
REVIEW
published: 15 April 2020

doi: 10.3389/fimmu.2020.00508

Frontiers in Immunology | www.frontiersin.org 1 April 2020 | Volume 11 | Article 508

Edited by:

Gianluigi Giannelli,

National Institute of Gastroenterology

S. de Bellis Research Hospital

(IRCCS), Italy

Reviewed by:

Arabella Young,

University of California, San Francisco,

United States

Paul Andrew Beavis,

Peter MacCallum Cancer

Centre, Australia

*Correspondence:

Jessica L. Bowser

jessica.l.bowser@uth.tmc.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 30 November 2019

Accepted: 05 March 2020

Published: 15 April 2020

Citation:

Harvey JB, Phan LH, Villarreal OE and

Bowser JL (2020) CD73’s Potential as

an Immunotherapy Target in

Gastrointestinal Cancers.

Front. Immunol. 11:508.

doi: 10.3389/fimmu.2020.00508

CD73’s Potential as an
Immunotherapy Target in
Gastrointestinal Cancers
Jerry B. Harvey 1†, Luan H. Phan 1†, Oscar E. Villarreal 2† and Jessica L. Bowser 1*

1Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States,
2Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX,

United States

CD73, a cell surface 5′nucleotidase that generates adenosine, has emerged as

an attractive therapeutic target for reprogramming cancer cells and the tumor

microenvironment to dampen antitumor immune cell evasion. Decades of studies have

paved the way for these findings, starting with the discovery of adenosine signaling,

particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of

tissue-devastating immune cell responses, and evolving with studies focusing on CD73

in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers

are a major cause of cancer-related deaths. Evidence is mounting that shows promise for

improving patient outcomes through incorporation of immunomodulatory strategies as

single agents or in combination with current treatment options. Recently, several immune

checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical

benefit is limited. Investigating molecular mechanisms promoting immunosuppression,

such as CD73, in GI cancers can aid in current efforts to extend the efficacy of

immunotherapy to more patients. In this review, we discuss current clinical and basic

research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal

cancer, with special focus on the potential of CD73 as an immunotherapy target in these

cancers. We also present a summary of current clinical studies targeting CD73 and/or

A2AR and combination of these therapies with immune checkpoint inhibitors.

Keywords: CD73, adenosine, gastrointestinal cancers, immunosuppression, immunotherapy

INTRODUCTION

Gastrointestinal (GI) cancers are some of the most common cancers worldwide and a major cause
of cancer-related deaths (1–5). Immune checkpoint inhibitors (ICIs), including pembrolizumab
(Keytruda) and nivolumab (Opdivo), antibodies against programmed death-1 (PD-1), recently
gained Food and Drug Administration (FDA) approval for use in GI cancers (Table 1) (6–11).
While their approval has been a significant step forward in advancing clinical care, currently,
few patients benefit (12). Patients benefiting the most tend to have tumors harboring deficient
DNA mismatch repair (dMMR) and high microsatellite instability (MSI-H) (8, 13). dMMR and
MSI-H occur together at a consistency of 90–95% (referred to as dMMR/MSI-H) (14, 15). MMR
deficiency leads to high mutational rates and subsequently high presence of neoantigens, making
tumor cells more likely to be recognized and destroyed by antitumor immune cells (8, 13, 16–
18). Tumor-infiltrating lymphocytes are abundant in dMMR/MSI-H tumors and associate with
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TABLE 1 | Summary of Food and Drug Administration approved immune checkpoint inhibitors in GI cancers.

