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Abstract

In this work, a swarm behaviour for multi-rotor Unmanned Aerial Vehicles (UAVs) deploy-

ment will be presented. The main contribution of this behaviour is the use of a virtual device

for quantitative sematectonic stigmergy providing more adaptable behaviours in complex

environments. It is a fault tolerant highly robust behaviour that does not require prior infor-

mation of the area to be covered, or to assume the existence of any kind of information sig-

nals (GPS, mobile communication networks . . .), taking into account the specific features of

UAVs. This behaviour will be oriented towards emergency tasks. Their main goal will be to

cover an area of the environment for later creating an ad-hoc communication network, that

can be used to establish communications inside this zone. Although there are several

papers on robotic deployment it is more difficult to find applications with UAV systems,

mainly because of the existence of various problems that must be overcome including limita-

tions in available sensory and on-board processing capabilities and low flight endurance. In

addition, those behaviours designed for UAVs often have significant limitations on their abil-

ity to be used in real tasks, because they assume specific features, not easily applicable in a

general way. Firstly, in this article the characteristics of the simulation environment will be

presented. Secondly, a microscopic model for deployment and creation of ad-hoc networks,

that implicitly includes stigmergy features, will be shown. Then, the overall swarm behaviour

will be modeled, providing a macroscopic model of this behaviour. This model can accu-

rately predict the number of agents needed to cover an area as well as the time required for

the deployment process. An experimental analysis through simulation will be carried out in

order to verify our models. In this analysis the influence of both the complexity of the environ-

ment and the stigmergy system will be discussed, given the data obtained in the simulation.

In addition, the macroscopic and microscopic models will be compared verifying the number

of predicted individuals for each state regarding the simulation.

Introduction

Multi-robot systems have higher flexibility, efficiency and reliability than single robots: a team

of collaborative robots can accomplish a single task much faster, execute tasks beyond the
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limits of single robots, perform a complex task with multiple specialized simple robots rather

than a super robot, and provide distributed, parallel mobile sensing and processing. Exploring

an unmapped terrain by mobile robots is a fundamental and complex problem [1]. The

research results have found many potential real-world applications in cleaning, mowing,

search-and-rescue operation, ocean monitoring and planetary exploration [2–8].

Bio-inspired algorithms provide excellent strategies to solve the unknown terrain covering

problem. The ants have simple sensor ability, limited computational power and a decentralized

control system. These features make it practical to build a large number of ant-like robots to

explore an unknown terrain. Several covering algorithms were developed for ant-like robot

systems [9–11].

Distributed control allows each member robot to determine its motion according to the

states of itself, its local environment and its interactions with nearby robots and other objects.

Distributed processing largely reduces the computational and communication complexities.

As a result, distributed control is highly scalable to large multi-robot systems and adaptive to

unknown and dynamic environments and changes in multi-robot systems. With properly

designed distributed control laws, the desired global goal of a multi-robot system can be

achieved as the combined outcome of the self-deployment motion of individual robots.

Swarms of flying robots are a promising alternative to ground-based robots when searching

in indoor environments with advantages such as increased speed and the ability to fly above

obstacles. However, there are numerous problems that must be overcome including limita-

tions in available sensory and on-board processing capabilities, and low flight endurance.

In this paper, a swarm behaviour for swarm deployment will be presented. This task will be

carried out without any prior information about the environment, which can be structured or

even unstructured. In addition we will assume that the swarm individuals will have no access

to any communications network or localization service, such as GPS. In this way, these indi-

viduals must deploy in the environment their own communications network to send or receive

information using the proposed sigmergy system. Our goal is that this behaviour can be used

in emergency tasks, where the requirements of operation are much more restrictive. Once we

discuss the microscopic behaviour of the swarm we will introduce a macroscopic model. This

mathematical model predicts the number of individuals that execute each of the behaviour

states, which allows us to forecast the system performance without simulating or testing the

behaviour. To validate our the macroscopic behaviour, an analysis of this mathematical model

versus several simulations will be discussed.

More specifically, in the next section we will deal with the state of the art of deployment

behaviours for multi-robot systems in general and for multi-rotor UAVs in particular. Then,

both, the platform of swarm individuals and the physical simulator used for the testing phase

will be presented. We will continue by proposing a microscopic model for environment

covering using UAVs. In the next section, the mathematical model capable of capturing the

microscopic system operation will be formalized. In addition, we will show the microscopic

behaviour in a simulated way and will compare it with our macroscopic model. We will finish

by providing the conclusions of this work and some future lines.

Related work

Multi-robot deployment has become a fundamental research topic in the field of multi-robot

systems. In this section we will show a brief review of the existing types of swarm deployment

and coverage of terrestrial robots. Then we will review some applications designed to be exe-

cuted using aerial vehicles and comment some examples of stigmergy communication in

swarm systems.

Multi-rotor UAVs swarm deployment
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Although there are many applications related to multi-robot deployment, many of them

rely on pre-established communication network or external localization service. This pre-

cludes its application to emergency tasks, where we are not able to assume the existence of

communication networks or GPS. In this way, there are several studies where the external

communication network is substituted by the deployment of an own network of sensor nodes

or radio beacons. For example [12] uses a distributed algorithm able to guide a group of robots

through a network of sensors. However this strategy and others similar ones require the prior

deployment of the sensor network which could be no practical and difficult in emergency

situations.

Another alternative is to include the deployment process in the behaviour. In this case the

behaviour consists of two fases: beacon deployment and robot deployment. [13] deploy a net-

work of static radio beacons forming a long range communication network that could aid

robot exploration. However, such strategies cannot be used with micro or small sized UAVs

(the most commonly used ones in indoor environments) because of their low load capacity

and limited autonomy.

