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Abstract

The adoptive transfer of effector T cells combined with lymphodepletion has demonstrated

promising antitumor effects in mice and humans, although the availability of tumor-specific T

cells is limited. We and others have also demonstrated that the transfer of polyclonal naïve

T cells induces tumor-specific effector T cells and enhances antitumor immunity after lym-

phodepletion. Because tumors have been demonstrated to induce immunosuppressive net-

works and regulate the function of T cells, obtaining a sufficient number of fully functional

naïve T cells that are able to differentiate into tumor-specific effector T cells remains difficult.

To establish culture methods to obtain a large number of polyclonal T cells that are capable

of differentiating into tumor-specific effector T cells, naïve T cells were activated with anti-

CD3 mAbs in vitro. These cells were stimulated with IL-2 and IL-7 for the CD8 subset or with

IL-7 and IL-23 for the CD4 subset. Transfer of these hyperexpanded T cells after lymphode-

pletion showed significant antitumor efficacy, and tumor-specific effector T cells were

primed from these expanded T cells in tumor-bearing hosts. Moreover, these ex vivo—

expanded T cells maintained T cell receptor diversity and showed long-term persistence of

memory against specific tumors. Further analyses revealed that combination therapy con-

sisting of vaccination with dendritic cells that were co-cultured with irradiated whole tumor

cells and the transfer of ex vivo—expanded T cells significantly enhanced antitumor immu-

nity. These results indicate that the transfer of ex vivo—expanded polyclonal T cells can be

combined with other immunotherapies and augment antitumor effects.
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Introduction

Lymphodepletive cytotoxic regimens, such as chemotherapy and radiotherapy, have demon-

strated the ability to augment antitumor immunity. In particular, the antitumor efficacy of

tumor-specific effector T cells is clearly enhanced when they are transferred into lymphopenic

tumor-bearing hosts [1]. We and others have found that transfer of naïve T cells and effector T

cells enhanced antitumor immune responses and inhibited tumor progression [2] [3, 4]. Poly-

clonal naïve T cells transferred into lymphopenic hosts proliferate rapidly and differentiate

into antitumor effector T cells. Previous studies have suggested that lymphodepletion aug-

ments antitumor immunity through the depletion of immune-suppressor cells [5, 6]. Recent

studies have further shown that lymphodepletion decreases host cell competition for activating

cytokines, such as IL-7, IL-15 and IL-21, and increases the availability of these cytokines to

transferred T cells [7, 8]. Furthermore, we have previously demonstrated that the percentage

of regulatory T cells (Tregs) increases after lymphodepletion [3, 4]. The Tregs that survive lym-

phodepletion suppress the development of antitumor immunity during recovery from lym-

phopenia, and the depletion of Tregs following lymphodepletion augments antitumor

immune responses.

Although the induction of tumor-specific effector T cells via the transfer of naïve T cells fol-

lowing lymphodepletion seems to be a promising approach to augment antitumor immunity,

a large number of naïve T cells must be collected from tumor-bearing hosts. Previous studies

have demonstrated that recognition of self-antigens by the T cell receptor (TCR) is important

for the proliferation of T cells during lymphopenia-induced homeostatic proliferation [9] [10].

However, TCR functions are impaired in tumor-bearing hosts [11] [12]. Tumor cells induce

immunosuppressive mechanisms, such as the induction of regulatory cell populations and the

secretion of immunosuppressive soluble factors, and they also inhibit the function of antitu-

mor T cells [13, 14] [15]. Thus, it remains difficult to harvest a sufficient number of fully func-

tional naïve T cells from cancer patients. In the current study, we investigated whether ex vivo

—expanded naïve T cells show antitumor efficacy when they are transferred into lymphopenic

tumor-bearing hosts. We and others have previously reported that effector T cells purified

from tumor-draining lymph nodes (TDLNs) can be efficiently expanded in complete medium

(CM) supplemented with specific cytokines following anti-CD3 activation [16] [17]. More-

over, the transfer of these ex vivo—expanded effector T cells eliminated established tumors. In

this study, we stimulated naïve T cells from the spleen of normal mice with immobilized-anti

CD3 monoclonal antibodies (mAbs). These T cells were further stimulated in CM supple-

mented with IL-2 and IL-7 for the CD8 subset or with IL-7 and IL-23 for the CD4 subset. The

resultant cells were transferred into irradiated lymphopenic tumor-bearing mice. Ex vivo—

expanded T cells from naïve mice were differentiated into effector T cells in lymphopenic

hosts and inhibited tumor progression. Effector T cells primed from these ex vivo—expanded

T cells from naïve mice were long-lived and rejected specific tumor rechallenge. Moreover, the

combination of dendritic cell (DC) vaccination and the transfer of ex vivo—expanded T cells

had potent antitumor effects. These results indicate that ex vivo expansion of naïve T cells may

yield a sufficient number of fully functional T cells from cancer patients to augment antitumor

immunity in clinical settings.

Materials and methods

Animals

Female C57BL/6N (B6) mice were purchased from CLEA Laboratory (Tokyo, Japan). Ly5.1

congenic B6 mice were obtained from Sankyo Labo Service (Tokyo, Japan). OT-II transgenic
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mice and Rag2-/- mice were purchased from the Jackson Laboratory (Bar Harbor, ME). The

mice were housed in a specific pathogen-free environment and used at an age of 8 to 12 weeks.

