the ratio of alectinib-affected cells (15.7%)

was significantly lower than that of crizotinib-affected cells (38.6%). Furthermore, these

drugs changed the response properties to light stimuli of retinal ganglion cells in some of

the affected cells, i.e., OFF cells responded to both ON and OFF stimuli, etc. Finally, the

expressions of ALK (a target receptor of both crizotinib and alectinib) and ofMET and ROS1
(additional target receptors of crizotinib) were observed at the mRNA level in the retina. Our

findings suggest that these drugs might target retinal ganglion cells and that the potency of

the drug actions on the light responses of retinal ganglion cells might be responsible for the

difference in the frequencies of visual disturbances observed between patients treated with

crizotinib and those treated with alectinib. The present experimental system might be useful

for screening new molecular target agents prior to their use in clinical trials.

Introduction
The development of drugs for targeted therapy has revolutionized cancer therapy. Some of
these drugs promise significant responses for patients with cancers expressing the molecular
target. However, these drugs have specific and unique adverse effects that differ from those of
cytotoxic agents. For example, skin disorders including rashes, pruritus, and acne are seen in
patients treated with gefitinib [1], erlotinib [2] and cetuximab [3], while severe diarrhea is seen
in patients treated with afatinib [4].
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The standard therapy for patients with non-small-cell lung cancer (NSCLC) without specific
target molecules is platinum doublets, resulting in a median survival time of almost 10–14
months and a response rate of 20% to 35% [5,6]. In contrast, NSCLC expressing specific target
molecules is highly sensitive to molecular target drugs. In patients with NSCLC with mutated
epidermal growth factor receptor (EGFR), EGFR-tyrosine kinase inhibitors, including gefitinib
and erlotinib, have enabled a significantly longer survival time of about 30 months and higher
response rates of 70% to 80% [7,8].

Anaplastic lymphoma kinase (ALK) is a target molecule for the treatment of several cancers,
including NSCLC, inflammatory myofibroblastic tumor, and anaplastic large-cell lymphoma
[9,10]. The fusion of the ALK gene with others, including echinoderm microtubule-associated
protein-like 4 (EML4) and kinesin family member 5B (KIF5B), is observed in about 5% of
patients with NSCLC [11,12]. In NSCLC with ALK rearrangements, the fused gene can lead to
tumorigenesis in the absence of other oncogenes, such as mutated EGFR and KRAS [13]. These
ALK rearrangements are an important target for treatment.

Crizotinib is the first established tyrosine kinase inhibitor targeting ALK, the mesenchymal-
epithelial transition (MET), and repressor of silencing 1 (ROS1) [9,14,15]. In large-scale, ran-
domized clinical trials for patients with NSCLC with ALK rearrangements, about 60% of the
patients achieved an objective response [16,17,18]. Furthermore, crizotinib is also effective
against NSCLC with ROS1 rearrangements [19]. However, a specific profile of adverse effects is
seen in patients treated with crizotinib, with nausea, liver damage, and neutropenia being com-
monly seen. Above all, unique visual disorders can occur. Mild visual disturbances have been
reported in some patients (41%-62%) participating in clinical trials [16,17,18]. Patients with
these disorders usually complain of trails of light following objects that are in motion relative
to the observer, particularly during changes in ambient lighting from dark to light [16]. These
events generally start within two weeks of the administration of crizotinib and improve with
time without the need to discontinue treatment. However, these adverse effects can affect the
quality of life of patients.

The cause of these visual disturbances, which are unique to crizotinib, remains unknown. In
recent studies examining patients treated with alectinib, which is a newly established and more
specific inhibitor of ALK, the frequency of adverse effects (including visual disorders) was sig-
nificantly lower than that for crizotinib [20,21]. In addition, visual disorders did not occur in
patients treated with an inhibitor of MET, which is one of the targets of crizotinib [22].

Since the visual pathway is a complex system, visual disorders can occur at multiple levels,
such as the retina, the lateral geniculate nucleus, and the primary visual cortex. In the present
study, to examine whether the retina can be a target of drugs and whether the actions of drugs
on retinal ganglion cells can predict differences in the incidences of adverse effects, we com-
pared the actions of crizotinib and alectinib on the activities of retinal ganglion cells in the
mouse retina using multi-electrode array recording.