In [14, 15] a different strategy is presented, where each individual integrate a beacon, creat-

ing themselves their own communications network. However the design of this behaviour is

intended for the physical characteristics of terrestrial robots s-bot, which makes very difficult

to generalize it to other types of vehicles due to their different types of sensors and actuators.

In our case, we are interested in developing a behaviour that uses the advantages of indoor

flying vehicles, compared to terrestrial ones, in emergency situations. For example, these vehi-

cles allow to avoid many obstacles that could limit ground vehicles, besides allowing sensorial

data to be obtained from a vantage point of view [16–20].

This type of devices require specific considerations and algorithms to ensure their navi-

gability [21]. On the one hand, global localization mechanisms cannot be used, as it is common

in outdoor UAVs [22, 23]. Thus, in outdoor UAVS the GPS signal is the most common locali-

zation system, which can be even adjusted by using onboard inertial sensors. Such systems

cannot neither be used indoors (signal reception occlusion) nor in all outdoor locations and

situations, so another approximation must be used, such as local localization.

Robot local localization commonly requires environment maps and odometry sensing [24].

Environment maps may be previously unknown and the online creation of maps requires

powerful processing that may not be available on small flying robots [25]. Also, such

approaches do not scale appropriately with large swarms [22]. Moreover, there exists simple

relative localization applications suitable for small UAVs. For example in [26] a relative posi-

tioning sensors in reference to nearby static robots with a decentralised approach is presented.

Related to UAV deployment, we found one of the first applications presented in [27]. This

application uses an predetermined communication network as a basis for guiding UAVs.

Although this behaviour does not require an external communications network, it needs a

pre-deployment phase, as the terrestrial application [12], which is not applicable in real emer-

gency situations. In a later work [28] reconfigures the network of sensors to maximize system

performance, but in the same way requires a group of terrestrial robots to transport the sensor

network, which it is not practical for our needs.

More recently, [26, 29] presents a behaviour where a fully distributed deployment is devel-

oped while creating a communication network. This system does not require existing commu-

nication networks or global localization system. In addition, it is an effective strategy, designed

to save energy when using UAVs, which is very important for increasing swarm autonomy.

[26, 29] assumed that a robot can temporarily attach to the ceiling, or land on the ground for

efficient surveillance over extended periods of time. However, as the authors discussed in

that paper, this behaviour requires special environment features (straight walls, 90 degree

Multi-rotor UAVs swarm deployment
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angles,. . .) to be executed (is not functional for unstructured environments) and does not take

into account uncertainty (for example the errors in sensorial readings or the robot actuators,

which is very important in UAVs systems).

Using the ideas presented in [14, 15] and [26, 29, 30] an UAV swarm can establish their

own communications network. This network can be used for communicating swarm tasks or

even to help other robots or a human team for subsequent work [12, 14, 15, 27, 31, 32].

In this paper, we will present a behaviour inspired by the work of [14, 15] in terms of estab-

lishing their own network of communications and by [26, 29] in terms of adapting the behav-

iour to UAV using a power save state. However, in contrast to previous articles our distributed

behaviour will be able to be executed in any environment, without limiting their specific fea-

tures or its size.

For this purpose, a virtual sematectonic stigmergy system will be used. The use of this type

of communication is not new in the field of swarm robotics, finding in the literature several

applications using stigmergy as communication mechanism. In [33], a swarm behaviour that

can develop collaborative tasks through sematectonic stigmergy is presented. [23] discuss a

theoretical approach to the use of stigmergy in UAVs using stigmergic potential fields. To

implement this type of communication it is assumed that we have a local positioning mecha-

nism such as used in [34] and a efficient system of communication between individuals, as

could be the use of mesh networks of XBEEs devices [35].

We want to underline that the probabilistic microscopic model and the stigmergy system

that will presented here take into account the inherent uncertainty of the real robotic systems,

which do not occur in other approaches that assume ideal worlds such as [26, 29, 30].

Platform

Special considerations are required for a physical platform that will host a behavior demanding

the deployment of a group of indoor drones. The most important UAVs features and the simu-

lator that enables realistic testing of our behavior are described below.

Indoor flights usually require smaller drones than outdoors ones. The size and weight of

these devices is directly related to their load capacity and their autonomy. We have estimated

that the maximum size of multi-rotor UAV will be of half metre radius so that it lets enough

room for maneuver.

Thus, micro and minidrones, or even large enough UAVs as to load several sensors and to

conduct outdoor flights safely are covered here. A maximum speed of 2m/s is assumed. From

our point of view this provides sufficient safety margins for indoor environments. These

multi-rotor UAVs must have a mechanism that allows them to detect obstacles in its flying

plane. There are several alternatives that fulfill this task in the market, varying from low cost

ultrasonic sonar to more advanced and accurate small LIDARs sensors.

Our approach offers the innovative aspect of using stigmergy and hence virtual phero-

mones in our behavior. There are several studies that use such strategies simulating single

transceivers mounted on the top of each robot. A system allowing: local positioning of several

drones, and the transmission and later peer-to-peer storage is needed for the development of

this behaviour. Using XBEE devices to network peer-to-peer communication can provide a

simple and inexpensive way to implement this requirements.