The experimental protocols were approved by the Niigata University Institutional Animal

Care and Use Committee.

Tumors

The 3-methylcholanthrene (MCA)-induced fibrosarcoma cell lines MCA205 and MCA207,

originally derived from B6 mice, were routinely passaged in vivo and used between the fifth

and eighth passages [18]. Single-cell suspensions were prepared from solid tumors by digestion

with a mixture of 0.1% collagenase, 0.01% DNase, and 2.5 U/ml hyaluronidase (Sigma-Aldrich,

St. Louis, MO) for 3 hours at room temperature. The cells were filtered through a 100-μm

nylon mesh, washed, and suspended in HBSS for intravenous (i.v.) and subcutaneous (s.c.)

inoculations.

Cell culture

Animals were sacrificed by cervical dislocation and the spleens were excised. Naïve spleen cells

were depleted of CD4+ or CD8+ cells by negative selection with mAb-coated magnetic beads

(Invitrogen, Carlsbad, CA). CD8- or CD4-depleted cells were suspended in CM and activated

for 2 days at 4 × 106 cells per well in 24-well culture plates coated with anti-CD3 mAb (145-

2C11). Activated CD8-depleted cells were suspended at 0.5 × 106 /ml in CM with IL-7 (10 ng/

ml; R&D Systems, Minneapolis, MN) and IL-23 (2 ng/ml; R&D Systems, Minneapolis, MN).

Activated CD4-depleted cells were suspended at 0.5 × 106 in CM with human recombinant IL-

2 (16 U/ml; kindly supplied by Shionogi) and IL-7 (10 ng/ml). For long-term expansion, the

cells were re-stimulated with anti-CD3 mAb for 14 hours on days 21 to 23. CM consists of

RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum and antibiotics.

Adoptive transfer

B6 mice were lymphodepleted by sublethal irradiation with 500 cGy. On the same day, the

mice were reconstituted i.v. with T cells that had been expanded in vitro. These mice were

then inoculated s.c. with 1 × 105 MCA205 tumor cells along the midline of the abdomen.

Tumor sizes were measured in 2 perpendicular dimensions 2 to 3 times per week with digital

calipers and recorded as the tumor area (mm2).

Activation of TDLN cells

The generation of activated TDLN cells has been described previously [16]. Briefly, B6 mice

were inoculated s.c. with 3 × 106 MCA205 tumor cells on both flanks to stimulate TDLNs.

Twelve days later, TDLNs (inguinal) were harvested, and single-cell suspensions were pre-

pared mechanically. These TDLN cells were activated with anti-CD3 mAb immobilized on

24-well plates for 2 days and expanded in CM containing 16 U/ml recombinant human IL-2

for 3 days.

FACS analysis and in vivo proliferation

FITC-conjugated mAbs against CD11c (HL3), CD25 (PC61) and the Mouse Vβ Screening

Panel kit; PE-conjugated mAbs against CD4 (RM4-5), CD8 (53–6.7), CD25 (PC61), CD44

(IM7), CD62L (MEL-14), CD69 (H1.2F3), CD80 (16-10A1), CD86 (GL1), CD95 (Jo2), CCR7

(4B12), CTLA-4 (UC10-4F10-11), H-2kb (AF6-88.5), I-Ab (AF6-120.1) and IFN-γ (XMG1.2);

PE-Cy7-conjugated mAbs against CD4 (RM4-5), CD8 (53–6.7) and Ly5.1 (A20); and isotype-
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matched mAbs were purchased from BD Biosciences. PE-anti-Forkhead box P3 (Foxp3, FJK-

16s) was purchased from eBioscience. The cell surface phenotypes were determined by direct

immunofluorescence staining with conjugated mAbs and analyzed using a FACSCalibur flow

cytometer (BD Biosciences, San Jose, CA). Foxp3 staining was performed using the PE-Foxp3

staining set (eBioscience, San Diego, CA). For the in vivo proliferation assay, cultured T cells

and spleen T cells from normal mice were labeled with CFSE (Molecular Probes, Eugene, OR).

Briefly, T cells were suspended at 1 × 107 cells/ml and incubated with CFSE in HBSS for 10

minutes at 37˚C. The labeling was stopped by adding ice-cold HBSS, and the cells were washed

twice with HBSS before being transferred into irradiated mice.

Intracellular IFN-γ staining

Intracellular IFN-γ staining was performed as previously described [19]. Briefly, activated T

cells were stimulated with a single-cell suspension of either MCA205 or MCA207 tumor cells

prepared from solid tumor tissues at a 1:1 ratio. Controls included stimulation with immobi-

lized anti-CD3 mAbs. Brefeldin A (10 μg/ml, Sigma-Aldrich, St. Louis, MO) was added at 6

hours, and the cells were harvested at 24 hours. The cells were then pretreated with FcR-block-

ing Abs, followed by staining for 30 minutes with PE-Cy7-conjugated anti-CD4 or anti-CD8

mAbs. Washed cells were fixed with 2% paraformaldehyde for 20 minutes, permeabilized with

0.3% saponin, and incubated for 40 minutes with PE-conjugated IFN-γ at 4˚C. Unbound

mAbs were removed by two washes with 0.3% saponin in PBS.

Preparation of DCs

DCs were generated from bone marrow cells according to a previously described procedure

[20]. In brief, bone marrow cells obtained from femurs and tibias of naive mice were placed in

T-75 flasks for 2 h at 37˚C in CM containing 10 ng/ml recombinant murine GM-CSF (kindly

supplied by KIRIN). Nonadherent cells were collected by aspirating the medium and trans-

ferred into fresh flasks. On day 6, nonadherent cells were harvested by gentle pipetting.

