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Abstract

Prior expectations can be used to improve perceptual judgments about ambiguous stimuli. 

However, little is known about if and how these improvements are maintained in dynamic 

environments in which the quality of appropriate priors changes from one stimulus to the next. 

Using a sound-localization task, we show that changes in stimulus predictability lead to arousal-

mediated adjustments in the magnitude of prior-driven biases that optimize perceptual judgments 

about each stimulus. These adjustments depend on task-dependent changes in the relevance and 

reliability of prior expectations, which subjects update using both normative and idiosyncratic 

principles. The resulting variations in biases across task conditions and individuals are reflected in 

modulations of pupil diameter, such that larger stimulus-evoked pupil responses correspond to 

smaller biases. These results suggest a critical role for the arousal system in adjusting the strength 

of perceptual biases with respect to inferred environmental dynamics to optimize perceptual 

judgements.

Introduction

Perception is shaped by prior expectations (“priors”) on the statistical structure of the 

sensory world 1–6. When the environmental statistics are stationary and well known, priors 

on those statistics can bias the perception of relevant sensory stimuli 7,8. For example, the 

prevalence of relatively slow-versus fast-moving objects in the world can lead to biases in 

the perception of object speed 9. However, many environmental statistics that are relevant to 
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perception can be highly non-stationary. For example, the locations of sources of sensory 

input are constantly changing relative to a given observer. The goal of this study was to 

examine how priors on such dynamic features of the environment are updated and used to 

shape perception.

To achieve this goal, we developed an auditory-localization task that required human 

subjects to both predict and report the perceived location of a simulated sound source as the 

predictability of the location varied over time (Fig. 1a–c). The statistical structure of the task 

is similar to ones we used previously to show that people can make effective predictions in 

dynamic environments by adaptively modulating the influence of new information on 

existing beliefs 10,11. However, here we focus on the questions of if and how such 

dynamically modulated predictions affect their influence on the perception of ambiguous 

stimuli. In principle, these predictions could govern perceptual biases through a form of 

optimal (Bayesian) inference that takes into account dynamic changes in the priors 10,12,13. 

Specifically, as long as the statistical structure of the sampled locations in our task remains 

stable, new sounds can be used to develop increasingly reliable priors about the locations of 

subsequent sounds. These increasingly reliable priors should, in turn, have an increasingly 

strong and beneficial influence on the perception of those sounds, reducing localization 

errors (Fig. 1d,e). However, the statistics of the sampled locations can undergo abrupt 

change-points that render previously held priors irrelevant to new sounds. These seemingly 

reliable but irrelevant priors should not influence the perception of sound-source location, 

which under these conditions should be limited entirely by sensory uncertainty (Fig. 1f).

We also measured pupil diameter, an index of arousal that can reflect the activation of the 

locus coeruleus (LC)-norepinephrine (NE) system and has been implicated in rapidly 

updating inference processes in response to unexpected events or errors 14–19. Pupil diameter 

tracks the extent to which predictions are updated in response to new information in 

dynamic and perceptually unambiguous cognitive tasks 11. Here we tested the hypothesis 

that such changes in arousal play an important role in shaping perception. In particular, we 

examined whether the arousal system controls the extent to which perceptual judgments 

about ambiguous sensory stimuli are biased toward prior expectations in accordance with the 

relevance and reliability of those expectations.

Our results yield new insights into the relationship between perception and arousal. We show 

that the subjects’ priors had a variable influence on their perceptual reports. This variability 

was predicted by changes in the relevance and reliability of those priors, across task 

conditions and individual subjects. These effects were encoded in both baseline and 

stimulus-evoked changes in pupil diameter, such that larger diameters corresponded to less 

influence of priors on the perception of that stimulus. Taken together, these findings support 

a fundamental role for pupil-linked arousal systems, including the LC-NE system, in 

adaptively adjusting the influence of priors on perception in accordance with environmental 

dynamics.
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Results

Twenty-nine subjects performed both the dynamic localization task (Fig. 1) and a control 

task that required perceptual reports of simulated sound-source locations that lacked 

predictable, sequential structure. Overall, the subjects tended to perform both tasks in an 

effective manner, providing predictions on the dynamic task and perceptual reports on both 

tasks that corresponded strongly to the simulated sound-source locations (Fig. 2). On the 

control task, the Pearson’s correlation between simulated and reported location had median 

[interquartile range, or IQR] values of 0.926 [0.895–0.944] across subjects (Fig. 2a,d). On 

the dynamic task, there were similarly high correlations for both the predictions and 

perceptual reports (predictions on non-change-point trials: r=0.907 [0.895–0.921], Fig. 2b,e; 

perceptual reports on all trials: r=0.948 [0.941–0.964], Fig. 2c,f). However, the subjects also 

tended to make errors that varied considerably from trial to trial on both tasks (Fig. 2g–i). 

Subsequent analyses focus on how the subjects minimized their errors on the dynamic task 

by exploiting the fluctuating predictability of sound-source locations on that task.

Dynamic, task-dependent modulation of perceptual biases

The subjects used both sensory and prior information to guide their perceptual reports on the 

dynamic task. We measured performance in terms of the variability of the distribution of 

trial-by-trial errors (quantified as the standard deviation, or STD, and denoted as σ). This 

variability was lower for perceptual reports on the dynamic task than for either: 1) 

predictions from that task (σprior; Fig. 2h), or 2) perceptual reports on the control task that 

lacked sequential predictability and thus reflected more purely sensory processing (σsensory; 

Fig. 2g). Moreover, for individual subjects, these different measures of variability were 

related to each other, such that perceptual errors from the dynamic task were well 

approximated using the optimal, reliability-weighted combination of prior and sensory 

information ( ; Fig. 2i). This result implies that, on average, the 

subjects tended to not only use these two sources of information, but also combine them 

according to their relative reliabilities to optimize perceptual performance on the dynamic 

task.

This integration of prior and sensory information took into account the changes in the 

relevance and reliability of the priors that occurred throughout the dynamic task. These 

changes are illustrated in Fig. 3a, which shows prediction-error STDs averaged across 

subjects as a function of the number of sounds after a clearly noticeable change-point, or 

SAC (see legend for details), separately for the two noise conditions. Figure 3b shows linear 

contrasts that captured the salient, dynamic aspects of these changes for each subject (see 

inset in Fig. 3e illustrating the three contrasts: CP, describing the effects of a noticeable 

change-point; Exp, describing the effects of the number of sounds experienced following a 

noticeable change-point; and Noise, describing the high or low noise condition). 