UAVs launching will occur progressively over time from the same launching point. This

will simplify the arrangements before take off and will facilitate its application in emergency

tasks, where a specific launching point could be a requirement. Each UAV will be identified

by a sole number, starting with the lowest number for the UAV first launched. As will be

Multi-rotor UAVs swarm deployment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190692 January 25, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0190692


considered in the next section, this identification number will vein order to adjust the intensity

of pheromones emission in the behaviour.

It is also important to specify how the percentage of coverage achieved by the swarm will be

calculated. We propose the use of two metrics. We consider that each drone should have a

fixed visualization area. This area will define which things of the environment are being per-

ceived given the current position of the drone. For the first metric we have considered that

once the perception area of a drone has passed through a certain place, this place has been cov-

ered. Thus, an area will be considered to have been covered when the area of detection of all

the drones have covered the entire area at some time. On the other hand, the second metric

assumes that the drones cannot store information from the environment so it will be the final

configuration of the swarm what determines the covered area due to the limited perception

range of the vehicles from their final position.

As it will be seen in next section, the radius for pheromones emission must be established

in order to create a sparse or dense robot deployment and therefore, a more or less dense com-

munication network. These networks will be created by using an special behaviour state, called

beacon, where the robots must land and become part of the communication network and the

stigmergy system of the swarm.

Modelling is a method used in many research fields, to better understand the internals of

the investigated system, that has several advantages for swarm-robotics. The existence of possi-

ble risks for the robots and the limited power of the robots require a human observer to follow

the experiments and do some house keeping works periodically. The time spent on these

experiments and possible risk of losing the robots, even if a human observer exists, become a

bottleneck when several experiments are needed to validate the results of the studies. To elimi-

nate these problems it is safer and easier to model the experiments and simulate them on

computers. Another importance of modelling for swarm robotic studies appears when the

scalability of the experiments are tried to be tested. Most of the time, scalability requires to test

the control algorithms on more than hundreds of robots which is cost prohibitive [36].

In addition, when designing swarm-control mechanisms, researchers and engineers are

faced with the challenge to develop a set of rules at the individual (microscopic) level such that

a desired behaviour at the group (macroscopic) level is achieved. This is a very difficult task

since there is no general systematic way to devise individual behaviours that reliably achieve a

desired group behaviour. Thus design choices can usually only be tested in experiments or

simulations [37].

A swarm simulator based on [38] library has been developed in order to illustrate the exper-

imental section of this paper. A specific physical layer for UAVs vehicles simulation has also

been added. A realistic approach to multi-rotor UAVs dynamics has been considered taking

also into account the errors of the actuators, sensors and lastly the inherent uncertainty of such

systems altogether.

This simulator provides a unique mechanism that analyzes the performance of our behaviors

on large groups of UAVs with different types of scenarios. In addition, another two items have

been developed: on the one hand, a virtual system of the quantitative sematectonic pheromones.

On the other hand, a network of ultrasonic sensors used for detection of other drones or sur-

rounding walls. We have tried to be as faithful as possible to the final physical implementation.

Proposed microscopic behaviour and virtual stigmergy sensor for

multi-robot deployment

In this section, a microscopic covering behaviour for the creation of an ad-hoc communication

network among all the members of a swarm will be presented. In addition an stigmergy sensor

Multi-rotor UAVs swarm deployment
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will be described taking into account the main features of the proposed behaviour. We assume

UAVs that have a limited computing capacity, where a desired goal is the miniaturization of

these devices and therefore the integration of the behaviour within the stabilization of the

aircraft.

Thus, it seems reasonable to use the shortest CPU time possible in order to provide more

room to the aircraft stabilization and other low and medium level routines that become crucial

in some aircrafts, such as multi-rotor systems.

Moreover, this swarm individuals should always maintain connectivity. One of their mis-

sions is to create a network of communication between them, allowing thus to extract the

required data from a specific point of the environment. It is therefore essential that no single

individual remains isolated and therefore our behaviour will take measures to prevent it.

As it has been said before, a part of this microscopic behaviour is inspired by the one pre-

sented in [26, 29], where swarm individuals could stay in two different states: in flight or

landed. In UAVs system autonomy is a significant limitation. The use of these two states is

stablished when aiming to provide an energy saving mechanism while individuals continue as

part of the system without navigability requirements.

Initially, our behaviour will starts with an agent in beacon (landing) state, which indicates

the entry point to explore the environment. Then, an aircraft in wander (flying) state will

be added at regular intervals. Every aircraft will have an only numeric identifier, that will be

incremented for each added individual. The first mission of this behaviour is to explore the

environment. Thus, the last added individual drone will be flying (wander state), exploring the

environment by using its obstacle sensors following a probabilistic flight direction until the

signal strength of the stigmergy sensor (for example using the Received Signal Strength Indica-

tion, RSSI of the receiving device) will decrease by a certain threshold, limiting the guaranteed

communication distance to a maximum of li 2 Rmeters. In this case, the individual will pro-

ceed to land and change its state to beacon.

In beacon state, the vehicle is in saving battery mode (the battery consumed when it is

landed is negligible compared when it is in flight). Its mission is twofold: firstly it must put for-

ward any signal received from a swarm member, thus establishing a communication network

where each individual can send, receive and route information. This behaviour is necessary in

order to send information from a control point, to develop the virtual stigmergy sensor or to

obtain information regarding the environment covering. Therefore, vehicles in beacon state

have an important role in our stigmergy implementation.

There are several types of stigmergy in nature that enable the communication of individuals

through the environment. The adaptation of these mechanisms to an artificial system can be

complex, mainly due to the absence of physical devices operating in a similarly way than the

biological ones when detecting or emitting pheromones. We propose the use of quantitative

sematectonic stigmergy, ie the deposit of the same individuals in the environment as a mecha-

nism for communicating quantitative information.