Approximately 80% CD11c+CD11b+ cells and 20% CD11c−CD11b+ cells were obtained.

Activation of DCs

To settle DCs on a T-25 flask precoated with goat anti-rat Ig Ab and anti-CD40 Ab (3/23; Bio-

Rad, Oxford, UK) as soon as possible, the cells were plated in 4 ml of CM supplemented with

GM-CSF (10 ng/ml). Anti-CD40 Ab-coated flasks were prepared as described below. T-25

flasks were coated with 2 ml of goat anti-rat Ig Ab solution (100 μg/ml) overnight at 4˚C. The

Ab solution was removed, and the flasks were washed twice with PBS. The flasks were further

coated with rat anti-murine CD40 Ab (100 μg/ml) for 30 minutes at 37˚C in a 5% CO2 incuba-

tor and used immediately after washing with PBS.

Statistical analysis

The significance of the differences between groups was analyzed using unpaired two-tailed

Student’s t test as indicated in the figure legends. When data failed normality test, the Wil-

coxon rank-sum test was performed to evaluate statistical significance. Results were presented

as mean ± SEM. A p value < 0.05 was considered significant. All experiments were repeated at

least twice. Statistical analyses were performed using JMP version 9 software (SAS Institute,

Cary, NC).
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Results

Ex vivo expansion of naïve CD4+ and CD8+ T cells under specific culture

conditions

We have repeatedly demonstrated that effector T cells are primed in TDLNs and that the trans-

fer of these cells produces antitumor effects after activation with CD3/IL-2 ± IL-7 [16, 21] [22].

Further experiments revealed that CD4+ and CD8+ effector T cells could be efficiently

expanded under specific culture conditions [17]. CD4+ effector T cells that were primed in

TDLNs and stimulated with IL-7 and IL-23 inhibited tumor progression more strongly than

those stimulated with IL-2 and IL-7 when they were transferred into lymphopenic tumor-bear-

ing mice. To determine whether naïve T cells were also efficiently expanded in vitro, we first

depleted CD4+ or CD8+ cells from naïve spleen cells (Fig 1A). CD4-depleted cells and CD8-de-

pleted cells were then activated with plate-bound anti-CD3 mAb for 2 days. CD4-depleted

cells were subsequently cultured in CM supplemented with IL-2 and IL-7. By contrast, CD8-

depleted cells were expanded in the presence of IL-7 and IL-23. On day 9 of culture, FACS

analyses showed that 82.4% of the CD8-depleted cells were CD4+ cells and 95.3% of the

CD4-depleted cells were CD8+ cells. Fig 1B shows the fold proliferation of CD4+ and CD8+

cells. Similar to previous experiments, re-stimulation with immobilized anti-CD3 mAb for 14

hours on day 23 resulted in further expansion of CD4+ and CD8+ cells [17].

Next, we investigated whether these ex vivo—expanded naïve T cells could maintain the

diversity of the T cell repertoire. FACS analyses revealed a broad overall TCR Vβ usage in

CD4+ and CD8+ T cells after days of culture (Fig 1C).

We previously observed that the transfer of naïve T cells into lymphopenic tumor-bearing

mice resulted in potent antitumor effects [3, 4]. Naïve T cells proliferated peripherally in lym-

phopenic hosts and acquired antitumor effector functions. To evaluate the proliferation of ex

vivo—expanded naïve T cells in lymphopenic mice, naïve CD4+ and CD8+ T cells from con-

genic Ly5.1 mice were separately stimulated for 9 days as described above. These cells or

freshly harvested naïve spleen cells (40 × 106) from Ly5.1 mice were stained with CFSE and

transferred i.v. into sublethally (500 cGy) irradiated Ly5.2 mice. Next, the Ly5.2 mice were

inoculated s.c. with MCA205 cells (3 × 106) to stimulate TDLNs. Twelve days later, inguinal

TDLNs were harvested. The proliferation of Ly5.1+ donor CD4+ and CD8+ T cells was evalu-

ated via CFSE dilution. As shown in Fig 1D, ex vivo—expanded CD4+ T cells (83.2%) had pro-

liferated together with naïve CD4+ T cells (85.1%). By contrast, ex vivo—expanded CD8+ T

cells (57.5%) had divided less than naïve CD8+ T cells (95.3%).

Ex vivo—Expanded CD4+ T cells show antitumor effects in lymphopenic

mice

We next investigated whether the transfer of ex vivo—expanded T cells into irradiated lym-

phopenic mice could augment antitumor immunity. Sublethally irradiated mice were injected

i.v. with either ex vivo—expanded T cells (30 × 106) as described above, whole spleen cells that

were stimulated in vitro with anti-CD3/IL-2+IL-7 for 9 days or freshly harvested naïve spleen

cells. These mice were inoculated s.c. with MCA205 tumor cells (1 × 105) along the midline of

the abdomen on the same day. Consistent with previous studies, the transfer of fresh spleen

cells after irradiation delayed skin tumor growth (Fig 2A). Although the transfer of activated

whole spleen cells delayed skin tumor growth, the transfer of ex vivo—expanded CD4+ T cells

and CD8+ T cells strongly inhibited tumor progression (Fig 2A). To determine whether the

transfer of CD4+ and CD8+ T cells was responsible for the augmentation of antitumor immu-

nity in this model system, irradiated lymphopenic mice were reconstituted with ex vivo—
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Fig 1. Ex vivo proliferation of CD4+ and CD8+ T cells. (A) CD4+ or CD8+ T cells from normal spleen cells were

magnetically depleted in vitro. These CD4- and CD8-depleted cells were activated with immobilized CD3 mAbs for 2 days.