Specifically, on change-point trials, predictions were irrelevant and hence most variable with 

respect to the subsequent sound-source location (signed-rank test for H0: the median of the 

distribution of per-subject CP contrasts, which compared change-points to other trials=0, 

p<10−5). After change-points, predictions became steadily more reliable as the number of 

sound sources experienced from the new distribution increased in both noise conditions 
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(p<10−4 for Explow and Exphigh contrasts, which identified linear trends across SAC 2–6 for 

each of the two noise conditions). The predictions were also more reliable overall in the low-

versus high-noise condition (Noise contrast, p<10−5). These dynamic trends were consistent 

with predictions from a normative model of predictive inference that had full knowledge of 

the generative statistics 10. The model, which produced simulated predictions that were 

analyzed in the same way as the data, had task-dependent effects that were in the same 

directions and of roughly the same magnitude as the data, although the subjects tended to 

produce more variable predictions than the model (Fig. 3a,b diamonds).

These task-dependent changes in the subjects’ predictions were associated with similar 

changes in the variability of their perceptual reports (Fig. 3c,d) and their confidence in those 

reports, as assessed by the frequencies of high-confidence reports (Fig. 3e,f). Perceptual-

error variability tended to be higher for change-point trials, when predictions were irrelevant 

(CP contrast, p<10−5), and for the high-versus low-noise condition (Noise contrast, p<10−5). 

Perceptual-error variability also tended to decrease on experiencing more samples from the 

new distribution, with a reliable effect across individuals in the low-noise condition (Explow 

contrast, p<0.005) but not the high-noise condition (Exphigh contrast, p=0.4). These 

dynamics were also apparent in the subjects’ confidence report trends (Fig. 3e,f), which 

reflected trial-by-trial awareness of the changes in perceptual variability and included similar 

dependencies on CP (p<10−4), Noise (p=0.032), and Explow (p=0.03) and less reliable 

dependencies on Exphigh (p=0.07). Both the perceptual and confidence report effects were 

qualitatively similar, in direction and magnitude, to theoretical values computed from 

optimal combinations of each subjects’ changing priors (circles in Fig. 3a,b) and their fixed 

sensory reliability estimated from the control task (Fig. 2g; see also Fig. 1d–f). These 

theoretical values also showed strong effects of CP, Noise, and Explow, and smaller effects of 

Exphigh (Fig. 3c–f, diamonds).

These behavioral dynamics reflected changes in the degree to which the subjects’ priors 

biased their perceptual reports. We quantified perceptual bias as the slope of the relationship 

between the prediction error and the perceptual error measured on individual trials (Fig. 4a–

c). A slope of zero implies no relationship between the prediction error and the perceptual 

error, and thus no bias towards the prior. In contrast, slope values that increase towards unity 

imply increasing biases of the perceptual reports towards the prior. This perceptual bias 

varied systematically as a function of task conditions. Specifically, perceptual bias was lower 

on change-points (CP contrast, p<10−5) and for the high-versus low-noise condition (Noise 

contrast, p=0.008). Perceptual bias also tended to increase on experiencing more samples, 

although these effects were variable across individuals and not statistically reliable in the 

low-noise condition (Explow contrast, p=0.1; Exphigh contrast, p=0.004). These task-

dependent changes in the biases were comparable in direction and magnitude to theoretically 

computed values given an optimal, reliability-weighted combination of the task-specific 

predictions on the dynamic task (circles in Fig. 3a) and fixed sensory reliability estimated 

from the control task (Fig. 2g), computed separately for each subject (diamonds in Fig. 

4d,e). Despite these comparable task-dependent trends (compare circles and diamonds in 

Fig. 4e), the subjects’ perceptual biases were on average smaller than the theoretical values 

(compare circles and diamonds in Fig. 4d). This shift was consistent with their overall worse 

predictions than the model (compare circles and diamonds in Fig. 3a). However, overall 
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performance, measured as perceptual-error variability, was relatively insensitive to this 

overall shift, as compared to task-dependent adjustments, in the magnitude of the perceptual 

biases (compare circles and triangles in Fig. 3c,d).

Individual differences in the modulation of perceptual biases

The above analyses demonstrated that for individual subjects, dynamic changes in the 

relevance and reliability of priors within an experimental session were associated with 

changes in the degree to which those priors biased perception. We identified similar effects 

across subjects, implying that individual differences in perception can reflect differences in 

how priors are updated and maintained in dynamic environments. Specifically, we compared 

subjects’ overall biases to the variability of their sensory and prediction errors (linear 

regression of the mean perceptual biases of individual subjects from non-change-point trials 

as a function of the STD of perceptual errors from the control task and the STD of prediction 

errors across non-change-point trials from the dynamic task; F statistic=7.39, p=0.002). 

According to these fits and consistent with Bayesian theory, subjects with higher overall 

prior-driven perceptual biases tended to have higher sensory variability (β=0.033, t-test for 

H0: β=0, p=0.013; Fig. 5a) and lower prediction variability (β=−0.030, p=0.002; Fig 5b). We 

also found individual differences in how perceptual biases changed as a function of 

particular task conditions, and that those differences were predicted by subject-specific 

changes in priors under those conditions. Subjects whose priors improved (i.e., became less 

variable) the most also tended to have the largest increases in prior-driven perceptual biases: 

1) just after a change-point (Fig. 5e), 2) on experiencing samples from a new distribution (in 

the low-but not high-noise condition; Figs. 5c and d), or 3) between the high- and low-noise 

conditions (Fig. 5f). Thus, on average, subjects tended to weigh prior and sensory 

information according to their relative reliabilities, taking into account variability in the 

priors across task conditions and individual subjects.

To more quantitatively account for the factors that affected perceptual biases across task 

conditions and individual subjects, we used a linear model that included normative and non-

normative terms that each were weighed according to their contributions to each subject’s 

behavior (Fig. 6). Data generated by a purely normative model could capture some 

qualitative aspects of behaviour, but it systematically overestimated perceptual biases (Fig 

6A). A linear model that included both normative and non-normative terms offered a better 

description of behaviour (Fig. 6B). The normative terms were extracted from a Bayesian 

model of perception, which generated perceptual biases that minimized simulated perceptual 

errors, given each subject’s variable predictions and sensory estimates. These terms were: 1) 

prior relevance, which reflected the probability that the current sound came from the same 

generative distribution as the previous sound (and thus is related to the CP effects illustrated 

in Figs. 3 and 4; Fig. 6c); and 2) prior reliability, which reflected changes in the total width 

of the predictive distribution relative to the likelihood, given new samples (and thus is 

related to the Exp and Noise effects illustrated in Figs. 3 and 4; Fig. 6d). The non-normative 

terms included one describing a fixed bias as a function of the prediction error, one to allow 

the strength of perceptual bias to depend on reported confidence (i.e., whether the subject 

reported high confidence or not), and spatial terms to account for the subjects’ overall 

tendency to give perceptual reports that were biased slightly towards straight ahead (Fig. 2f). 
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On average, the linear model captured the behavioral trends well (Fig. 6b), based on 

contributions of each of the terms described above that tended to vary in magnitude across 

subjects (Fig. 6e). By comparison, a parameter-free normative model captured some of the 

behavioral trends (Fig. 6a) but reported higher perceptual biases than subjects (compare red 

points and bar in Fig. 6e), particularly on change-points (compare green points and bars in 

Fig. 6e).