Materials and Methods

Preparations
The research protocol was approved by the Animal Experiments Ethical Review Committee of
Nippon Medical School. The samples and methods used in the present experiments were
essentially the same as those used in a previous paper [23]. Mice (C57BL6, 6 weeks to 5 months
old, male or female) dark adapted for 30–60 min were killed by cervical dislocation. Retina was
isolated under dim red light and kept in oxygenated Ringer’s solution (in mM: NaCl, 120; KCl,
3.1; CaCl2, 2; MgSO4, 1; NaH2PO4, 0.5; NaHCO3, 23; glucose, 20; pH adjusted to 7.4–7.5 when
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bubbled with 95% O2−5% CO2) in the dark at room temperature until use. During the record-
ings, the retina was continuously superfused with oxygenated Ringer’s solution.

Current recordings
A piece of retina (3–6 mm per side) was placed ganglion cell side-down on a multi-electrode
array (MED-P2H07A; Panasonic) and perfused with oxygenated Ringer’s solution (1 mL/min).
The recorded extracellular action potentials were amplified 1000-fold, band-pass filtered (0.1–
10 kHz), and sampled with a computer at 20 kHz. The action potentials of individual cells were
identified using an off-line analysis with custom-developed software [24]. Drugs were applied
by bath application. Crizotinib was purchased from LC Laboratories (MA, USA). Alectinib was
obtained from Chugai Pharmaceutical (Tokyo, Japan). The concentrations of crizotinib
(1.0 μM) and alectinib (1.0 μM) used in the present study were almost equal to the Cmax (max-
imum plasma concentration) values, which were measured in repeated-dose studies [21,25].
All the experiments were performed at room temperature.

Classification of retinal ganglion cells
The retina was stimulated using spatially uniform white illumination switching between 0.7
mW/ m2 (dark stimulation) and 17 mW⁄m2 (bright stimulation) at 0.5 Hz. The action poten-
tials recorded for 60 s (30 cycles of light stimulation) before drug application were pooled and
used to calculate the mean firing rates during bright stimulation (fbright) and dark stimulation
(fdark). When the mean firing rate was less than 1 Hz before drug application, the cells were not
used for further analysis. For each stimulation, the action potentials in a 1-second window of
bright stimulation or dark stimulation, respectively, starting at 50 ms after onset were used to
calculate the fbright or fdark values. The stimulus preference index (SPI) was calculated using the
following formula:

SPI ¼ pref
pref þ n:pref

ð1Þ

,where pref is the mean firing rate with the higher frequency between that for fbright and that for
fdark, and n.pref is the mean firing rate with the lower frequency. If the SPI was equal to or
higher than 0.67 and pref was the rate for fbright, the cells were classified as ON type retinal gan-
glion cells (ON-cells). If the SPI was equal to or higher than 0.67 and pref was the rate for fdark,
the cells were classified as OFF type retinal ganglion cells (OFF-cells). Cells not classified as
either ON- or OFF-cells were classified as ON-OFF type retinal ganglion cells (ON-OFF cells).
In some of the experiments, we also calculated the SPI during and after the application of drugs
using a method similar to that described above.

Data analysis
To assess the actions of the drugs on the firing rate, we calculated the mean firing rate using the
following method. First, we calculated the mean firing rate (rpre) and the standard deviation
(spre) before drug application using the same data set as that used for the SPI analysis. To calcu-
late spre, we sectioned the data before drug application into 10 bins (3 cycles each [6 s]) and
used the following equation:

spre ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

ðxi � rpreÞ
s

ð2Þ

,where n is total number of bins and x is the mean firing rate of the individual bin. We also
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calculated the mean firing rate during (rdrug) and after (rpost) drug application. The index, X,
was calculated using the following formula:

X ¼ rdrug �
rpre þ rpost

2

����
���� ð3Þ

.If X was larger than twice the value of spre, (corresponding to P< 0.05), the action of the drug
on the firing rate was judged as “significant”.