CD4-depleted cells were subsequently stimulated with IL-2 and IL-7, whereas CD8-depleted cells were stimulated with IL-7

and IL-23. Dot grams showing the percentage of CD4+ and CD8+ cells before and 9 days after stimulation. (B) CD8-depleted

(Bi) and CD4-depleted cells (Bii) were activated with anti-CD3 followed by stimulation with IL-7 plus IL-23 or IL-2 plus IL-7,

In vitro-expanded naïve T cells and lymphodepletion enhances antitumor immunity
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expanded CD4+ T cells or CD8+ T cells and then challenged with MCA205 tumor cells. As

shown in Fig 2B, the transfer of CD8+ T cells was associated with minimal antitumor efficacy.

By contrast, significant retardation of skin tumor growth was observed in mice reconstituted

with CD4+ T cells.

In previous studies, we demonstrated an increase in the percentage of Tregs in irradiated

lymphopenic mice [3]. Tregs that survive sublethal irradiation suppress the development of

antitumor immunity during recovery from lymphopenia, whereas depletion of these irradia-

tion-resistant Tregs significantly enhances the antitumor effects of the transfer of naïve T cells

following irradiation. To investigate whether the depletion of radio-resistant Tregs enhanced

the antitumor efficacy of the ex vivo transfer of expanded CD4+ T cells after irradiation, irradi-

ated lymphopenic mice were transferred i.v. with ex vivo—expanded CD4+ T cells and then

inoculated s.c. with MCA 205 tumor cells. These mice were injected intraperitoneally (i.p.)

with anti-CD25 mAb (PC61) to deplete Tregs on the same day. As demonstrated in Fig 2C, the

depletion of Tregs following irradiation and the transfer of ex vivo—expanded CD4+ T cells

significantly inhibited skin tumor growth. Although the transfer of ex vivo—expanded CD8+

T cells into lymphopenic mice showed minimal antitumor effects, we evaluated whether the

depletion of Tregs enhanced the antitumor effects of ex vivo—expanded CD8+ T cells. In con-

trast to the transfer of ex vivo—expanded CD4+ T cells, the transfer of ex vivo—expanded

CD8+ T cells followed by the depletion of Tregs did not show strong antitumor effects (Fig

2D).

Effector CD4+ T cells are primed from ex vivo—Expanded CD4+ T cells

and show maintenance of TCR diversity

The phenotypes of freshly harvested CD4+ T cells and ex vivo—expanded CD4+ T cells are

depicted in Fig 3A. The upregulation of CD25 and CD44 and the down regulation of CD62L

were observed after ex vivo activation. Next, we evaluated the phenotypes of ex vivo—

expanded CD4 T+ cells that were transferred into lymphopenic tumor-bearing mice. Suble-

thally irradiated mice were reconstituted i.v. with 40 × 106 ex vivo—expanded CD4+ T cells

from Ly5.1 mice. These mice were then inoculated s.c. with MCA205 tumor cells to stimulate

TDLNs. Twelve days later, TDLN cells were harvested and stained for FACS analyses.

CD4+Ly5.1+ donor T cells from TDLNs showed higher expression of CD69 and CD62L and

lower expression of CD25 and CD44 than did donor cells before transfer (Fig 3B).

To investigate whether tumor-specific effector T cells were induced by the combination

treatment of irradiation and the transfer of ex vivo—expanded CD4+ T cells, mice were irradi-

ated and transferred i.v. with 40 × 106 ex vivo—expanded CD4+ T cells, followed by inocula-

tion of MCA205 tumor cells. Twelve-day TDLNs were harvested, and the TDLN cells were

activated in vitro with anti-CD3 mAbs for 2 days and then stimulated in CM containing low

doses of IL-2 (16 U/ml) for 3 days, as described in our previous studies [16]. IFN-γ production

from these activated TDLN cells was assessed after further stimulation with fresh MCA205

tumor digests. The tumor digests included CD11b+MHC-classII+ antigen-presenting cells

respectively. On day 23, the resultant cells were re-stimulated with plate-bound anti-CD3 mAbs for 14 hours. The fold

proliferation of CD4+ and CD8+ cells is shown. (C) Normal spleen cells were depleted of CD8+ cells or CD4+ cells and were

activated under specific culture conditions. The percentages of TCR-Vβ subpopulations in CD4+ (Ci) and CD8+ (Cii) T cells

after ex vivo expansion are demonstrated. Representative results from three independent experiments are shown. (D) Ex

vivo—expanded CD4+ and CD8+ T cells from congenic Ly5.1+ spleen cells were labeled with CFSE and transferred i.v. into

sublethally irradiated Ly5.2+ mice. These mice were inoculated s.c. with MCA205 tumor cells in the right flank to stimulate

the TDLNs. Twelve days later, TDLNs (inguinal) were harvested and analyzed for the CFSE staining intensity within the

Ly5.1+ subset. Data shown are from a single experiment representative of three independent experiments.

https://doi.org/10.1371/journal.pone.0183976.g001
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(APCs), which present tumor antigens specific for CD4+ T cells as previously described [23].