This way, beacon individuals are a major players in this process. Their task is to receive vir-

tual pheromones from nearby robots (within their communication range) and to store them.

In addition, in order to emulate the operation of natural pheromones they are also responsible

for decreasing the stored pheromones intensity as time goes by. This provides a good forgetting
mechanism that is very useful in dynamic environments.

In our behaviour, the use of pheromones is essential and enables its effective development.

The wander individuals emit pheromones around them when moving with a certain radius

Crw
2 R and intensity Cdw

2 R. In the same way, in the transition between wander and beacon
states, the vehicles will emit a pheromone footprint with larger radius Crb

2 R and intensity

Multi-rotor UAVs swarm deployment
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Cdb
2 R than the previous one. This footprint is emitted only once, losing its intensity over

time, where the rate for decreasing per second is indicated by the parameter C2 2 R.

The navigation of the individuals who are in the state wander is established by a potential

field function f, determined by three components (f1, f2, f3). The movement to be developed

by the robots is the sum of all three components

f ¼
X3

i¼1

ðai � f iÞ

where the intensity of each component is graduated with a specific factor αi. In order to

develop this movement we are solely interested in the unit vector f̂ ¼ f
jfj, since it is the one that

indicates the direction to be taken.

The first component f1 is obtained as a vector pointing to the area of lower intensity of

pheromones in the range of the vehicle, so that the importance of a detected pheromone

decreases within the square of the distance. Assuming that the vehicle position is the origin of

coordinates, we can specify this component as follows:

C ¼ ðx; yÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� Crb

n o

f1 ¼
X

c2C

vðcy; cxÞ

jvðcy; cxÞj
2
�Cfieldy;x

 !

where C is a set of tuples with all the points that belong to the discretization of the circle (that

depends on the resolution of the used sensor) within the pheromone radius Crb
and centered

at robot position. v(cy, cx) is a vector which is constructed by the coordinates of the tuple (x, y)

of each element of the set C. Cfieldy, x
is the component (y, x) of a matrix containing the phero-

mone readings in the space coordinates (x, y) returned by the virtual stigmergy sensor.

The second component f2, determines the obstacle avoidance part. It is obtained by calcu-

lating a vector pointing to the area with fewer obstacles detected by the ultrasonic sensors:

f2 ¼
XjRj

j¼1

rj � p

where R is the set of detected obstacles, rj the position of the detected obstacle j and p the cur-

rent position of the robot.

Finally, we will consider that the data perceived by sensors and sent to the actuators could

contain inaccuracies, so a random component will be included in our selection process in

order to make the next move taking into account the intrinsic uncertainty of robotic systems:

f3ðtÞ ¼ f3ðt � 1Þ þ a4 � randðÞ

Where t indicates current time, rand() is a uniform vector of random numbers, so that

randi 2 [0, 1] and α4 is a term that allows to adjust the importance of the random influence.

The provided microscopic behaviour is stochastic, as is deduced from its definition, and

therefore small failures in perception or in actuators have no significant consequences. As has

been presented, it includes intrinsically a noise term for the calculation of the trajectory to be

followed by an agent that alter its movement trying to model real-world conditions.

Multi-rotor UAVs swarm deployment
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In a more formal way, we define the microscopic behaviour to be developed by the individ-

uals of the swarm as a tuple such that:

Y ¼ ðg; f̂ ;C;GÞ

Where γ 2 {wander, beacon} represents the current state of the individual and f̂ sets the direc-

tion to be taken in the next time step. C is a tuple that determines the characteristics of the

stigmergy system, such that:

C ¼ ðdw; db; �; rw; rb; liÞ

Where Cδw
,Cδb

determines the intensity of emission of pheromones for states wander and bea-
con respectively. C� defines the decreasing rate of virtual pheromones per second in the envi-

ronment. Crw
,Crb

establish the radius of pheromone emission in metres for states wander and

beacon. li is the guaranteed maximum distance for stable communication between devices. It

depends directly on the physical transceiver, the environment and the pheromones radius Crw
,

Crb
. Finally, Γ is another tuple that includes all the common terms of the microscopic behav-

iour:

G ¼ ðru; Z; p0; a1; a2; a3; a4Þ

Where ru 2 R, is the radius of detection of obstacles for each vehicle, Z 2 R the rate of individ-

uals to be added to the swarm per second, p0 2 R
2 is the initial position where behaviour will

be developed and the drones will be launched and ai 2 R are the adjusting terms needed to

obtain vector f̂ .

Behaviour execution

Once the behaviour has been introduced, we will briefly discuss an example of execution. We

will use a map within those presented in [30]. This map has a size of 100x100 metres.

Initially, a robot in beacon state will be positioned at p0 = (35, 93). Starting from this posi-

tion, new robots will be added progressively each minute. We can see the evolution of this

behaviour from minute 5 to 8 in Fig 1. In this figure we could see a 3D representation of the

environment and a detailed explanation of the presented behaviour.

In Fig 2 three later steps of the covering process (at 8, 18 and 30’ of execution) can be

observed. In addition, a graph showing the mean and standard error of 30 simulations (using

the same environment and parameters) is shown. This graph shows the percentage of covered

area and the number of individuals in each state.

Therefore, the effectiveness of the environment covering process can be observed. It takes

30 minutes to cover the whole area. In the early stages of the behaviour the number of beacon
agents increases quickly. This is because it is very easy for an individual to find an empty area

not covered by any radio frequency signal used for stigmergy. As time progresses, the number

of individuals in wander state increases since it is more difficult to find an uncovered area and

new wander agents are being added.