To assess the stimulus information transferred by the retinal ganglion cells, the spike trig-
gered average stimulus (STA or F(T)) was calculated using the light stimulus information. In
this calculation, light stimulation for 1 s preceding a spike was binned with a resolution of 50
ms. The stimulus during a time interval (T) before the onset of an individual action potential
was averaged according to a previously reported protocol (Dayan and Abbott, 2001) and the
following equation:

FðTÞ ¼ 1

n

Xn

i¼1

sðti � TÞ ð4Þ

,where n is the number of spikes, t is the time when the spikes occurred, and s(t) is the light
intensity as a function of time. The light intensity for this analysis was defined as 1 for bright
stimulation and 0 for dark stimulation.

Statistical analysis
When the groups had equal variance, we adopted a parametric test. For samples with different
variances, we adopted a nonparametric test. Comparisons of variance between groups were
performed using the F test.

Reverse transcription PCR and quantitative RT-PCR
Total RNA was extracted from mouse retina (C57BL6, 8 weeks) using ISOGEN reagent (Nip-
pongene, Japan). The RNA was pooled in a PCR tube containing a ribonuclease (RNase) inhib-
itor (TaKaRa) and Primer Mix (ReverTra Ace qPCR RT Kit; Toyobo). The PCR tube was
heated at 75°C for 5 min and cooled on ice for 1 min; RT Enzyme Mix and 5xRT Buffer (Rever-
Tra Ace qPCR RT Kit; Toyobo) were then added. Reverse transcription (RT) into cDNA was
performed using TaKaRa PCR Thermal Cycler Dice Standard (TaKaRa). RT was performed at
30°C for 10 min and then at 42°C for 60 min. After stopping the reaction by heating at 75°C for
15 min, the reaction mixture was kept at 4°C and stored at -80°C until use. A relative quantita-
tive PCR (qPCR) analysis was performed using the SYBR Premix Ex Taq II (TaKaRa) and
Thermal Cycler Dice real-time System Single (TaKaRa) following the manufacturer’s instruc-
tions. ß-actin (ACTB), a housekeeping gene, was used as an internal reference, and distilled
water was used as a negative control. The primer sequences, product sizes, and accession num-
bers are listed in Table 1. For each cDNA, relative qPCR was performed in triplets. The relative
expression levels of mouse anaplastic lymphoma kinase (ALK),MET, and ROS1 were com-
pared with that of ACTB using the ΔΔCT method. The PCR products were separated using
electrophoresis on 2% agarose gels and were visualized using ethidium bromide staining under
UV irradiation.
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Results

Actions of crizotinib and alectinib in the retina
To examine whether crizotinib modifies visual function at the retinal level, we collected 101
retinal ganglion cells (48 ON-cells, 47 OFF-cells, and 6 ON-OFF cells) (Table 2) and examined
the actions of crizotinib on the firing rate. Among the 101 cells that were examined, crizotinib
changed the firing rate in 44 cells (43.6%). The actions of crizotinib on the firing rate were clas-
sified into no change type (Fig 1A), increase type (Fig 1B), and decrease type (Fig 1C). Among
the cells that showed a change in the firing rate (increase or decrease type), the change in the
firing rate occurred soon after the application of crizotinib. The actions of crizotinib on the fir-
ing rate were reversible.

We performed a similar analysis for alectinib to compare the severity of visual disorders
induced by crizotinib and alectinib. Among the 87 cells that were examined (37 ON-cells, 47
OFF-cells, and 3 ON-OFF cells) (Table 2), alectinib changed the firing rate (increase or
decrease type) in 21 cells (24.1%). The actions of alectinib on the firing rate were also classified
into three types (Fig 1D–1F). The actions of alectinib on the firing rate occurred soon after the
application of alectinib and were reversible.

Since both crizotinib and alectinib showed three different types of actions on the firing rate,
we directly compared whether the actions of crizotinib and the actions of alectinib on the firing
rate were the same in individual cells. We selected cells in which we were able to examine the
actions of both crizotinib and alectinib successfully in the same cell and classified these cells
into 5 categories (Table 3). Among the 70 cells (30 ON-cells, 37 OFF-cells, and 3 ON-OFF
cells) that were examined, the actions of the drugs on the firing rate were the same in 52 cells
(Category “S” + “N”), while opposite actions on the firing rate were observed in only 2 cells
(Category “O”). None of the cells showed a change in the firing rate in response to alectinib
only (Category “A”). The remaining 16 cells showed a change in the firing rate in response to
crizotinib only (Category “C”). These findings suggest that the actions of crizotinib and

Table 1. Oligonucleotide primers used for qPCR.