As shown in Fig 3C, 3.4% of the TDLN cells were CD4+ tumor-specific T cells. Next, we

assessed whether antitumor effector T cells were primed from transferred donor cells. Suble-

thally irradiated mice were reconstituted with ex vivo—expanded CD4+Ly5.1+ T cells, followed

Fig 2. Transfer of ex vivo—Expanded CD4+ T cells enhanced antitumor immunity. (A) Irradiated lymphopenic mice were reconstituted

with either freshly harvested naïve spleen cells, whole spleen cells that were stimulated with CD3/IL-2+IL-7 for 9 days, or CD4+ T cells that

were stimulated with anti-CD3/IL-7+IL-23 and CD8+ T cells that were stimulated with anti-CD3/IL-2+IL-7 for 9 days. These mice were

inoculated s.c. with MCA205 tumor cells along the midline of the abdomen. The resultant skin tumors were measured in two perpendicular

directions two to three times per week, and the tumor areas (mm2) were recorded. (B) Irradiated mice were transferred i.v. with ex vivo—

expanded CD4+ or CD8+ T cells and were inoculated s.c. with MCA205 tumor cells. (C) Irradiated mice were transfused i.v. with ex vivo—

expanded CD4+ T cells. These mice were injected i.p. with anti-CD25 mAbs following the inoculation of MCA205 tumor cells. (D) Irradiated

mice were reconstituted with either ex vivo—expanded CD4+ or CD8+ T cells. These mice were inoculated s.c. with MCA205 tumor cells

and treated with anti-CD25 mAbs to deplete Tregs. Data are shown as mean ± SEM of 5 mice per group and are from one experiment

representative of two to three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 (two sided Student’s t test).

https://doi.org/10.1371/journal.pone.0183976.g002
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Fig 3. Tumor-specific effector CD4+ T cells were mainly induced from donor cells and maintained TCR diversity. (A) The

phenotypes of freshly harvested CD4+ T cells and ex vivo—expanded CD4+ T cells were assessed by flow cytometry. A representative

result from 3 independent experiments is shown. (B) Irradiated mice were transferred i.v. with ex vivo—expanded CD4+Ly5.1+ T cells

and inoculated s.c. with MCA205 tumor cells. Twelve-day TDLNs were harvested and analyzed by FACS. Histograms demonstrate the

phenotypes of the CD4+Ly5.1+ donor T cells. (C) Irradiated mice were reconstituted with ex vivo—expanded CD4+ T cells and

In vitro-expanded naïve T cells and lymphodepletion enhances antitumor immunity
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by the injection of MCA205 tumor cells. Twelve days later, TDLN cells were activated accord-

ing to the anti-CD3/IL-2 method and then stimulated with specific MCA205 cells. FACS anal-

ysis revealed that 94.9% of the CD4+ T cells responding to tumor-specific stimulation were

from transferred donor cells (Fig 3D). To evaluate whether these tumor-specific CD4+ T cells

could maintain the diversity of the T cell repertoire, the expression of TCR Vβ in CD4+IFN-γ+

T cells was analyzed by FACS. As shown in Fig 3E, a broad repertoire of TCR Vβ on CD4+

tumor-specific T cells was observed.

Long-lived memory T cells from ex vivo—Expanded CD4+ tumor-specific

T cells lead to successful rejection of specific tumor re-challenge

To determine whether the ability to recognize tumor antigens is responsible for the enhance-

ment of antitumor immunity in this model system, we transferred ex vivo—expanded CD4+ T

cells from OT-II transgenic mice into sublethally irradiated lymphopenic mice. These mice

were then inoculated s.c. with MCA205 tumor cells along the midline of the abdomen and

treated with anti-CD25 mAbs to deplete Tregs. As shown in Fig 4A, the antitumor effects of the

combination of irradiation, transfer of ex vivo—expanded CD4+ T cells from wild-type mice

and Treg depletion were significantly reduced when ex vivo—expanded CD4+ T cells from

OT-II mice were used as donor cells. Next, we examined whether long-term antitumor mem-

ory developed in mice treated with combination therapy consisting of irradiation, ex vivo—

expanded T cell transfer and Treg depletion. Irradiated lymphopenic mice were reconstituted

with ex vivo—expanded CD4+ T cells and inoculated with MCA205 tumor cells. These mice

were Treg-depleted on the same day. Ninety days later, the cured mice were inoculated s.c.

with 3 × 106 MCA205 tumor cells, and these mice successfully rejected MCA205 tumor cells

(Fig 4B). To assess whether both CD4+ and CD8+ memory T cells against MCA205 tumors

were maintained for a long time, we harvested 90-day spleen cells from mice that were cured of

MCA205 tumors via treatment with irradiation, transfer of ex vivo CD4+ T cells from Ly5.1

mice and Treg depletion. The spleen cells were activated using the CD3/IL-2 method and stim-

ulated with MCA205 tumor cells. As shown in Fig 4C, IFN-γ production from both CD4+ and

CD8+ T cells was observed after specific tumor-antigen stimulation. We further evaluated the

origin of these antitumor memory T cells. FACS analysis demonstrated that the majority of the

tumor-specific CD4+ T cells were from transferred donor T cells (85.7%). As expected, almost

all tumor-specific CD8+ T cells originated from recipient mice (99%). These data prompted us

to evaluate the role of recipient T cells in our model system. If we used Rag2-/- mice as recipi-

ents, the antitumor effects of the combination of irradiation, transfer of ex vivo—expanded

CD4+ T cells from wild-type mice and Treg depletion were significantly decreased (S1 Fig).