Drug(s) Target(s) Therapy modality Tumor type Details Objective response rate

(%)

FDA approved

Year

Clinical trial ClinicalTrials.gov

identifier

References

(PMID)

Pembrolizumab

(Keytruda)

PD-1 Humanized

monocolonal

antibody

Gastric Cancer Patients with recurrent locally

advanced or metastatic

gastric or gastroesophageal

junction adenocarcinoma

whose tumors express PD-L1

60.0% (combination with

cisplatin) 25.8% (single

agent)

2017 KEYNOTE-059 NCT02335411 30911859

Liver Cancer Patients with hepatocellular

carcinoma who previously

received sorafenib

17% 2018 KEYNOTE-224 NCT02702414 29875066

Colorectal

Cancer

Patients with microsatellite

instability-high (MSI-H) or

deficient mismatch repair

(dMMR) unresectable or

metastatic colorectal cancer

that has progressed following

treatment with

fluoropyrimidine, oxaliplatin,

and irinotecan

Also approved for any solid

tumor that has tested positive

for MSI-H or dMMR in

patients who have had prior

treatment and have no

satisfactory alternative

treatment options

Colorectal Cancer: 40%

(dMMR) 0% (proficient MMR)

Non-colorectal Cancers:

70% (dMMR)

2017 KEYNOTE NCT01876511 26028255

Nivolumab

(Opdivo)

PD-1 Humanized

monocolonal

antibody

Liver Cancer Patients with advanced

hepatocellular carcinoma. The

approval covers the use of

nivolumab in patients who

have previously received

sorafenib

15, 20% 2017 CheckMate

040

NCT01658878 28434648

Colorectal

Cancer

Patients with MSI-H or dMMR

metastatic colorectal cancer

that has progressed following

treatment with

fluoropyrimidine, oxaliplatin,

and irinotecan

68.9% 2017 CheckMate

142

NCT02060188 28734759

Nivolumab

(Opdivo)

Ipilimumab

(Yervoy)

PD-1

CTLA-4

Humanized

monocolonal

antibodies

Colorectal

Cancer

Patients with MSI-H or dMMR

metastatic colorectal cancer

that has progressed following

treatment with

fluoropyrimidine, oxaliplatin,

and irinotecan.

55% 2018 CheckMate

142

NCT02060188 29355075
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favorable prognosis (19, 20). For comparison, the somatic
mutation frequency of dMMR/MSI-H tumors is 10–100-fold
to that of proficient MMR tumors (21). In contrast, ICIs as
single agents have not shown meaningful benefit for proficient
MMR tumors (8), which are the vast majority of GI cancer
cases. MSI-H tumors account for 6–22% of gastric, 1% of
pancreatic, 3% of liver, and 14–16% of colorectal cancers (22–
27). Antibodies against PD-1/programmed death-ligand 1 (PD-
L1) or cytotoxic T-lymphocyte-associated protein-4 (CTLA-4)
are the most clinically advanced immunotherapy in cancer (12).
The PD-1/PD-L1 axis promotes adaptive immune resistance by
suppressing effector T cells and promoting the differentiation of
regulatory T cells (Tregs). CTLA-4 also is a negative regulator of
T cells; its engagement of B7-1 or B7-2 on antigen-presenting
cells inhibits T cell activation (12). Preclinical and clinical
efforts are pushing forward with combination ICI therapy as
well as ushering in different approaches to harness the immune
system to extend immunotherapy efficacy to more patients,
including vaccines and viral therapy, adoptive cell transfer, and
cytokine treatment (12, 28). Challenges with improving efficacy
include overcoming immunosuppression activity by the tumor
microenvironment, unmasking pre-existing immune cell activity,
and the ability to stimulate de novo immunogenicity (29). In
recent years, antibodies and small molecular inhibitors against
CD73 have made their way into clinical trials as an attractive
target for restoring antitumor immunity (30–44). This review
provides a summary of current literature for CD73 in GI cancers
and its potential as an immunotherapy target. We also discuss
current clinical trials targeting CD73 and adenosine receptors in
combination with ICI and conventional therapy and the clinical
implications to GI tumors.