Modulations of perceptual biases reflected in pupil diameter

A key question addressed in this work is whether arousal systems, as reflected in pupil 

diameter, contribute to the dynamic modulation of perceptual biases. Using linear regression 

at each time-point relative to sound onset (the average sound-evoked pupil response from all 

probe trials and subjects is shown in Fig. 7a), we found that pupil diameter varied with 

several of the factors from the linear model that accounted for behavioral biases (Eq. 6; Fig. 

7b). Specifically, prior reliability was reflected in the baseline diameter before presentation 

of the probe sound, with smaller baselines reflecting more reliable priors (p=0.03; Fig. 7c,h). 

However, prior reliability did not modulate the magnitude of the stimulus-evoked pupil 

response, after accounting for the baseline effect (Fig. 7f,i). In contrast, prior relevance was 

unrelated to baseline diameter but was robustly encoded by the stimulus-evoked pupil 

diameter, with larger evoked pupil responses reflecting lower prior relevance (Fig. 7b,e). 

This effect peaked around the time of the maximum sound-evoked pupil response 

(permutation test for effect duration: duration=1.0 s, p=0.02; Fig. 7i). The pupil response, 

but not the baseline, also reflected the subjects’ upcoming confidence report, with high 

confidence corresponding to larger pupil diameters, particularly late in the fixation interval 

(duration=1.8 s, p=0.01; Fig. 7d,g,i; note that these duration estimates were limited by the 

size of our measurement window).

If the arousal system is contributing to the dynamic regulation of the influence of priors on 

perception, then pupil diameter may co-vary with adjustments in prior influence even after 

accounting for all of the factors in the behavioral linear model (for example, if variability in 

internal representations of sound-source location affect both behavior and arousal). We 

therefore included the residual perceptual bias from our model of behavior (Fig. 6) in our 

model of pupil diameter. A positive/negative value of the residual biases indicates that the 

subject was more/less biased by the prior on the given trial than predicted by the linear 

model. There was a trend toward positive coefficients for this term in explaining baseline 

pupil diameter (larger baseline diameters corresponded to slightly stronger biases than 

predicted by the behavioral model; p=0.06; Fig. 7h). In addition, there was a robust 

reflection of the residual bias term in sound-evoked pupil response (smaller responses near 

the peak of the evoked response corresponded to stronger biases than predicted by the 

behavioural model; duration=1.2 s, p=0.02; Fig. 7i). This residual bias effect implies that 

pupil diameter reflects not just particular factors like prior reliability and relevance that can 

be used to make effective predictions in dynamic environments 11, but also the extent to 

which those and other factors are actually used to bias perception from one stimulus to the 

next.
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In addition to these average, within-subject effects, there were also across-subject 

relationships between pupil diameter and perceptual biases. In particular, stimulus-evoked 

pupil responses tended to be, on average, smaller in subjects with higher overall perceptual 

biases (PE term in Fig. 6e; Fig. 8c) or relevance-dependent biases (PE*relevance term in Fig. 

6e; Fig. 8d). These effects were not evident for baseline pupil diameter (Fig. 8a,b). However, 

because the behavioral influences of overall perceptual biases and prior relevance covaried 

considerably across subjects (r=0.77, p<10−9), we constructed a new linear model that 

included two individual-difference variables that corresponded to the shared and unique 

variance of the two behavioral coefficients. The effects of the shared term were negative for 

most of the measurement window (Fig. 8e; duration=2.2 s, p=0.01). In contrast, the unique-

variance term did not show a strong relationship to average pupil traces. This result implies 

that subjects who had the strongest overall perceptual biases, and modulated them most 

according to prior relevance, tended also to have the smallest stimulus-evoked pupil 

responses.

To further quantify these within- and across-subject relationships between pupil diameter 

and task performance, we used pupil diameter to predict the subjects’ perceptual biases. 

Specifically, we created three normalized variables to reflect within- and across-subject 

variability in pupil responses at the time of peak response (1.4 s following stimulus onset) 

along with their multiplicative interaction. Each pupil-derived variable was included as a 

modulator of prediction errors in three different linear models of perceptual errors. In the 

simplest model, pupil-derived measures alone predicted systematic differences in perceptual 

biases observed in the behavioral data (Supplemental Fig. 3a), such that biases were: 1) 

larger for trials in which pupil responses were smaller than average (t-test, p<10−4), 2) larger 

for subjects who had smaller than average pupil responses (p<10−3), and 3) modulated from 

trial to trial more steeply for subjects with smaller overall pupil responses (p<0.01; 

Supplemental Fig. 3b). Consistent with these relationships, the pupil-based measures offered 

a substantial improvement to the base model in terms of predicting behavior (likelihood-

ratio test, p<10−7; Supplemental Fig. 3c). The pupil-based measures also offered an 

explanatory advantage when added to more complex models that accounted for direct fixed 

effects (one coefficient for all subjects) or random effects (one coefficient per subject) of 

relevance, reliability, and confidence reports on perceptual biases (p<10−4 for both models; 

Supplemental Fig. 3c). Taken together, these results imply that fluctuations in pupil 

diameter, particularly those mediated by stimuli and related to context relevance, can be used 

to determine the extent to which perception is biased towards pre-existing priors.

Discussion

We used an auditory-localization task to show that the influence of prior expectations on 

perception is regulated rapidly and adaptively in changing environments. This work 

combines and extends several lines of research. The first has emphasized the role of priors 

on the perception of an uncertain sensory stimulus 12. Many of these studies have focused on 

priors that are related to relatively stable properties of the environment, although several 

recent studies have shown that certain sensory or sensory-motor priors can be learned 

relatively rapidly 9,20–23. The second has shown that under a variety of conditions, individual 

variability in decision-making can involve differential use of priors 24. The third has 
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identified how predictions are updated and used to make decisions in dynamic 

environments 10,25,26. The fourth has related this dynamic updating process to changes in 

physiological arousal 11,27. We showed that many of these principles, including dynamic, 

arousal-related adjustments in predictions, apply to how priors are updated and used to guide 

perception.

These principles involve ongoing assessments of the relevance and reliability of priors that 

represent a form of statistical learning 28,29. We quantified this learning process using two 

variables derived from normative theory 17,30–33. The first, which we termed prior relevance, 

is closely related to unexpected uncertainty and reflects the probability that a new 

observation is consistent with recent history 10,17. The second, which we termed prior 

reliability, is a form of reducible uncertainty that reflects ambiguity, typically resulting from 

undersampling, about the current generative process 32,33. Previous work showed that new 

information exerts the least influence on existing predictions when those predictions are the 

most relevant and reliable 10,25. We showed analogous effects for perception: new sensory 

input exerts the least influence on perception, relative to the influence of priors (i.e., 

perceptual biases are largest), when the priors are the most relevant and reliable.