DC vaccination augments the antitumor effects of combination therapy

of lymphodepletion and ex vivo—Expanded CD4+ T cells

Previously, we demonstrated that vaccination with DCs is capable of augmenting the priming

of antitumor effector T cells in draining lymph nodes (LNs) [20]. A short duration of DC

inoculated s.c. with MCA205 tumor cells. Twelve days later, TDLN cells were activated in vitro with anti-CD3 and IL-2. These TDLN

cells were tested for IFN-γ production after specific or nonspecific stimulation. (D) Irradiated mice were transferred i.v. with ex vivo—

expanded CD4+Ly5.1+ T cells and were inoculated s.c. with MCA205 tumor cells. Twelve-day TDLNs were harvested and activated in

vitro using anti-CD3 and IL-2. These TDLN cells were further stimulated with MCA205 tumor cells and stained for IFN-γ. Histograms

show the percentage of Ly5.1+ donor T cells among CD4+ T cells responding to specific tumor antigens. (E) To examine whether these

tumor-specific CD4+ T cells maintained the TCR Vβ repertoire, TDLN cells were harvested and activated using the CD3/IL-2 method

followed by stimulation with MCA205 tumor cells. Data are from one experiment representative of three independent experiments.

https://doi.org/10.1371/journal.pone.0183976.g003
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stimulation with agonistic anti-CD40 mAbs in vitro can enhance the migration of DCs to

draining LNs and the ability of DCs to present tumor antigens to tumor-specific T cells. To

augment the antitumor effects of the transfer of ex vivo—expanded CD4+ T cells and irradia-

tion, we investigated DC vaccination in this model system. DCs were generated as described in

the Materials and Methods section. For antigen loading, DCs were co-cultured with irradiated

MCA205 tumor cells (50 Gy) overnight. Fig 5A demonstrates the phenotypes of DCs which

were co-cultured with irradiated MCA205 tumor cells or without co-culture. These DCs co-

Fig 4. Long-term persistence of ex vivo—Expanded donor effector T cells. (A) Irradiated lymphopenic mice were reconstituted with ex

vivo—expanded CD4+ T cells from transgenic OT-II mice or normal mice. These mice were injected with anti-CD25 mAbs following the

inoculation of MCA205 tumor cells. (B) Mice were treated with combination therapy, which consisted of irradiation, the transfer of ex vivo—

expanded CD4+ T cells and Treg depletion, and inoculated s.c. with MCA205 tumor cells. Mice that were cured of tumors were re-challenged

with MCA205 tumor cells 90 days after the combination therapy. (A, B) Data are shown as mean ± SEM of 5 mice per group and are from

one experiment representative of two independent experiments. ***p < 0.001; two sided Student’s t test. (C) Irradiated mice were

transfused i.v. with ex vivo—expanded CD4+Ly5.1+ T cells and were inoculated s.c. with MCA205 tumor cells. These mice were treated with

anti-CD25 mAbs. Ninety-days after successful combination therapy, spleens were harvested from cured mice. These spleen cells were

activated with anti-CD3 and IL-2 followed by stimulation with MCA205 tumor cells and were tested for IFN-γ secretion in vitro. Data shown

are from one experiment representative of two independent experiments.

https://doi.org/10.1371/journal.pone.0183976.g004
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Fig 5. DC vaccination enhanced the antitumor effects of transfer of ex vivo—Expanded CD4+ T cells. (A) DCs were

generated from bone marrow cells as described in the Materials and Methods section. These DCs were co-cultured with

irradiated MCA205 tumor cells (50Gy) overnight and stimulated with immobilized agonistic anti-CD40 mAbs for 3 hours.

Histograms show the phenotypes of CD11c+ DCs co-cultured with or without irradiated tumor cells, and after CD40 stimulation.

Mean fluorescence intensities (MFI) of Class I, Class II, CD80 and CD86 in CD11c+ DCs are also indicated. Data shown are
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cultured with irradiated tumor cells were then stimulated with immobilized agonistic anti-

CD40 mAbs for 3 hours. Fig 5A also shows the phenotypes of DCs after stimulation with anti-

CD40 mAb in vitro. The expression levels of class II, CD80 and CD86 were upregulated after

CD40 stimulation. Next, we examined whether vaccination with these DCs could enhance the

antitumor effects of the transfer of ex vivo—expanded CD4+ T cells after irradiation. Irradiated

lymphopenic mice were inoculated s.c. with MCA205 tumor cells. On the same day, these

mice were transferred i.v. with ex vivo—expanded CD4+ T cells and vaccinated with DCs that

were co-cultured with MCA205 tumor cells and stimulated with anti-CD40 mAbs. Fig 5B

shows that DC vaccination augmented the antitumor therapeutic responses mediated by the

transfer of ex vivo—expanded CD4+ T cells following irradiation. By contrast, DC vaccination

and the transfer of ex vivo—expanded CD8+ T cells did not show significant antitumor effects

(Fig 5C). Next, we evaluated the combination of irradiation, the transfer of ex vivo—expanded

CD4+ T cells, Treg depletion and DC vaccination in the 3-day skin tumor model. Mice were

inoculated s.c. with 1 × 105 of MCA205 tumor cells. Three days later, these mice were irradi-

ated and transferred i.v. with ex vivo—expanded CD4+ T cells followed by Treg depletion and

DC vaccination. As shown in Fig 5D, this combination therapy consisting of irradiation, the

transfer of ex vivo—expanded CD4+ T cells, Treg depletion and DC vaccination significantly

inhibited skin tumor growth.