Macroscopic model

For the detailed analysis of the microscopic model it is essential to provide a mathematical

model, able to analyze the global behaviour of the swarm in a given environment. The main

reason for using a state-based behaviour is to allow the macroscopic model to be modelled as a

recurrence equation taking into account the transitions between system states. Thereby, this

macroscopic model can help us to predict the total number of individuals needed to cover an

Multi-rotor UAVs swarm deployment
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area of the environment, to adjust the radius of pheromone emission for optimal covering or

even to make an estimate of the energy required by the swarm to develop their task.

The most important part to be analyzed in this behaviour is the transition between the two

states of the system, wander and beacon. This is for example more valuable than getting the

final distribution of individuals position, as this can be easily estimated by knowing the envi-

ronment to be covered. Thus, we will model the number of agents found in each of the states

of the system using the following system of recurrence equations:

wt ¼ wt� 1 � at � wt� 1 þ a5

bt ¼ at � wt� 1 þ bt� 1

at ¼ a6 � at� 1

Fig 1. In a) we can see the 6th minute of the execution of the presented behavior, represented in a 3D map. This figure represents a part of the sequence

presented in Fig 2 and it is chosen to illustrate the behaviour operation. In a) all vehicles are in beacon state (landed). This causes a new UAV to be

introduced into the system from the starting position. This vehicle will traverse the environment following the indications of its speed vectors. In b) it is

observed that the active (flying) UAV surpass the farthest landed vehicle (from the starting point). The 3 vectors that conform its speed (direction of the

zone of less pheromones, obstacles repulsion, and slight random variation of the current speed) are observed. While moving, the UAV slightly modify

the pheromone map by increasing it where it navigate. In c) the vehicle continues the flight until it finds that its quality of communication with the

swarm decreases from the established thresholds and land, to form part of the group of repeating vehicles. When it lands it emits pheromones in its

current position.

https://doi.org/10.1371/journal.pone.0190692.g001

Multi-rotor UAVs swarm deployment

PLOS ONE | https://doi.org/10.1371/journal.pone.0190692 January 25, 2018 9 / 20

https://doi.org/10.1371/journal.pone.0190692.g001
https://doi.org/10.1371/journal.pone.0190692


Where wt represents the number of agents in wander state at time t and bt the number of

agents in beacon state at time t. Initially, in this behaviour it is much more likely that an indi-

vidual turns its state from wander to beacon. This is because the environment is empty and

therefore there is a larger area to be covered. Thus, function at allows to model the flow of indi-

viduals changing their state from wander to beacon through the initial value a0 and the term

Fig 2. a) Covering progress of the microscopic behaviour, starting at position (35, 93), for 8’ of execution. Blue footprints represents the emitted

pheromones. Red footprints represents the area of the environment covered by the swarm. b) Covering at 18‘. c) Covering at 30’. d) The mean

and standard errors for both the number of individuals in each state of the simulation, and the number of individuals predicted by the

macroscopic model are presented for 30 simulations. Robot position and obstacles detection range is shown for each robot. The percentage of

area covered by the swarm is also showed, where each step is equal to 1/2 seconds.

https://doi.org/10.1371/journal.pone.0190692.g002
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α6. In the previous equation, the number of agents to be added to the swarm is modelled in

parameter α5. In our case this parameter takes a value of α5 = 0.01.

As it has been previously mentioned, the microscopic behaviour begins with an individual

in beacon state and no one in wander state, so:

w0 ¼ 0

b0 ¼ 1

Obtaining a0 and α6

α6 2 [0, 1] determines how at decreases over time, which is directly related to the number of

individuals in state w and b. A higher value of α6 will add more individuals to beacon state for

longer. On the other hand, if its value is decreased the inclusion of individuals in wander state

will be prioritized. This parameter is required to specify the fact that initially it is easy for indi-

viduals, because of the use of pheromones and the emptiness of the covering zone, to go very

quickly to beacon state. As time passes this trend will decrease because more zones are covered

and thus, more wander individuals will be seeking for free zones to land.

So, the maximum influence of this parameter is determined by the size of the radius of

pheromones used in the model. A quadratic relationship between this radius Crb
and α6 exists,

so that

a6 ¼ l0 þ l1 �Crb
þ l2 �C

2

rb
:

To calculate the following coefficients we have used a polynomial regression adjustment

from various base models. This process can also be done automatically. As discussed in [39] it

is not a complex task and can be done using learning techniques even for more complicated

differential equations. More specifically, we obtain for our system that:

l0 ¼ 1

l1 ¼ 2:5 � 10� 5

l2 ¼ 2:5 � 10� 6

8
><

>:

Where Crb
is the radius of the pheromones in metres left by beacon individuals, as it has been

previously seen in the description of the microscopic behaviour.

Moreover, a0 defines the ratio of initial individuals that will change to beacon state (and

therefore will come out from wander state). This ratio depends mainly on two factors. On the

one hand, the complexity of the environment and thus the distribution of walls or doors, influ-

ences in a negative way the navigation process required for the individuals for covering the

environment. Of the other hand, seems reasonable to consider that in complex environments

a0 decreases and therefore the existence of wander robots will be incremented. Furthermore,

in larger environments with more empty areas where UAVs can fly, there will be more beacon
individuals and parameter a0 must be increased.