Both of these normative factors, scaled according to their effects on each subject’s behavior, 

were reflected in modulations of arousal state as measured by pupil diameter. Prior 

reliability corresponded to changes in baseline pupil diameter, and prior relevance 

corresponded to changes in the stimulus-evoked change in pupil diameter. These 

modulations were similar to those that we reported previously for a predictive-inference 

task, but the different demands of our present task imply a broader relevance to different 

forms of information processing 11. Specifically, our previous findings implicated a role for 

arousal fluctuations in adjusting bottom-up effects of new sensory input on stored cognitive 

representations. In contrast, our present findings implicate a role for arousal fluctuations in 

adjusting top-down control exerted by stored representations on the interpretation of new 

sensory input.

This result has broad implications for decision-making. For simple sensory-motor tasks, 

sequential effects of choice and response times can reflect priors inferred from recent task 

patterns, even when the patterns are spurious and thus the effects are detrimental to overall 

performance 34–36 Our results suggest a role for stimulus-evoked arousal responses in 

minimizing such suboptimal biases, potentially by reducing the impact of the top-down 

signals that mediate them. Consistent with this idea, pupil dilations have been shown to be 

accompanied by reduced individual and sequential-choice biases on perceptual decision-

making tasks 37,38. For more complex tasks, top-down prior information might be used to 

select task-relevant feature information and thereby reduce implicit processing biases 39,40. 

This effect might explain why individuals with larger evoked pupil responses tend to be 

more susceptible to their own implicit processing biases 41,42. Future work should address 

this possibility in paradigms that combine implicit sensory biases with stimulus history-

dependent priors such as those used in our task.

These results are also consistent with the idea that transient increases in arousal, in response 

to surprising events or other factors, may generally correspond to higher sensitivity to 
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immediate sensory input 43,44. In principle, this increased sensitivity could emerge from an 

enhancement of feed-forward processing, perhaps though an increase in neural 

gain 11,18,41,45. An alternative, but not necessarily mutually exclusive, possibility supported 

by our results is that enhanced sensitivity to sensory input is afforded by a reduction in the 

effectiveness of top-down priors in regularizing, and thereby biasing, sensory percepts. 

Distinguishing and understanding the independent contributions of these alternatives to 

arousal-mediated information processing will require the development of new paradigms 

that can separately control the bottom-up and top-down flow of information.

We also found relationships between subjective confidence, perceptual biases, and pupil 

diameter. We measured confidence using a post-decision binary confidence report (high/low 

confidence), which previously has been linked to the sensory-driven decision variable that 

also governs the speed and accuracy of the perceptual decision 46–48. We showed that 

confidence is also modulated according to changes in the relevance and reliability of 

perceptual priors that affect perceptual errors. This modulation was also evident in pupil 

diameter, which reflected high confidence-report frequency even after accounting for the 

normative variables that also governed the perceptual biases. However, this extra effect was 

in the opposite direction as for the normative factors, relative to the behavioral effect: high 

confidence-report frequency corresponded to larger pupil diameters but stronger prior 

influence. This pupil effect is somewhat surprising given that pupil diameter can be 

enhanced under uncertain, rather than certain, conditions 11,38,49–52 (but see 27). One 

possible explanation for this discrepancy is that the post-decision confidence report led 

subjects to anticipate the increased reward or risk associated with high confidence-report 

trials, leading to stronger arousal responses 51,53. This idea is supported by the time course 

of confidence-related pupil dilations, which had a maximal dilation immediately prior to the 

perceptual report. This idea also highlights the multiple, possibly interacting roles that the 

arousal system likely plays in even simple sensory-motor tasks like this one.

These multiple roles undoubtedly result from multiple mechanisms by which arousal affects 

neural information processing 54. One such mechanism likely involves cortical levels of 

norepinephrine (NE), which is controlled via neurons in the midbrain nucleus locus 

coeruleus (LC) 18. Firing rates of LC neurons correlate with pupil diameter over relatively 

short timescales, which has prompted the suggestion that pupil diameter can be used as a 

proxy for LC activity 18,19,55,56. Thus, the factors in our task that corresponded to stimulus-

evoked pupil dilations, such as more surprising stimuli with lower prior relevance, may also 

correspond to increased LC activation. This activation, in turn, would increase levels of 

cortical NE, which have been theorized to signal unexpected context changes and allow 

neural representations to reorient rapidly to meet changing contextual demands, possibly via 

modulations of the input/output gain of individual cortical neurons 14,17,18,45,57. In contrast, 

slower changes in pupil diameter, such as those related to our baseline modulations, may be 

more closely related to levels of acetylcholine released from the basal forebrain, which has 

been theorized to signal expected uncertainty of task-relevant beliefs 17,5859. More work is 

needed to determine how these multiple, potentially interacting neuromodulatory systems 

help to regulate perception and decision-making in dynamic environments.

Krishnamurthy et al. Page 9

Nat Hum Behav. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experimental Procedures

Human subject protocols were approved by the University of Pennsylvania Internal Review 

Board. 29 subjects (16 female, 13 male) participated in the study after providing informed 

consent. Thirty-one additional subjects consented to the study but did not meet the inclusion 

criterion of participating in at least three experimental sessions. Our sample size was well 

powered to detect effects of d’ > 0.6 (statistical power > 0.88 for d’ = 0.6) providing 

sufficient sensitivity in the range of previously reported behaviour-pupil relationships.

Auditory-localization task

We used an auditory-localization task in which subjects heard sounds with varying source 

locations that were simulated using head-related transfer functions (HRTFs) from the 

IRCAM database (http://recherche.ircam.fr/equipes/salles/listen/download.html). Each 

sound was a sequence of five Gaussian noise pulses bandpass filtered between 100 Hz and 

15 KHz. The pulses were 50 ms each with a delay of 10 ms following each pulse, for a total 

stimulus duration of 300 ms. The latency for the sound to reach the ears following the 

command execution was ~3 ms. For each subject, we tested a number of HRTFs during the 

initial session by playing sound sequences that circularly traversed the entire horizontal 

plane in 15° intervals. We picked the HRTF that was reported to give the most uniformly 

circular percept for the sound sequence. Each subject performed 3–6 total sessions.

Each subject completed two tasks per session. The first was a control localization task that 

required the subject to indicate the perceived location of simulated sound sources that were 

sampled independently and uniformly randomly along the frontal, horizontal plane. In each 

of 72 trials, the subject was required to: 1) fixate for 2.5 s on a central spot while listening to 

the auditory stimulus; and 2) indicate the perceived location of the sound using a mouse, 

which controlled a cursor that moved along a semi-circular arc on the computer screen that 

represented the range of possible sound-source locations (Fig. 1). Failure to maintain 

fixation resulted in a warning sound and trial break. Feedback was displayed on the screen 

after the subject reported the perceived location.