CD73 AND ADENOSINE RECEPTOR
ACTIVITY PROMOTES
IMMUNOSUPPRESSION

Ecto-5′nucleotidase (NT5E; CD73) serves as a pacemaker
for generating extracellular adenosine. With tissue damage,
inflammation, and hypoxic stress, ATP is released from
stressed, necrotic, and/or apoptotic cells and is hydrolyzed
stepwise by ectonucleoside triphosphate diphosphohydrolase-
1 (CD39), converting ATP to AMP, and CD73, converting
AMP to extracellular adenosine (Figure 1). ATP’s activation
of ATP receptors promotes inflammation, whereas subsequent
breakdown of ATP to extracellular adenosine and activation
of adenosine receptors dampens inflammation (Figure 1) (45–
47). Extracellular adenosine signals though four adenosine
receptors: A1R, A2AR, A2BR, and A3R (48). The earliest
link of extracellular adenosine to immunosuppression include
studies on the anti-inflammatory activity of methotrexate (49)
and seminal studies revealing A2AR signaling as essential in
suppressing tissue-devastating inflammation (50). Extracellular
adenosine protects tissues by dampening inflammation with
myocardial injury (51–53), acute lung injury (54–58), intestinal
ischemia-reperfusion injury (59–61), and inflammatory bowel
disease (62–65). Tumors exploit extracellular adenosine’ to

protect the cancer cells. Extracellular adenosine accumulates in
tumors and suppresses cytotoxic T cells and natural killer cells
(66–68). Multiple studies using syngeneic and/or spontaneous
tumor models show tumor growth and metastasis is significantly
reduced by genetic deletion or pharmacological blockade of
CD73 or A2AR; this effect is largely due to restoring antitumor
immunity (30–44, 67–70). Thesemice also benefit from increased
chemotherapy sensitivity (36, 71) and reduced angiogenesis (71,
72). In line with these studies, many human tumors overexpress
CD73 and associates with poor prognosis (36, 73–78). CD73
is also linked to drug resistance, epithelial-to-mesenchymal
transition (EMT), and cancer cell proliferation and stemness
(76, 79–84). Tumors also grow slower in A2BR-deficient mice
and mice treated with A2BR antagonists (85–87). For the most
part, activation of A2AR and to a lesser extent A2BR on
several types of immune cells, summarized below, promotes
immunosuppression (Figure 1).

Effector T Cells and T Regulatory Cells
A2AR is upregulated during inflammation on effector T cells. Its
activation inhibits effector T cell proliferation, cytotoxic activity,
and cytokine production [e.g., tumor necrosis factor-α (TNF-
α), interferon-gamma (IFN-γ), interleukin-2 (IL-2)] (88–90).
Whereas, A2AR activation on T regulatory (Treg) cells promotes
Treg expansion and immunosuppressive activity [e.g., increasing
forkhead box P3 (FoxP3) expression] (91). Mechanistically, these
actions are linked together in a self-reinforcing loop. CD73 on
Tregs generates extracellular adenosine and activates A2AR on
effector T cells, suppressing effector T cell activity. Extracellular
adenosine additionally activates A2AR on Tregs, promoting their
expansion and activity (92). Human Tregs rarely express cell
surface CD73 (93, 94), unlike mouse Tregs (92, 95). Instead,
CD73 expression by surrounding cells or exosomes is considered
to produce the extracellular adenosine. CD73 is expressed
by populations of immune cells, stromal cells, epithelial and
endothelial cells, cancer cells, and exosomes (96–98). Recently,
CD39 co-expression with CD103 (integrin αE) was identified
as a marker of antigen specific, tumor-reactive CD8+ T cells,
having resident memory and a high capacity of recognizing
and killing autologous tumor cells (99). These cells may be a
strategy to improve adoptive cell therapy, which is limited by
the ability to identify and expand tumor-reactive CD8+ T cells.
Here, using CD39+ CD103+ to enrich the cells prior to in
vitro expansionmay increase therapy success (99). Many ongoing
studies are directed at capturing and/or reinvigorating T cell-
mediated antitumor responses. These studies will provide greatly
to new approaches for extending and improving immunotherapy
efficacy in cancer. A2AR activity also promotes peripheral T cell
tolerance, skewing T cell differentiation from adaptive effector
cells to adaptive FoxP3+ lymphocyte activation gene-3 (LAG-
3)+ Tregs (100).