This way:

a0 ¼ l3 þ l4

X1

k¼0

Pklog2ðPkÞ þ l5 � envsize

Where �
P1

k¼0
pklog2ðPkÞ refers to the complexity of the environment by calculating its

entropy as a measure of reference. Thus, for a binary image representing free and occupied
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space we will obtain the probability of a pixel to represent it (term Pk) where k is the grey level

of the pixel (in the case of binary images, as in our case, we assume that images consist of occu-

pied space black and empty space white). Moreover λ5 � envsize increases the value of a0 in a lin-

ear way. Where envsize is the environment size in square metres and λ3, λ4 y λ5 are adjustment

terms.

The entropy of the maps is used as an indication of its navigability. There may be cases in

which a map with more entropy is not more complex than another (large areas with small

complex zones, such as a sequence of gates, may have a smaller entropy than small areas with

irregular but highly navigable walls). Therefore, we assume uniformity of the entropy within

the map, with similar areas distributed with the same density.

As in the previous case, it is easy to obtain an adjustment of the free parameters from several

base models. For our system we have:

l3 ¼ 9:5 � 10� 2

l4 ¼ 1=60

l5 ¼ 5:4 � 10� 6

8
><

>:

Experimentation

In this section, the behavioural functioning of the swarm will be shown, for simple, complex

and unstructured maps. As discussed below, given the probabilistic nature of this system, sev-

eral simulations for the same behaviour will be carried out for the development of the tests.

Thus, a statistical analysis of the results will be presented.

Firstly, we will explore the influence of the artificial pheromones radius Crb
in the micro-

scopic behaviour. In order to design a physical device for stigmergy, it is very important to

analyse the importance of this radius because it is directly related to the evolution of behaviour

and to the environment data required to be transmitted or stored in the swarm individuals.

Secondly, modelling mathematically this behaviour and analyzing its evolution is crucial.

Therefore, in this section we will validate macroscopic model under consideration, analyzing

the fitting error of the number of states prediction with our simulation over time. In addition,

the number of individuals in each state for behaviour completion will be shown for both simu-

lation and prediction. In swarm robotics, knowing the macroscopic model helps us to make

important decisions about the microscopic model parameters to be used.

A limited but representative set of maps of the usual flight areas for this type of vehicle have

been used. Specifically, unobstructed areas (the most common in flights with sufficient alti-

tude), interior areas or low-altitude exterior flights (made up of walls and obstacles) and

unstructured areas (inclined walls, curves without geometric structure). All the tested maps

have the following characteristics, needed for the proper functioning of the robotic swarm:

firstly, the size of the navigable areas should be enough so that navigation and avoidance of

obstacles is developed effectively given the speed of the aircraft. Secondly, the entropy of the

maps is used as an indication of its navigability. As commented before, we assume uniformity

of the entropy within the map, with similar areas distributed with the same density.

Pheromone radius Crb

Although there are many parameters that can be studied, the radius of pheromones takes spe-

cial importance for this behaviour. This is a distinguishing feature that determines not only

the distance between swarm individuals, but as discussed below, the average speed to complete

Multi-rotor UAVs swarm deployment
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the covering process. The microscopic behaviour that will be used in our tests is:

Y ¼ ðg; f̂ ;Ψ;ΓÞ

C ¼ 0:03;
swarmsize � robotId

swarmsize
; 0:0001; rw; rb; rb

� �

G ¼ ð5; 5; 0:01; ð5; 80Þ; 0:2; 0:4; 0:4; 0:4Þ

8
>>>><

>>>>:

Where both γ and f̂ do not vary from previous specification of the microscopic model. More-

over, Cδb
is defined from the robotic index (robotId). This index starts from 0 and is incremen-

ted by one every time an individual is added. swarmsize is the maximum size of individuals that

belong to the swarm. As the robots move away from the point of origin, the intensity of emis-

sion of pheromones in beacon state is lower (to encourage searching distant areas). That is

why the agents of the swarm have an incremental index, that goes from 0 to the number of

agents of the swarm minus one. Using this index, the intensity of emission of pheromones in

beacon mode is obtained, so that the first agents introduced will be the one that will emit more

intensity as stated in Cδb

The same launch position is used Γp0
in order to simplify testing in all maps, although in

our experiments we have verified that this position does not substantially vary the result of the

final covering.

The first test we perform determines the influence of the pheromones ratio at final covering

state and the amount of time required. We have analyzed 4 different Crb
radios (10, 20, 30 and

40m), where Crw
¼

Crb
2

. We will assume that li depends directly on the communication range

that is able to reach our pheromone system and therefore li = Crb
. In this test, 30 runs were exe-

cuted for each pheromone radius for a total of 10 maps (of different sizes and complexities).

The results obtained for 4 selected maps are shown on Table 1.

Table 1. Selection of results for four maps of the simulation. All maps are delimited with perimeter walls. The first map (Id 1) is an empty hall of 100x100m (left map of

Fig 3a). Map 2 is a 100x200m empty hall. Map 3 is half divided hall with one wall and only a pass door. Map 4 is a complex 100x100m hall, with multiple walls and corridors

(middle right map of Fig 3a). The entropy for each map ordered by increasing Id is (0.2405, 0.0027, 0.2817, 0.4639). The average of area covered for 10 runs and the average

of time required to cover this area is shown. The maximum time allowed for simulation is 15000s. This time will be shorter if the swarm cover (using the ca metric) the

95% of the area. Furthermore, the number of individuals in states wander and beacon w, b for the simulation and for the mathematical model ðŵ; b̂Þ is presented. Two dif-

ferent covering metrics are shown: ca, the percentage of terrain that is covered by any individual of the swarm in any time and cb, that indicates the percentage of area cov-

ered by individuals in the final iteration of the behaviour, assuming a detection range of 10m per individual. Finally, the measure of the differences between the number of

individuals in each state predicted and simulated (using root-mean-square deviation, RMSD) is also presented.