The second task was a dynamic localization task that required the subject to report 

predictions, perceptions, and confidence judgments of sound-source locations that were 

generated from a change-point process along the same horizontal plane. For this task, the 

subject listened to extended sequences of sounds generated by the change-point process, 

with an interval of 150 ms between each sound presentation. Each sound was paired with a 

visual cue indicating its simulated source location on the semi-circular arc. During the 

presentation of these sequences, no action was required. Occasionally, however, the 

sequences stopped, indicating the start of a “probe trial” with the following structure (Fig. 

1c). First, the subject was required to predict the angular location of the next, upcoming 

probe stimulus on the arc using a mouse. Second, following the prediction, the subject was 

required to maintain fixation for 2.5 s on the same central spot used in the control task. The 

auditory probe stimulus, with no corresponding visual cue, was presented at the beginning of 

this fixation period. Fourth, after the fixation period ended, the subject indicated the 

perceived location of the probe stimulus using the mouse and the visual display. Fifth, the 

subject then reported confidence (high/low) on the accuracy of the perceptual report (Fig 1). 
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Each subject performed four blocks of the dynamic task per session, which included ~30 

probe trials each. Each session lasted ~90 min, with some variability due to the self-paced 

nature of the prediction, perceptual report, and confidence reporting periods of the task 

(median [IQR] reaction times were: 1.72 [1.49–2.35] sec for the prediction, 2.02 [1.50–2.30] 

sec for the perceptual report, and 1.18 [0.94–1.43] sec for the confidence report).

The sequence of simulated sound-source locations for the dynamic task was determined 

according to a process that included both irreducible variability (noise) and abrupt 

discontinuities (change-points). Our goal was to test if and how these manipulations, which 

can affect the reliability and relevance, respectively, of new information on existing 

predictions, also affect perceptual reports that can, in principle, use such predictions to 

improve the perception of ambiguous stimuli 10. Source locations were sampled from a 

Gaussian distribution with a standard deviation (STD) that was held constant within a block 

of 600 trials (10° or 20° for the low- or high-noise condition, respectively) and a mean that 

underwent abrupt change-points with a fixed probability, or hazard rate (H), of 0.15 for each 

sound sample. At each change-point, the mean of the generative distribution was resampled 

uniformly across the sound space, such that the newly generated source locations were 

independent from previous ones. The sequence was interrupted for probe trials at random 

using a procedure that ensured: 1) a roughly even distribution of probes occurring 1–6 

sounds after a change-point (SAC); 2) that probes were separated by at least 8 sounds; and 

3) the number of sounds between any two probe trials was the same, on average, regardless 

of the nature of the two probe trials (SAC 1–6). Thus, on some trials the probe sound-source 

location was independent of the previous stimulus sequence (SAC=1). On other trials, the 

probe location was generated from the same distribution that produced the immediately 

preceding locations (SAC=2–6).

Subjects were motivated to make accurate perceptual reports on each probe trial through an 

incentive system. They were instructed to report high confidence if they were confident that 

the true location was within a 16° window centered on their second (perceptual) report, and 

to report low confidence otherwise. A correct/incorrect high confidence report resulted in a 

score of (15/−10), and a correct/incorrect low confidence resulted in a score of (5/−3). 

Subjects were paid a bonus that depended on their total score.

Behavioral data analysis: contrasts

To provide an intuitive understanding of how behavior was affected by particular task 

conditions, we sorted probe trials into twelve conditions according to the recency of the 

previous change-point (SAC=1–6) and noise condition (high/low). To emphasize the effects 

of change-points on the behavioral reports, these analyses included data only from 

sequences following easily noticeable change-points, corresponding to changes in generative 

mean of at least twice the generative STD for SAC=1 (note that the linear model described 

below was used to analyze the full data sets, including all change-points). Perceptual and 

prediction errors were computed by subtracting reported percepts and predictions from the 

true (simulated) sound source location for each trial. For each condition, the STD of 

prediction and estimation errors was used as a metric of average absolute error magnitude.
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To quantify how prediction errors, estimation errors, and average confidence reports 

depended on specific task conditions, we performed four orthogonal linear contrasts over our 

twelve task conditions. Each contrast was computed by multiplying a weight matrix by the 

measured prediction errors, estimation errors, or average confidence reports, aggregated 

according to the task conditions for a single subject. Weight matrices were mean centered 

and chosen to identify: 1) differences between change-point and non-change-point trials 

(CP); 2) linear increases with increases in the number of sounds experienced (Exp) 

following a change-point, from SAC=2 to SAC=6, in the high-noise condition (Exphigh); 3) 

comparable linear increases in the low-noise condition (Explow); and 4) differences between 

the high- and low-noise conditions (Noise). Thus, the contrasts provided a per-subject 

measure of how much each behavioral measurement was modified according to these 

factors. For Figs. 3–5, we considered only sound sequences following relatively large 

change-points, corresponding to at least twice the generative STD. Contrasts were 

normalized for presentation in Figs. 3 and 4 by dividing the contrast value for each subject 

by the standard deviation of that contrast across all subjects. This procedure allowed all 

contrasts to be meaningfully displayed on the same set of axes.

Behavioral data analysis: perceptual bias

To quantify the influence of the prior on the perceptual report, we measured the slope of the 

best-fit line to the relationship between prediction errors (prediction–true location) and 

perceptual errors (percept–true location) for the given task condition. Slopes close to one 

indicate a high perceptual bias, and slopes close to zero indicate low perceptual bias. To 

measure how the perceptual bias evolved as a function of the number of sounds after a 

change-point (SAC), we used the following linear model and included only data from 

sequences following noticeable change-points (jumps of at least twice the generative STD):

[1]

where ERRpercp is the perceptual error and  is the prediction error on change-point 

trials (SAC=1) in the high-noise condition, and so on. The last term, Biasspatial, captures the 

slight bias in the perceptual reports towards center of the screen.

Behavioral data analysis: theoretical benchmarks

The theoretically expected overall perceptual-error STD per subject (abscissa in Fig. 2i) was 

computed from an optimal, reliability-weighted combination of prior and sensory 

information: . The theoretically expected perceptual-error 

STD per subject (diamonds in Fig. 3c,d), given their corresponding predictions for each SAC 

condition, was computed using . The theoretically 

expected frequency of high-confidence reports (diamonds in Fig. 3e,f) was computed as the 

probability mass contained in a 16° window centered at the mean of a Gaussian with a STD 

of the theoretically expected perceptual errors, . Thus, the proportion of expected 
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high-confidence reports increased with narrower perceptual error distributions. The 

theoretically expected perceptual bias per subject (diamonds in Fig. 4d,e) was computed as 

. In all of the above, σpredictions is the STD of prediction 

errors on non-change-point trials,  is the STD of prediction errors for the specified 

number of sounds after a change-point, and σsensory is the STD of perceptual errors on the 

control task, computed per subject.