Gene Primer sequence (5’–3’) Size (bp) Accession number

ALK Forward ctgtggctgtcagtacctagag 135 NM_007439.2

Reverse ctgtagatatctcgggccatcc

MET Forward ggatggctgtggagagaaag 75 NM_008591.2

Reverse ggagccttcattgtgaggag

ROS1 Forward cggaccaaaagagtcagtcc 77 NM_011282.2

Reverse cctgtcttagaggagtctcagg

ACTB Forward ctaaggccaaccgtgaaaag 104 NM_007393.3

Reverse accagaggcatacagggaca

doi:10.1371/journal.pone.0135521.t001

Table 2. Effects of crizotinib or alectinib on firing rate.

Firing rate ON-cell OFF-cell ON-OFF cell

Crizotinib n (%) Alectinib n (%) Crizotinib n (%) Alectinib n (%) Crizotinib n (%) Alectinib n (%)

Increase 5 (10.4) 0 (0.0) 10 (21.3) 13 (27.7) 0 (0.0) 0 (0.0)

Decrease 14 (29.2) 6 (16.2) 12 (25.5) 2 (4.3) 3 (50.0) 0 (0.0)

No change 29 (60.4) 31 (83.8) 25 (53.2) 32 (68.1) 3 (50.0) 3 (100.0)

Total 48 (100.0) 37 (100.0) 47 (100.0) 47 (100.0) 6 (100.0) 3 (100.0)

doi:10.1371/journal.pone.0135521.t002
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alectinib on the firing rates of individual cells are basically the same (correlation coefficient,
0.51; P< 0.001). However, a significant difference in the number of affected cells was observed
between these two drugs (P< 0.01, Chi-squared test). Alectinib affected 11 cells (15.7%, Cate-
gory “S” + “A”), while crizotinib affected 27 cells (38.6%, Category “S” + “C”). The difference
in the number of affected cells between the crizotinib and alectinib groups may explain the
lower incidence of visual disorders induced by alectinib.

Fig 1. Effect of crizotinib (A-C) or alectinib (D-F) on firing rate of retinal ganglion cells. The timing of the drug application is indicated by the bar above
the traces. The drug concentration was 1.0μM for both crizotinib and alectinib. The results for no change-type (A, D), increase-type (B, E), and decrease-type
(C, F) cells are shown. The retina was repeatedly exposed to a set of light stimuli (1-s bright stimulation and 1-s dark stimulation at a frequency of 0.5 Hz). The
ordinate shows the average firing rate for 10 cycles of stimuli (20 s).

doi:10.1371/journal.pone.0135521.g001

Table 3. Comparison of actions of crizotinib or alectinib on firing rate.

Firing rate

Crizotinib Alectinib ON-cell (n) OFF-cell (n) ON-OFF cell (n) Total (n) Category

Increase Increase 0 5 0 5 S

Decrease Decrease 3 1 0 4 S

Increase Decrease 0 1 0 1 O

Decrease Increase 0 1 0 1 O

Increase No change 3 4 0 7 C

Decrease No change 5 4 0 9 C

No change Increase 0 0 0 0 A

No change Decrease 0 0 0 0 A

No change No change 19 21 3 43 N

Total 30 37 3 70

Category S: both crizotinib and alectinib had the same effect on the firing rate. Category O: the drugs had opposite effects on the firing rate. Category C:

only the effect of crizotinib was significant. Category A: only the effect of alectinib was significant. Category N: neither crizotinib nor alectinib had an effect.