Id φr w b ŵ b̂ t(s) ca cb rmsdw rmsdb
1 10 5.60 233.40 0.50 237.99 11875 96.75 100.00 2.772 2.458

1 20 1.20 27.80 1.85 27.14 1400 94.03 14.80 0.4869 0.6688

1 30 3.20 12.80 3.13 12.86 750 92.44 8.16 0.5095 0.6684

1 40 7.80 8.20 7.33 8.41 738 93.96 8.16 0.6403 0.7511

2 10 8.00 293.00 8.82 292.17 15000 98.63 100.00 2.293 1.967

2 20 3.20 57.80 2.00 58.74 2988 93.38 31.12 1.162 0.8114

2 30 4.20 23.80 3.76 23.98 1338 92.99 14.29 0.7449 0.4387

2 40 7.20 14.80 8.38 13.61 1050 92.01 11.22 0.8336 0.7567

3 10 41.00 247.00 58.66 228.83 14325 95.87 100.00 5.13 5.075

3 20 15.20 27.80 15.70 26.54 2062 88.06 21.94 1.016 0.937

3 30 10.20 11.80 8.51 13.48 1050 89.06 11.22 1.33 1.066

3 40 15.20 7.80 15.43 7.31 1088 94.28 11.73 0.6473 0.4651

4 10 59.00 242.00 63.69 237.30 15000 95.33 100.00 5.999 5.716

4 20 40.40 30.60 42.88 27.61 3475 91.35 36.22 1.595 1.386

4 30 31.00 13.00 31.60 11.89 2125 93.20 22.45 0.7561 0.5267

4 40 16.00 7.00 17.04 5.45 1075 87.27 11.73 0.9312 1.199

https://doi.org/10.1371/journal.pone.0190692.t001
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For coverage analysis we have used two metrics. ca represents the percentage of area cov-

ered by each individual at any time, ie, it is assumed that an individual has memory and can

store the necessary environmental data to be transmitted while it is in wander state. cb indicates

the percentage of area covered by individuals in the final iteration of the behaviour, assuming

a detection range of around 10m per robot. This is the opposite case, where the individuals

have no memory of their navigation while staying in wander state and can only transmit infor-

mation about the environment in beacon state.

The effect of increasing the pheromones radio Crb
(and indirectly Crw

) is the distance

between individuals in the final step of the coverage. With small values the covering is made

much denser, reaching values of coverage close to 100%. However, as shown in Table 1, the

time and the number of agents required for the deployment is much higher.

If the swarm individuals can have some type of memory that allows them to remember the

last walked areas, the density of the deployment can be substantially reduced. In this case, a

larger radius of pheromones have lower temporary cost at the expense of a more spaced cover-

ing, thereby cb is substantially reduced. However ca remains within acceptable levels, since the

movement of the wander agents (and the area covered while moving) is taken into account.

We must not forget that if the individuals are not able to store the necessary information

from the environment while moving (eg they are not able to locate where the readings are

taken, which is far from being a trivial problem), the final position of the individuals in the

behaviour is fundamental. In this case, as presented in Table 1 the pheromones radius used

must be determined by two factors, cb, that decreases substantially at higher pheromones ratio

Crb
and the time required for deployment which is increased by this radius. Also, it is impor-

tant to underline that in the case of UAVs, the energy required when most agents are in state

wander is significant. So depending on the environment, may not be feasible to increase the

pheromones radius due to the quantity of energy required to maintain multiple agents in flight

simultaneously.

In Fig 3 an example of the result of coverage of this behaviour is presented for different

maps and pheromone radius Crb
. In Fig 3a the radio is constant at 20m. As we can see, the

behaviour is functional regardless of the nature of the environment. In Fig 3b the same envi-

ronment is used with different pheromones radius Crb
between 10, 20 and 30m. As it can be

observed the difference when altering this parameter is the density of agents required to com-

plete the coverage.

Microscopic vs macroscopic model

Furthermore it is essential to verify whether our macroscopic model effectively models our

achieved experimental results. To do so, we compare the prediction of the theoretical model

by using the same experimental data in the previous section. Specifically, the macroscopic

model is defined by the following parameters:

l0 ¼ 1

l1 ¼ 2:5 � 10� 5

l2 ¼ 2:5 � 10� 6

l3 ¼ 9:5 � 10� 2

l4 ¼ 1=60

l5 ¼ 5:4 � 10� 6

8
>>>>>>>>>><

>>>>>>>>>>:

In the last two columns of Table 1 the root-mean-square deviation of variables w, b (indi-

viduals in wander and beacon state respectively) is presented. It is a frequently used measure of
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the difference between values predicted by a model or an estimator and the values actually

observed.

Given the 10 analyzed maps, where their entropy varies from 0 to 0.7 and their size from

100x100mm to 400x400mm, we have obtained the following adjustment results presented in

Table 2.

As it can be seen, with this values a good rate of adjustment of the microscopic and macro-

scopic model is achieved. In addition, in Table 1 the final number of individuals needed for

the covering process could be observed for both, the simulated and the predicted model. The

differences between them are not significant and, in this way, our macroscopic model could be

used to predict the features needed by the microscopic model to deploy and cover and envi-

ronment in an optimal way. More specifically, we have selected two cases for the analysis of

the model adjustment to microscopic data.