Behavioral data analysis: normative model

Auditory localization in a dynamic environment can be posed as a perceptual inference 

problem with the goal of inferring the location of the sound source on trial t (Xt) according 

to a noisy internal sensory representation of that sound source (λt) and the history of 

previously experienced sound sources (X1:t−1). This problem can be simplified by exploiting 

the conditional independencies in the Markov change-point process through which sound 

sources are selected (see Supplementary Fig. 1). In particular, the sound sources locations on 

the current trial (Xt) are independent of those on previous trials (X1:t−1) conditioned on the 

mean of the generative distribution on the current trial (μt). In turn, the mean of the 

generative distribution on the current trial (μt) is also independent of previous observations 

conditioned on: 1) the mean of the generative distribution on the previous trial (μt−1), and 2) 

a latent change-point variable that determines whether the mean is resampled on the current 

trial (st). Applying Bayes rule to invert the generative graph in Supplementary Fig. 1 yields 

the following inference equation:

[2]

where the likelihood P(λt|Xt) reflects the conditional distribution of internal representations 

across true sound source locations; P(Xt|μt) reflects the conditional probability of a sound 

source location being generated from a particular generative mean; P(μt|μt−1, st) reflects the 

process through which means are resampled on change-point (st =1) trials; and P(st) is the 

hazard rate (H), which was fixed to 0.15 for the task and all simulations. The likelihood 

P(λt|Xt) was modeled as a normal distribution centered on Xt with a variance that was fixed 

for each subject to the variance of perceptual reports made by that subject on the control task 

( ). P(μt−1|X1:t−1 is the distribution over possible generative means, which can be 

updated recursively. Although exact Bayesian solutions to this recursive problem exist 13,30, 

we use a normal approximation to the Bayesian mixture distribution with a mean (μ̂) and 

variance (σ̂2) that capture the key dynamics of normative inference and offers better 

descriptions of human behaviour 10. As in previous work, predictions made using this 

approximation were more accurate than subject predictions. To account for this discrepancy, 

we created a subjective prediction μ̂subj by sampling a random normal variable with mean 

equal to μ̂ and a variance that was incremented on each trial according to the difference in 

variance of subject and normative prediction errors:
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[3]

Thus, the overall model incorporates the prospect of sub-optimal predictions about the 

sound-source location but implements Bayesian optimal combination of these predictions 

with incoming sensory information according to environmental dynamics.

Perceptions and predictions from the normative model were simulated by sampling internal 

representations (λt) and subjective predictions (μ̂subj) for each trial according to the actual 

sequence of sound source locations experienced. Descriptive statistics for model simulations 

were averaged across 100 such simulated runs.

In addition to simulating behavioral data, the normative model also allowed us to extract 

latent variables that guide normative adjustments in perceptual bias. In particular, the model 

adjusts bias towards prior expectations in accordance with the relevance and reliability of 

those expectations. The relevance of prior expectations (πt) is, in our generative framework, 

equal to the probability that a change-point did not occur on this trial given all previous data. 

This probability was computed on each trial by marginalizing Eq. 2 over all dimensions 

other than s. The impact of normative priors also depends critically on their reliability 

relative to that of the likelihood distribution capturing the noisy internal sensory 

representation (λt):

[4]

where τt is prior reliability,  is the variance of perceptual reports made by that subject 

on the control task,  is the variance on subjective assessments of the underlying mean, 

and  is the expected variance of sound source locations about that mean. The sum of 

the latter two terms reflects the total variance on the model’s predictive distribution over 

possible sound locations. To ensure that these latent variables best reflected circumstances 

experienced by the subject, we fixed the model predictions (μ̂subj) to the actual subject 

predictions from each trial and computed each measure as the expected value across all 

possible values of λt using a grid-point approximation.

Behavioral data analysis: Linear model of perceptual bias

To provide a more complete description of how behavioral data from all conditions, 

including all generative change-point and non-change-point trials, depended on both 

normative and non-normative factors, we fit the following linear model to data from all trials 

in each session:

[5]
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where β1 describes the overall prior bias; β2 and β2 describe the extent to which the overall 

bias is dynamically modulated by the prior relevance and reliability, respectively (see 

above); β4 describes the interaction of prior bias with confidence report (a binary variable); 

β5 describes the bias towards the center of the screen; and β6 captures the angular spatial 

bias (mean perceptual error at the given angle) measured in the control task. Residuals from 

the model fit were signed according to the prediction error on each trial to create a residual 

bias term for use in pupil analysis.

Pupil measurements

Pupil diameter was sampled from both eyes at 60 Hz using an infrared eye-tracker built into 

the monitor (Tobii T60-XL). Pupil analyses used the mean value from the two eyes at each 

time point measured during fixation. We excluded from further analyses trials with blinks, 

which we identified using a custom blink-detection routine on the basis of missing pupil 

diameter measurements and/or vertical and horizontal eye position that deviated from 

fixation for at least 10 contiguous samples (median [IQR] percentage of excluded trials 

across sessions = 5.54 [3.16–9.16]%). For the remaining trials with <10 missing contiguous 

pupil samples, we linearly interpolate the data before low-pass filtering. Low-pass filtering 

was done using a Butterworth filter with a cut-off frequency of 4 Hz. These filtered 

measurements were then z-scored in each session. We also removed a linear trend in the 

average pupil diameter over the whole session to account for any slow drift. The pupil 

baseline for each probe trial was defined as the mean of the first three samples immediately 

preceding the measurement period for that probe trial.

Linear model relating pupil diameter to behavioral parameters

To measure how the variables driving behavior were encoded in pupil diameter, we used the 

following linear model to explain the fluctuations in: 1) the baseline pupil diameter, and 2) 

stimulus-evoked pupil response across the 2.5 s following the auditory stimulus:

[6]

where τt and πt are the reliability and relevance, respectively; β1–4 capture relationships 

between pupil diameter and the computational and behavioral variables of interest; β5–6 

capture persisting fluctuations in pupil diameter that are attributable to the previous trial; and 

β7–9 includes a set of three low-frequency cosine components for each session that capture 

task-irrelevant variability due to slow modulations or session-based differences in pupil 

diameter. The exact form of the cosine components was (cos(π · k (2n − 1)/2N)), where 

k=0,1,2; n is the trial number within the session; and N is the total number of trials in the 

session. When this model was fit to evoked pupil responses, an additional nuisance variable 

was added to the explanatory matrix that accounted for trial-by-trial differences in baseline 

diameter.