doi:10.1371/journal.pone.0135521.t003
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Actions of crizotinib and alectinib on stimulus preference
Next, we examined the actions of crizotinib and alectinib on stimulus preference. The effects of
drugs on stimulus preference might be related to the severe visual disorder, since a change in
the preference of OFF-cells implies that dark stimuli are not being detected properly (and vice
versa for ON-cells and bright stimuli). Fig 2A and 2B shows the averaged firing rates of repre-
sentative cells exhibiting severe SPI changes induced by crizotinib. In Fig 2A, the cell responded
to dark stimuli before drug application (black solid line) (SPI = 0.92). However, once crizotinib
was applied to the cell, the cell began to respond to both dark and bright stimuli (red line)
(SPI = 0.61), indicating that the OFF-cell had begun to behave like an ON-OFF cell. The
actions of crizotinib on the firing rate were reversible (black dotted line) (SPI = 0.82). In con-
trast, the cell shown in Fig 2B originally responded to both dark and bright stimuli (black solid
line) (SPI = 0.61). During the application of crizotinib, the cell did not respond to bright stimuli
(red line) (SPI = 0.91), suggesting that the cell type had changed from an ON-OFF cell to an
OFF-cell. The actions of crizotinib on the firing rate were also reversible (black dotted line)
(SPI = 0.59). Thus, the change in SPI was bidirectional.

To assess the effect of crizotinib or alectinib on the SPI, we calculated the SPI before (SPIpre)
and during (SPIdrug) drug application for all the cells shown in Table 2. First, we classified the
cells into three groups based on the difference between SPIpre and SPIdrug for individual cells.
“Decrease”means that the drug decreased the SPI (46 cells for crizotinib and 41 cells for alecti-
nib), while “Increase”means that the drug increased the SPI (44 cells for crizotinib and 44 cells
for alectinib). In some of the cells, the difference between SPIpre and SPIdrug was not significant
(“No change” type; 11 cells for crizotinib and 2 cells for alectinib). For both the “Decrease” and
“Increase” types, the cumulative distributions of crizotinib and alectinib overlapped each other
at some point. However, at the point where the cumulative distribution of alectinib had almost
reached a plateau (arrow), that of crizotinib was not yet saturated. The difference in the cumu-
lative distributions of crizotinib and alectinib means that crizotinib induced a greater change in
the SPI than alectinib. Table 4 shows the numbers of cells exhibiting a larger difference in the
SPI than the difference indicated by the arrow (Fig 2C and 2D). Here, we extracted severely
affected cells from the “Decrease” and “Increase” categories, and cells with a smaller difference
than that indicated by the arrow were classified as a “Mild change” group. Twenty (2 + 0 + 0
+ 0 + 9 + 5 + 3 + 1, in Table 4) cells were severely affected by crizotinib, while only 7 (0 + 0 + 4
+ 1 + 2 + 0) cells were severely affected by alectinib. The number of severely affected cells dif-
fered significantly between the drugs (P< 0.05, Chi-squared test), supporting the higher inci-
dence of severe visual disorder in patients treated with crizotinib. A large change in the SPI was
not always associated with a change in the firing rate (8 out of 20 cells for crizotinib, 4 out of 7
cells for alectinib).

Further analysis of cells with large SPI differences
How does the change in the SPImodify the transferred visual information? To visualize the
transferred visual information in the presence and absence of drugs, we used the STA. The cell
(“Decrease” type) shown in Fig 2A tended to respond when the light intensity decreased greatly
(Fig 2E), indicating that the cell mainly fired during dark stimulation before drug application
(pre). During the application of crizotinib, the cell tended to respond to relatively steady light
stimuli, indicating that the cell fired in response to both dark and bright stimuli. To analyze the
actions of the drugs on the transferred information, the amplitude “A” (Fig 2E, double-headed
arrow) was defined as the difference between the maximum and minimum STA intensity. The
amplitude decreased in all the cells and became significantly small during drug application
(n = 7, P< 0.01, paired t-test, Fig 2G). On the other hand, the cell (“Increase” type) shown in
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Fig 2. Effect of crizotinib and alectinib on stimulus preference of retinal ganglion cells. (A and B) Post-stimulus time histogram before (pre), during
(crizotinib), and after (wash) the application of 1.0μM of crizotinib in an OFF-cell (A) and in an ON-OFF cell (B). The bin size for the histogram was 50 ms. (C
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Fig 2B initially had a low SPI, indicating that the cell responded to both dark and bright stimuli
(Fig 2F). During the application of crizotinib, the cell lost its response to bright stimuli (Fig 2B,
arrow); consequently, an increase in the SPI was observed. In the “Increase” cell type, the
amplitude “A” became significantly large during drug application (n = 20, P< 0.001, paired t-
test, Fig 2H). These changes indicate that the property of the transferred visual information dif-
fered during drug application. Since only a few cells were examined for alectinib, we did not
compare the actions between crizotinib and alectinib.