Natural Killer Cells
A2AR activation on natural killer (NK) cells inhibits NK cell
maturation, proliferation, activation, production of cytotoxic
cytokines (e.g., IFN-γ and TNF-α), and target cell killing
(38, 101–107). Whereas, genetic deletion or pharmacological
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FIGURE 1 | Extracellular adenosine synthesis, adenosine receptor signaling, and adenosine-mediated immunosuppression. Extracellular adenosine and receptor

signaling is part of a large cascade of ecto-enzymes (e.g., CD39, CD73), membrane transporters (e.g., ENTs), and G-protein-coupled (e.g., P2YR, adenosine

receptors) and ionotrophic receptors (e.g., P2XR) known as the purinergic pathway. The purinergic pathway mediates both pro-inflammatory and anti-inflammatory

responses. The breakdown of extracellular adenosine triphosphate (ATP) to extracellular adenosine is key to balancing tissue inflammation. Intracellular ATP is released

by lytic (e.g., stressed and/or apoptotic/necrotic cells) and non-lytic (e.g., pannexin-1 and connexins) routes secondary to tissue damage, inflammation, and/or

hypoxia. Once released, ATP activates ATP receptors (e.g., P2XR and P2YR) to promote pro-inflammatory responses, including the release of inflammatory cytokines

promote lymphocyte proliferation, cell mobility, and phagocyte recruitment. ATP is dephosphorylated to extracellular adenosine by CD39, converting ATP and

adenosine diphosphate (ADP) to adenosine monophosphate (AMP), and CD73, converting AMP to adenosine. Extracellular adenosine signaling through adenosine

receptors (e.g., A1R, A2AR, A2BR, A3R) promotes anti-inflammatory responses, including the release of pro-tolerance cytokines, regulatory lymphocytes, and skewing

toward M2 macrophages. Extracellular adenosine also can be taken up intracellularly by equilibrative nucleoside transporters (e.g., ENTs) or be further metabolized to

inosine (e.g., ADA/CD26). A2AR and A2BR signaling stimulate adenylate cyclase to produce cyclic AMP (cAMP) which activates protein kinase A (PKA). A1R and A3R

signaling inhibit adenylate cyclase. Adenosine receptors can activate multiple signaling pathways (e.g., MAPK, PI3K, PLC, PKC, ion channels), depending on cell and

tissue types. Tumors exploit the anti-inflammatory actions of extracellular adenosine to evade antitumor immune cells. A3R activation on mast cells promotes tumor

microenvironment (TME) remodeling and angiogenesis, increases the population of M2 macrophages, and promotes the accumulation of myeloid-derived suppressor

cells (MDSCs) in tumors. A2AR activation on T regulatory cells (Tregs) enhances their immunosuppressive activity (e.g., suppressing effector T cells). A2AR and/or

A2BR activation on natural killer (NK) cells, dendritic cells, and effector T cells dampens the antitumor activity of these cells. Abbreviations: ectonucleoside

triphosphate diphosphohydrolase-1 (CD39), ecto-5
′

nucleotidase (CD73), adenosine deaminase (ADA), phospholipase C (PLC), protein kinase C (PKC), diacylglycerol

(DAG), phosphatidylinositol 4,5-bisphosphate (PIP2 ), inositol trisphosphate (IP3), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K).
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blockade of A2AR or respiratory hyperoxia restores NK cell
maturation, proliferative capacity, and cytotoxic function, which
improves control over tumor growth, delays tumor initiation
and suppresses tumor metastasis (38, 101, 102). CD73 and/or
A2AR blockade or supplemental oxygen in combination with
therapies promoting NK cell activity may be relevant strategies
to enhance antitumor immunity. Whole-body exposure to
60% oxygen reduces tumor growth by reversing hypoxia-
extracellular adenosine-mediated immunosuppression. In these
preclinical studies, extracellular adenosine levels and CD39,
CD73, A2AR, and A2BR gene expression decreases and coincides
with increased antitumor immunity (102, 108). Hypoxia-
inducible factors (HIFs) are strongly linked to increasing
CD73 (109), A2AR (110), and A2BR (111) gene expression
and collaborates to increase extracellular adenosine/adenosine
receptor signaling for dampening inflammation (46, 47).
Interestingly, recent studies show tumor cells can reprogram
NK cells to gain immunosuppressive functions [e.g., increase
IL-10 and transforming growth factor-β (TGF-β) production
via signal transducer and activator of transcription 3 (STAT3)
transcriptional activity, suppressing IFN-γ production] (112).
The effects are not mediated through adenosine receptors,
suggesting other mechanisms are involved and may not involve
the production of extracellular adenosine (112).