Significance testing for evoked pupil coefficients was done through cluster-based 

permutation testing to account for multiple comparisons over time. In short, t-tests were 
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performed on each set of coefficient values across subjects separately for each time point. 

Cluster size was determined according to the number of contiguous time points for which 

this t-test yielded p<0.05. Cluster corrected p-values were determined by comparing cluster 

sizes attained in this way to those from a permutation distribution of maximal cluster 

sizes 60.

Pupil-predicted perceptual bias

Trial-by-trial pupil measurements were extracted for the time of peak pupil response (1.4 

seconds) from the behavioral model. Trial-by-trial measurements from each subject were 

regressed onto a set of nuisance variables that included explanatory variables β5+ from Eq. 6 

to remove variance attributable to potentially confounding factors. Residual pupil 

measurements were concatenated across subjects and then divided into two separate 

variables: one variable accounted for average measurements for each subject and one that 

reflected normalized deviations from the average measurement within each subject. An 

additional term was created through the multiplicative interaction of each subject’s mean 

pupil response and pupil-response variability, to account for the possibility that individual 

differences in the overall arousal response modulate the extent to which trial-to-trial 

fluctuations in arousal modulate perceptual bias. The three resulting variable arrays were z-

scored and multiplied by trial-by-trial prediction errors to create a predictor matrix. Trial-by-

trial perceptual errors were regressed onto three separate models with and without the 

inclusion of the pupil predictor matrix: 1) a null model including an intercept term and a 

prediction error term to capture fixed effects of perceptual bias across all subjects as well as 

the spatial bias terms described above [NE]; 2) a fixed-effects model that also included 

interaction terms accounting for modulation of perceptual bias by prior relevance and 

reliability the subjects’ confidence report [FE]; and 3) a random-effects model that included 

all terms in model 2 separately for each subject [RE]. Since the random-effects model used 

dummy variables to account for individual differences in perceptual bias, the pupil predictor 

matrix included only within-subject variability and thus only one additional parameter rather 

than three. The marginal benefit of pupil-predictor terms was evaluated through likelihood-

ratio tests (evaluating the additional explanatory power offered by pupil predictors) and 

quantified using AIC, a likelihood-based measure of goodness-of-fit that applies a penalty 

for each model parameter.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dynamic sound-localization task
(a) Subjects listened via headphones to noise bursts with virtual source locations that varied 

along the frontal, azimuthal plane. The locations were sampled (points) from a Gaussian 

distribution (gray) with a mean that changed abruptly on unsignaled change-points 

(probability=0.15 for each sound) and a STD of 10° in low-noise blocks, 20° in high-noise 

blocks. The subjects listened passively to the sound sequence, except for occasional probe 

trials. All sounds except the probe sound were presented simultaneously with their 

corresponding locations on a semicircular arc shown on the isoluminant visual display, 

allowing subjects to develop priors on sound-source location based on both the auditory and 

visual signals and maintain a stable mapping between the two. (b) An example trial 

sequence showing the mean (solid line) and sampled (points) locations over 50 trials. 

Vertical dashed lines indicate randomly selected probe trials. (c) Probe-trial sequence. Using 

a mouse to control a cursor on the visual display, the subject reported: 1) the predicted 

location of the upcoming probe sound, followed by 250-ms fixation, presentation of the 

probe sound, then continued fixation for 2.5 s to allow for pupil measurements; 2) the 

estimated location of the probe sound; and 3) a high or low confidence report that the true 

location was within a small window centered on their estimate. The sound sequence then 

continued until the next probe. (d–f) Schematic illustrating the changing reliability and 

relevance of priors for the probe sounds in a and b, as indicated. Given a fixed-width 

Krishnamurthy et al. Page 20

Nat Hum Behav. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



likelihood function, more reliable and relevant priors have a stronger and more beneficial 

influence on the percept, here represented as the posterior, which is most uncertain (widest) 

in e and least uncertain in f.
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Figure 2. Overall prediction and estimation performance
(a–c) Reported versus true (simulated) sound-source angle for an example subject for: (a) 

estimations from the control task; (b) predictions from the dynamic task (light gray points 

indicate change-point trials, on which the probe location was, by design, unpredictable); and 

(c) estimations from the dynamic task, including all trials. (d–f) Population summaries, 

plotted as in (a–c), with per-subject median values shown in black and the median of 

medians shown in red (n=29 subjects). For the dynamic tasks, median values were calculated 

in sliding 20° windows. Non-change-point trials were excluded from the predictions in (e). 

Note that the subjects’ perceptual reports (d and f) were biased slightly towards straight 

ahead at the far periphery. This bias, which likely reflected learned expectations that sounds 

were only played in the frontal plane, is accounted for in later analyses (β5 and β6 in Eq. 5). 

(g–i) STD of the perceptual errors from the dynamic task plotted versus the STD of: (g) the 

perceptual errors from the control task; (h) the prediction errors from the dynamic task; or 

(i) the expected STD of the perceptual errors, computed from the optimal, reliability-

weighted combination of the control perceptual errors and the dynamic prediction errors. 

Points in g–i represent data from individual subjects. Prediction and perceptual errors were 

computed with respect to the simulated location of the probe sound.

Krishnamurthy et al. Page 22

Nat Hum Behav. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Effects of task dynamics on performance
(a) STD of the subjects’ prediction errors (filled circles) as a function of the number of 

sounds after a change-point (SAC) in the generative mean azimuthal location, plotted 

separately for the two noise conditions (colors, as indicated; generative STDs are shown as 

dashed lines). For comparison, prediction-error STDs are shown for an approximately 

optimal predictive-inference model (open diamonds). Data from change-point trials 

(SAC=1) are not shown because locations were, by design, unpredictable on those trials. (b) 

Contrast values from a linear model describing individual subject (circles) and the 

approximately optimal model (each diamond represents analyses based on the same sound 

sequence experienced by the subject connected by a line) prediction-error STD in terms of 

(see inset in e): 1) the difference between change-point and non-change-point trials (CP), 

2,3) the linear trend from SAC 2–6 for low-(Explow) or high-(Exphigh) noise trials, and 4) the 

difference between the two noise conditions (Noise). (c,d) Same conventions as in a,b but 

for perceptual errors on the dynamic task. Diamonds represent the theoretically predicted 
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STD of perceptual errors computed from the optimal, precision-weighted combination of the 

subject- and condition-specific STDs of prior errors (circles in a, determined separately for 

each subject) and the subject-specific estimation-error STDs from the control task (the 

median value is shown as a horizontal dashed line; see Fig. 2g). (e,f) Same conventions as in 

a,b but for the frequency of high-confidence reports relative to overall frequency of high-

confidence reports per subject. Diamonds represent the frequency of high-confidence reports 

corresponding to the theoretical perceptual errors in c, computed from the fraction of the 

theoretical posterior distribution within the confidence window. In a,c,e, circles and error 

bars are mean±sem of values measured from all 29 subjects. In b,d,f, points are data from 

individual subjects. Asterisks indicate sign-rank test for H0: median value from the subject 

data=0, p<0.05. In each case, paired rank-sum test for H0: median difference between 

subject data and theoretical prediction, p>0.087. In all panels, only data from sequences 

following noticeable change-points (changes in mean of at least twice the generative STD 

for SAC=1) were included.
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Figure 4. Effects of task dynamics on perceptual bias
(a–c) Example data from a single subject illustrating the quantification of perceptual bias as 

the slope of the best-fit line to a scatter of the perceptual error versus the prediction error. 