Ganglion cells must correctly detect light stimuli (signals) under the presence of various
background light sources (noise). Here, we regarded the firing rate for the preferred stimula-
tion as the signal and that for non-preferred stimulation as noise and calculated the signal to
noise ratio (S/N) of the cells, as shown in Table 4. After drug application, the S/N ratio
decreased significantly from 16.13 ± 8.23 to 2.63 ± 0.77 (mean ± SEM) in 6 OFF-cells, which
exhibited a reduced SPI (P< 0.05, Wilcoxon signed-rank test), while it increased significantly
from 5.71 ± 0.84 to 18.26 ± 5.55 (mean ± SEM) in 13 OFF-cells, which exhibited an increased
SPI (P< 0.001, Wilcoxon signed-rank test). Therefore, crizotinib and alectinib might affect the
spontaneous noise level.

Expression of mRNAs targeted by crizotinib or alectinib
To examine whether target receptors for crizotinib or alectinib exist in mouse retina, we per-
formed qPCR for ALK, a target receptor of both crizotinib and alectinib, and forMET and
ROS1, two additional target receptors of crizotinib. For ALK,MET, and ROS1, single bands of
the expected sizes were detected (Fig 3A, Table 1). Among the three target receptors, the
expression level of ALK was the highest and that of ROS1 was the lowest. The expression levels
of ALK,MET, and ROS1 were lower than that of ACTB (Fig 3B). The absence of additional sig-
nal amplification was confirmed by the dissociation curve (data not shown).

Discussion
In this experiment, we examined whether crizotinib or alectinib could induce visual disorders
at the level of the retinal ganglion cells. We found that both crizotinib and alectinib disturbed
the signal processing of retinal ganglion cells and that the functional disturbance induced by
crizotinib was stronger than that induced by alectinib. Our data strongly support the idea that
functional disturbance of the retinal ganglion cells is one possible source of visual disorder and

and D) Cumulative distributions of the differences in SPI for crizotinib and alectinib. The difference in SPI was calculated from the SPI values evaluated before
and during drug application. The cells were divided into “Decrease” type (C) and “Increase” type (D) according to the change in the SPI. The difference in (D)
was an absolute value. (E and F) STA before (pre), during (crizotinib), and after (wash) the application of crizotinib in the cells shown in Figs 2A (E) and B (F).
The amplitude “A” was defined as the difference in light intensity between the maximum and the minimum (double-headed arrow). (G and H) Plot of the
amplitude “A” before (pre) and during drug application (drug) for the cells shown in Table 4. The cells were divided into “Decrease” type (G) and “Increase”
type (H). **P < 0.01; *** P < 0.001; paired t-test.

doi:10.1371/journal.pone.0135521.g002

Table 4. Effects of crizotinib or alectinib on SPI.

SPI ON-cell OFF-cell ON-OFF cell

Crizotinib n (%) Alectinib n (%) Crizotinib n (%) Alectinib n (%) Crizotinib n (%) Alectinib n (%)

Increase 2 (4.2) 0 (0.0) 9 (19.1) 4 (8.5) 3 (50.0) 2 (66.7)

Decrease 0 (0.0) 0 (0.0) 5 (10.6) 1 (2.1) 1 (16.7) 0 (0.0)

Mild or No change 46 (95.8) 37 (100.0) 33 (70.2) 42 (89.4) 2 (33.3) 1 (33.3)

Total 48 (100.0) 37 (100.0) 47 (100.0) 47 (100.0) 6 (100.0) 3 (100.0)

doi:10.1371/journal.pone.0135521.t004
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that the magnitude of the functional disturbance may be a useful indicator for predicting the
severity of visual disorders induced by newly synthesized drugs.

Effects of crizotinib and alectinib on firing rate and stimulus preference
The application of crizotinib or alectinib reversibly changed the firing rate and the stimulus
preference to light stimulation in some cells. Changes in the firing rate were significantly more
common during treatment with crizotinib than during treatment with alectinib. In addition,
significantly more cells exhibited drastic changes in stimulus preference during treatment with
crizotinib than during treatment with alectinib.