In Fig 4 the evolution of individuals in wander and beacon state (w, b) is presented for the

labyrinth (center-right map) in Fig 3a and a pheromone radius of 20m. In this case we use a

complex environment, where the displacement can be difficult in areas with multiple walls and

doors. As it can be observed, the number of individuals in beacon state increase in areas close

Fig 3. a) Environment covering results using the proposed microscopic behaviour with the default parameters and a

pheromone radius of 20m. This behaviour terminates when ca� 95%. As previous figures red footprints represents the

covered space (using ca metric) and blue footprints defines the zones where the pheromones has been emitted. b)

Status of the simulation at time 8144s with a pheromone radius of 10m. c) Status of the simulation at time 1700s with a

pheromone radius of 20m. d) Status of the simulation at 2000s with a pheromone radius of 30m.

https://doi.org/10.1371/journal.pone.0190692.g003

Table 2. Mean and standard deviation of beacon and wanderRMSD (comparing the number of individuals in each

state in simulation vs macroscopic predicted values) for 10 analyzed maps. The entropy of these maps varies from 0

to 0.7 and their size from 100x100mm to 400x400mm.

mean rmsdw std rmsdw mean rmsdb std rmsdb
1.6429 1.4356 1.5501 1.4677

https://doi.org/10.1371/journal.pone.0190692.t002
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to the swarm deployment. However, as time passes these areas are covered and the swarm

should explore new areas. On this instance, the number of wander agents grows until it out-

numbers the beacon individuals. As it can be seen, the provided model correctly reflects this

behaviour.

In Fig 5 the evolution of individuals in wander and beacon state (w, b) is presented for the

left map in Fig 3a and a pheromone radius of 10m. This is a simple environment, without

doors or buildings, where the deployment is produced progressively. Therefore, the number of

individuals in state beacon is increased progressively, while only a constant number of wander
individuals is used. Our microscopic model is able to correctly predict this case.

As has been commented before, we also use unstructured maps for these experiments

obtaining good results in the simulations that have been carried out. The macroscopic model

correctly predicts these environments without much variation with respect to structured

maps. This result is expected, since no information regarding the structure of the environment

is included in the microscopic model.

Conclusions and future works

A microscopic model for a swarm behavior has been presented in this paper. As it has been

seen, such model is able to deploy and cover an unknown area in a fully decentralized way

using a virtual stigmergy system. This behaviour is adapted to the multi-rotor UAVs character-

istics, establishing a power saving state for the individuals, taking into account the inherent

Fig 4. Comparison of the microscopic model with the macroscopic model for the labyrinth (center-right map) in

Fig 3a, of size 100x100m and with pheromones radius of 20m. The mean and standard errors for both the number of

individuals in each state of the simulation, and the number of individuals predicted by the macroscopic model are

presented. In addition, the covered area ca at each instant and the root-mean-square deviation of each state are

presented. Each simulation step is equal to 1/2 seconds.

https://doi.org/10.1371/journal.pone.0190692.g004
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actuators and sensors errors and providing a low computing load behaviour to be imple-

mented on systems with limited computing capabilities, as it is often the case with this kind of

vehicles.

This behaviour is oriented towards the implementation and use of the swarm within emer-

gency situations, mainly due to the fact that it can be executed in any environment, without

requiring the use of any existing communications networks or external localization services.

Furthermore, this behaviour is able to create its own communication network for sending

internal and external behavioural information and for obtaining environmental data to be

analyzed.

In addition, a mathematical model for the macroscopic behaviour of the system has been

provided. This model can accurately predict important behavioral data, such as the number of

individuals needed to cover an area, the influence of pheromones radius, or the number of

agents in each of the states of the system, allowing for example an analysis of the energy

required by the swarm.

We have tested in an experimental way both, the influence of different radii of pheromones

and the adjustment of the macroscopic model with the data obtained through simulation. For

calculating the differences between the values predicted by the macroscopic model and the val-

ues actually observed in simulation we use the root-mean-square deviation (RMSD) measure,

thus obtaining results that indicate that the presented microscopic model correctly models the

behaviour of the swarm, regardless of the used environment. Therefore, we believe that this

Fig 5. Comparison of the microscopic model with the macroscopic model for the most left map in Fig 3a, of size

100x100m and with pheromones radius of 10m. The mean and standard errors for both the number of individuals in

each state of the simulation, and the number of individuals predicted by the macroscopic model are presented. In

addition, the covered area ca at each instant and the root-mean-square deviation of each state are presented. Each

simulation step is equal to 1/2 seconds.

https://doi.org/10.1371/journal.pone.0190692.g005
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behaviour and model contributes and advances in the research line of swarm deployment and

covering using UAVs.

Currently, two future lines of work are being taken into account. On the one hand we are

developing a radio frequency physical sensor/emitter to use pheromones for real swarm of

drones. This device can be used to perform indoor location tasks and to establish indirect com-

munications of the swarm individuals. Therefore, it will provide a physical mechanism that

directly supports stigmergy.

On the other hand, we are analyzing the energy required by the swarm by using our macro-

scopic model to determine the influence of the model parameters according to energy con-

sumption. The main goal of this analysis is to obtain more efficient robotic swarms reducing

their cost and increasing their autonomy. This type of systems can be applied for example to

emergency and rescue tasks [40, 41], to create communication networks in restricted environ-

ments [42] or to search/rescue people or objects [43, 44].

Supporting information

S1 File. Simulation maps. Maps used in the simulation. Black pixels are not navigable. One

pixel represent 1 meter in simulation.

(ZIP)

S2 File. Data graphs. Original graphs that contains the simulation an model data.

(ZIP)
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