Discussion

Adoptive cell transfer (ACT) using antigen-specific effector T cells is one of the most effective

immunotherapies [24, 25]. Tumor-infiltrating lymphocytes and gene-engineered T cells, such

as chimeric antigen receptor—modified T cells and TCR-engineered T cells, have shown

promising antitumor effects against many solid tumors and hematologic malignancies. How-

ever, there are barriers, such as the availability of tumor-infiltrating lymphocytes, on-target

but off-tumor toxicities and difficulty related to the selection of suitable target antigens, that

limit the wide dissemination of adoptive cell therapy. We have investigated the enhancement

of antitumor immunity through the induction of tumor-specific effector T cells from naïve T

cells during homeostatic proliferation [3, 4]. Our previous studies demonstrated that the com-

bination of lymphodepletion regimens and the transfer of naïve T cells induces tumor-specific

effector T cells and suppresses tumor progression. Moreover, the depletion of host Tregs that

are resistant to lymphodepletion results in the successful treatment of advanced tumor models

when combined with lymphodepletion by cyclophosphamide and the transfer of naïve T cells

[4]. Extensive studies have revealed that tumors induce immune suppression to evade antitu-

mor T cell responses [13–15]. Several mechanisms have been suggested for the induction of

immune suppression by tumors, including induction of Tregs, myeloid-derived suppressor

cells, tumor-associated macrophages and tolerogenic DCs; secretion of immunosuppressive

soluble factors; and activation of negative regulatory pathways such as CTLA-4 and PD-1. This

immunosuppressive tumor network interferes with the function of T cells in tumor-bearing

hosts. Similarly, we previously reported that myeloid-derived suppressor cells inhibited the

from one experiment representative of three independent experiments. (B) Irradiated mice were transferred i.v. with ex vivo—

expanded CD4+ T cells or whole spleen cells from normal mice as the source of naïve T cells. These mice were then

vaccinated with DCs and inoculated s.c. with MCA205 cells. (C) Irradiated mice were reconstituted with either ex vivo—

expanded CD4+ or CD8+ T cells followed by inoculation of MCA205 tumor cells. These mice were vaccinated s.c. with DCs. (D)

Mice bearing 3-day skin tumors were irradiated and transferred i.v. with ex vivo—expanded CD4+ T cells. These mice were

then vaccinated s.c. with DCs and treated with anti-CD25 mAbs. (B, C, D) Data are shown as mean ± SEM of 5 mice per group

and are from one experiment representative of two to three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 (two

sided Student’s t test).

https://doi.org/10.1371/journal.pone.0183976.g005
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priming of effector T cells [19]. Furthermore, in cancer patients, down-regulation of the TCR

z chain has been reported; this impairs T cell signaling and contributes to T cell dysfunction

[11, 12]. Because the homeostatic proliferation of T cells during recovery from lymphopenia

depends on signaling through the TCR and homeostatic cytokines, it appears that both effector

T cells and naïve T cells are suppressed in tumor-bearing hosts [10]. Although we and others

have demonstrated that the transfer of naïve T cells following lymphodepletion augments anti-

tumor effects, the collection of fully functional naïve T cells from tumor-bearing hosts remains

difficult. Thus, we sought to establish culture methods to obtain sufficient numbers of ade-

quate naïve T cells capable of differentiating into tumor-specific effector T cells.

In the current study, we examined the ability of in vitro—stimulated naïve T cells to induce

tumor-specific effector T cells and enhance antitumor immunity. Because previous studies

have demonstrated that effector T cells can be efficiently expanded under specific conditions,

such as supplementation with IL-2 and IL-7 for the CD8 subset or IL-7 and IL-23 for the CD4

subset after anti-CD3 stimulation, we used the same culture methods for the expansion of

naïve T cells [17, 23]. This in vitro stimulation resulted in the hyperexpansion of both CD4+

and CD8+ naïve T cells (Fig 1A and 1B). FACS analyses revealed that the TCR diversity was

maintained after ex vivo expansion (Fig 1C). The transfer of these polyclonal ex vivo—

expanded T cells into lymphopenic hosts significantly inhibited tumor progression (Fig 2A).

Similar to our findings, Dummer et al. reported that the transfer of polyclonal naïve T cells

into lymphopenic mice significantly enhanced antitumor immunity [2]. Recent evidence sup-

ports the association of the antitumor effects of immunotherapy and a number of neoantigens

[26–28]. PD-L1/PD-1 blockade therapy is more efficacious toward cancer cells, which have a

higher neoantigen burden [27, 28]. PD-L1/PD-1 blockade therapy recovers the function of

exhausted tumor-specific effector T cells and shows antitumor effects. Thus, tumor cells with a

large number of neoantigens seem to strongly induce tumor-specific T cells that have been

suppressed through immune checkpoints. Indeed, the density of tumor-infiltrating lympho-

cytes has been reported to be correlated with the response to PD-L1/PD-1 blockade therapy

[29, 30]. These findings indicate that the induction of tumor-specific effector T cells may aug-

ment the effectiveness of immune checkpoint inhibitors. We are currently investigating

whether the transfer of ex vivo—expanded T cells enhances the antitumor effects of PD-L1/

PD-1 blockade therapy, and our results show that the transfer of ex vivo—expanded T cells

into mice treated with lymphodepletive therapy successfully augmented the efficacy of anti-

PD-1 treatment (unpublished data).