Clinically, visual disorders induced by crizotinib are more severe than those induced by
alectinib. Experimentally, the firing rate is generally considered to convey information regard-
ing the stimulus intensity [26,27]. For example, the firing rate of ON-cells increases with
increasing light intensity. Thus, the firing rate reflects a quantitative change in the light stimuli.
On the other hand, the stimulus preference reflects a qualitative change in light stimuli for the
following reason. We used the SPI to characterize the ganglion cells based on the visual infor-
mation that they transferred. When ON-cells exhibited a large reduction in SPI, the cells were
re-classified as ON-OFF cells. The change in the SPImeant that the ON-cells could not
respond to the proper light stimuli at the proper timing. Therefore, a change in stimulus prefer-
ence can be interpreted as a qualitative change in light stimuli. We concluded that a qualitative
index was a better indicator for assessing the severity of side effects, although large changes
were observed both quantitatively and qualitatively during treatment with crizotinib.

Molecular targets of crizotinib and alectinib
Why was there a difference in the severity of visual disorders between crizotinib and alectinib?
We confirmed the expressions of ALK,MET, and ROS1mRNA (receptor tyrosine kinases that

Fig 3. Expressions of ALK, cMET, and ROS1mRNA in adult mouse retina. (A) Specificity of qPCR
products as detected using electrophoresis. (B) Relative mRNA expression levels. The ALK, cMET, and
ROS1 signals were normalized according to the ACTB signal. Error bars, s.d.; number of animals = 3.

doi:10.1371/journal.pone.0135521.g003
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serve as therapeutic targets in non-small-cell lung cancers [19,28]), in the mouse retina (Fig 3).
Immunoreactivity for ALK protein has been observed in mice [29]. Both crizotinib and alecti-
nib inhibit ALK at nanomolar concentrations, but the incidence of visual disorder is higher for
crizotinib. Therefore, the high frequency of visual disorder induced by crizotinib is unlikely to
be attributable to ALK inhibition. This idea is consistent with previous findings indicating that
an ALK-selective inhibitor did not produce significant changes on an electroretinogram [29].
Crizotinib also inhibits MET and ROS1 at nanomolar concentrations [25], while the inhibitory
actions of alectinib on MET and ROS1 only occur at micromolar concentrations or higher
[30,31]. However, the presence of MET [29] and ROS1 has not been confirmed at the protein
level in the mouse retina. Therefore, it will be interesting to see if the actions of crizotinib on
MET or ROS1 in the retina play a key role in the severe visual disorder.

Possible visual disorder in the retina
How do SPI disturbances modify our signal processing of visual scenes? We observed drastic
changes in the SPI in a few OFF-cells. Since OFF-cells respond to dark stimuli and ON-cells
respond to bright stimuli, edges with a sharp contrast are detected by the coordination of both
ON- and OFF-cells. When the SPI of OFF-cells is drastically reduced, edges with a sharp con-
trast cannot be detected clearly, leading to confusion in higher visual centers. Therefore, SPI
disturbances in the retina may be a source of the symptoms (such as diplopia and blurred
vision) that sometimes occur in patients treated with crizotinib, and the transfer of incorrect
signals from the retina may create confusion in higher visual centers.

The present study has some limitations that should be considered. In addition to using a
mouse model, we did not examine the effects of the agents on higher visual centers, such as the
lateral geniculate nucleus or the primary visual cortex. Thus, the present results may not con-
cisely explain the visual disturbances experienced by patients treated with crizotinib. Further-
more, although the concentrations of the agents used in the present study were comparable to
the Cmax level used in clinical situations, many unidentified factors may affect the actual drug
concentrations in the retina. These factors may include differences in the concentration and/or
clearance between vascular and intraocular regions as well as the protein binding capacity of
the agents. All these issues should be taken into consideration when translating the results of
our ex vivo experiments into clinical situations.

In conclusion, ALK-tyrosine kinase inhibitors affected the signal processing of light at the
retinal ganglion cell level in an ex vivomouse model, and the effects of crizotinib were severer
than those of alectinib, possibly explaining the difference in adverse effects (visual distur-
bances) observed in clinical situations.
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