Slopes close to zero reflect a low perceptual bias (i.e., the percept is unrelated to the 

prediction), as on change-point trials (b). Slopes closer to unity reflect a higher perceptual 

bias (i.e., the percept more closely matches the prediction), as on non-change-point trials (c). 

(d) Perceptual bias as a function of the number sounds after a change-point (SAC) in the 

generative mean azimuthal location, plotted separately for the two noise conditions (colors, 

as indicated). Circles and error bars are mean±sem of values measured from all 29 subjects. 

Diamonds indicate the theoretically predicted perceptual bias from an optimal, reliability-

weighted combination of the subject- and condition-specific predictions (Fig. 3a) and the 

subject-specific estimates from the control task (Fig. 2g). (e) Contrast values from a linear 

model describing individual subject (circles) and model (each diamond represents analyses 

based on the same sound sequence experienced by the subject connected by a line) 

perceptual bias in terms of (see inset in Fig. 3e): 1) the difference between change-point and 
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non-change-point trials (CP), 2,3) the linear trend from SAC 2–6 for low-(Explow) or high-

(Exphigh) noise trials, and 4) the difference between the two noise conditions (Noise). 

Asterisks indicate sign-rank test for H0: median value from the subject data=0, p<0.05. 

Paired rank-sum tests for H0: median difference between subject data and theoretical 

prediction, p<0.01 for CP, p=0.16 for Explow, p=0.78 for Exphigh, and p<0.01 for Noise. In d 
and e, only data from sequences following noticeable change-points (changes in mean of at 

least twice the generative STD for SAC=1) were included.
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Figure 5. Individual differences in perceptual bias
(a, b) Relationship between overall (mean) perceptual bias and either overall localization 

ability (STD of perceptual errors on the control task, a) or overall prediction ability (STD of 

prediction errors from non-change-point trials on the dynamic task, b), after accounting for 

the other factor (hence “residual”) via linear regression. (c–f) The dependence of perceptual 

bias on various task conditions, plotted as functions of the dependence of prediction-error 

STD on the same conditions: c, d) the linear trend from SAC 2–6 in the low-noise (c) and 

high-noise (d) condition (Exp); e) change-point versus non-change-point trials (CP); and f) 
high-versus low-noise condition (Noise). In each panel, points represent data from individual 

subjects. Lines are linear regressions. Only data from sequences following noticeable 

change-points (changes in mean of at least twice the generative STD for SAC=1) were 

included.
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Figure 6. Dynamic modulation of perceptual bias by normative and non-normative factors
(a) Comparison of a parameter-free normative model (ribbons indicate mean±SEM 

simulated perceptual bias for the same task sequences experienced by the subjects) and the 

subjects’ behavior (points and errorbars are mean±SEM from 29 subjects), shown as a 

function of sounds after a change-point (SAC) for the two noise conditions (colors, as 

indicated). (b) Comparison of the linear model shown in panel e to behavior. Conventions as 

in panel a. (c,d) Dependence of the normative factors used in both models on task 

conditions: (c) prior relevance, which measures the probability of the current sound coming 

from the same distribution as the previous sound; and (d) prior reliability, which measures 

the anticipated precision of the predictive distribution relative to the likelihood distribution 

prior to stimulus presentation. (e) Best-fitting parameter estimates from the linear model fit 

to behavioral data from each subject (points) and to simulations of the parameter-free 

normative model (thick and thin bars indicate 95% confidence intervals over simulated 

subjective values and over simulated mean values across subjects, respectively). 

PE=prediction error. Asterisks indicate coefficients with mean values that differed from zero 

(t-test, p< 0.05).
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Figure 7. Pupil diameter reflects dynamic modulations of perceptual bias within individual 
subjects
(a) Mean±sem evoked pupil response from 29 subjects, defined as the pupil diameter 

relative to baseline during the measurement period. Red line indicates the time of the peak 

mean response (1.38 sec after stimulus presentation). (b–d) Baseline pupil diameter for trials 

sorted into bins according to relevance (b), reliability (c), and confidence (d). Relevance and 

reliability were binned in quintiles per subject, then each bin was combined across subjects. 

Confidence was divided into all trials with a low (0) or high (1) confidence report. Points 

and errorbars are mean±SEM from all values in each bin. (e–g) Same as b–d, but using the 

pupil diameter measured at the time of the peak response after accounting for the linear 

baseline dependencies. (h,i) Regression coefficients from a linear model accounting for 

modulation of baseline pupil diameter (h) or the evoked response (i) at each time-point using 

as predictors: 1) prior relevance, 2) prior reliability, 3) the upcoming confidence report, and 

4) the residual perceptual bias from the linear model in Fig. 6d. Points and error bars in h 
and lines and ribbons in i represent mean±sem of values computed per subject and thus 

represent within-subject modulations. Points and lines/ribbons corresponding to relevance, 

reliability, and confidence use the same colors as in (b–g). Bold symbols in h and horizontal 

lines in i indicate periods for which H0: value=0, p<0.05, after accounting for multiple 

comparisons.
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Figure 8. Pupil diameter reflects individual differences in perceptual biases
(a,b) Mean baseline diameter for each subject (points) as a function of the perceptual bias 

(a; fits to the PE term in Fig. 6e) and relevance-dependent bias (b; fits to the PE*relevance 

term in Fig. 6e). (c,d) Mean evoked pupil response for each subject as a function of the 

perceptual bias (a) and relevance-dependent bias (b). Pupil responses were measured at the 

time of peak response (1.38 sec after stimulus presentation) and orthogonalized to subject 

baseline pupil measurements. (e,f) Regression coefficients describing the relationship 

between shared or unique variance (colors, as indicated) in PE and PE*relevance coefficients 
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from the behavioral model and average baseline (e) or stimulus evoked (f) pupil diameter. 

Points and error bars in d and lines and ribbons in e represent the correlation coefficient and 

95% confidence intervals of the estimate and thus represent across-subject modulations. 

Horizontal lines in e indicate periods for which H0: value=0, p<0.05 after accounting for 

multiple comparisons.
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