Previous studies investigating adoptive cell transfer have mainly focused on the role of

CD8+ T cells [24, 31]. Adoptive transfer of activated tumor-specific CD8+ T cell has demon-

strated durable antitumor effects. Recent evidence has also demonstrated that the transfer of

CD4+ effector T cells augments antitumor immunity and inhibits tumor progression [32, 33].

Tumor-specific CD4+ T cells acquire cytotoxic functions and eradicate tumor cells in vivo

when these cells are transferred into lymphopenic hosts [34, 35]. Moreover, our previous stud-

ies have shown that the transfer of naïve CD4+ T cells into lymphodepleted hosts augments

antitumor immunity [3, 4]. In the current study, the transfer of ex vivo—expanded CD4+ T

cells significantly delayed skin tumor growth (Fig 2B). By contrast, the transfer of ex vivo—

expanded CD8+ T cells showed minimal antitumor effects (Fig 2B). We have previously dem-

onstrated that the percentage of Tregs increases after lymphodepletion [3, 4], and depletion of

Tregs that survived lymphodepletion augmented the antitumor effects of the transfer of naïve

T cells. Consistent with these studies, the depletion of Tregs after irradiation significantly

inhibited skin tumor growth in mice reconstituted with ex vivo—expanded CD4+ T cells (Fig

2C). Again, the combination of Treg depletion and transfer of ex vivo—expanded CD8+ T

cells failed to show strong antitumor effects (Fig 2D). Antitumor effector CD4+ T cells that
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respond to specific tumor-antigen stimulation were primed in TDLNs, and the majority of

these tumor-specific CD4+ T cells were induced from donor CD4+ T cells (Fig 3C and 3D).

Furthermore, tumor-specific CD4+ T cells maintained TCR diversity (Fig 3D). These findings

indicate that ex vivo—expanded CD4+ T cells that recognize tumor antigens mediate the aug-

mentation of antitumor immunity. Indeed, the transfer of ex vivo—expanded CD4+ T cells

from OT-II transgenic mice completely abolished the antitumor effect observed in this model

system (Fig 4A).

One of the major goals of tumor immunotherapy is to induce antitumor memory T cells

that survive for long periods to prevent tumor recurrence. In this study, we demonstrated

that mice cured of tumors by combination therapy, consisting of the transfer of ex vivo—

expanded CD4+ T cells after irradiation and Treg depletion, successfully rejected the chal-

lenge of MCA205 tumor cells 90 days after the first inoculation of MCA205 cells (Fig 4B).

We further showed that tumor-specific CD4+ and CD8+ T cells were present in the spleens

of cured mice 90 days after the administration of combination therapy (Fig 4C). The major-

ity of long-lived tumor-specific CD4+ T cells originated from ex vivo—expanded donor

cells, whereas tumor-specific CD8+ T cells were primed from irradiated recipient cells

(Fig 4C).

In this study, CD4+ T cells were responsible for the augmented antitumor immunity (Fig

2B). MCA205 tumor cells do not express MHC class II, and CD4+ T cells are not able to

directly recognize MCA205 tumor cells, suggesting that APCs are involved in this augmenta-

tion. Although DC-based vaccines have been thoroughly investigated in clinical trials, very few

DC vaccines have demonstrated objective responses [36, 37]. Anti-tumor DC vaccines are gen-

erally designed to activate the function of effectors, including tumor-specific T cells. The cur-

rent study found that lymphodepletion and the transfer of ex vivo—expanded CD4+ T cells

could induce polyclonal tumor-specific T cells (Fig 3C and 3E). These findings prompted us to

examine whether DC vaccines could enhance the antitumor immune responses underlying the

transfer of ex vivo CD4+ T cells and lymphodepletion. We previously described that a short

duration of CD40 stimulation augmented the migration activity of DCs and efficiently induced

antitumor effector T cells [20]. In the current study, DCs were stimulated with agonistic anti-

CD40 mAbs after tumor-antigen loading and were inoculated s.c. into mice that were irradi-

ated and reconstituted with ex vivo—expanded CD4+ T cells. DC vaccination combined with

the transfer of CD4+ T cells and lymphodepletion significantly inhibited tumor progression

(Fig 5B).

Lymphocytes from cancer patients consist of several types of T cells, such as effector T

cells and naïve T cells. Previous studies have focused on antitumor effector T cells that

were enriched and stimulated in vitro for adoptive cell therapy. The current findings

indicate that naïve T cells show antitumor effects after ex vivo expansion under specific

conditions.

Supporting information

S1 Fig. The antitumor effects of combination therapy of lymphodepletion, transfer of ex-

vivo expanded CD4+ T cells and Treg depletion required recipient cells. Rag2-/- mice were

irradiated and reconstituted with ex vivo-expanded CD4+ T cells and were inoculated s.c. with

MCA205 tumor cells. These mice were treated with anti-CD25 mAbs. Data are shown as

mean ± SEM of 5 mice per group and are from one experiment representative of two indepen-

dent experiments. ���p< 0.001; two sided Student’s t test.

(TIF)
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