Myeloid-Derived Suppressor Cells and
Tumor-Associated Macrophages
CD39 and CD73 are upregulated on CD11b+ CD33+ peripheral
blood and tumor-associated myeloid-derived suppressor cells
(MDSCs) via TGF-β, which their ectonucleotidase activity
inhibits T cell and NK cell activity (113). Granulocytic
MDSCs expressing high CD39 and CD73 are described in
colorectal cancer patients. These cells were found to exert robust
immunosuppressive features (e.g., high PD-L1 expression) and
activity that could be dampened by blocking CD39/CD73 (114).
A2BR activation preferentially promotes the expansion and
intratumoral accumulation of CD11b+ Gr1+ MDSCs (115).
CD11b+ Gr1+ MDSCs express high CD73, which limits T
cell proliferation. CD73 is also considered to facilitate MDSC
expansion by generating extracellular adenosine to activate
A2BR on myeloid progenitors (115). Accordingly, blocking
A2BR reduces CD11b+ Gr1+ MDSCs immunosuppression
and accumulation in tumors (87). Extracellular adenosine
generated by cancer cells can recruit tumor-associated
macrophages (TAMs), which their endonucleotiase activity,
in collaboration with CD73 expression on other cells of
the tumor microenvironment, further contributes (e.g.,
suppressing antitumor CD4+T cell proliferation) to extracellular
adenosine-mediated immunosuppression in tumors (116).

Dendritic Cells
Dendritic cells (DCs) transport tumor antigens to cytotoxic
T lymphocytes for mounting antitumor immunity. A2BR
activation on DCs inhibits their mobility, due to chemokine
receptor downregulation, and they become tolerigenic to
the tumor microenvironment (117–119). For instance, A2BR
activation on DCs results in impaired allostimulatory activity and

the expression of high levels of angiogenic, immunosuppressive,
and tolerigenic factors [e.g., vascular endothelial growth
factor (VEGF), IL-8, IL-6, IL-10, TGF-β, and idoleamine 2,3-
dioxygenase (IDO)] (118). These cells cannot prime CD8+
T cells and T helper type 1 (Th1) immune responses (118–
121). A2BR binding also inhibits monocyte differentiation to
DCs (118, 119). A2BR blockade promotes DC activation (e.g.,
increased CD86 expression on CD11b- DCs), increases CD4+
and CD8+ T cell IFN-γ production, and tumor cell IFN-γ
and CXCL10 expression (86), which supports the therapeutic
potential of A2BR antagonists in enhancing antitumor immunity.
Pharmacological agents for blocking A2BR are in clinical trials
(e.g., NCT03274479; see Clinical implications section).

PRECLINICAL STUDIES TARGETING CD73
AND ADENOSINE RECEPTORS

CD73’s potential as an immunotherapy target has advanced
rapidly within the last decade (30–44, 67–70). Current studies
focus on combination strategies, including ICIs, adoptive
transfer, chemotherapy, and targeted therapy. Preclinical studies
show compelling evidence for both CD73 and A2AR blockade in
enhancing anti-PD-1 and anti-CTLA-4 therapy. As single agents,
both CD73 and A2AR blockade are effective in controlling
tumor growth andmetastasis. However, the combination of these
therapies is far greater at reducing tumor growth, metastatic
burden, and prolonging the life of mice. These effects depend
on increased IFN-γ production and CD8+ T and NK cell
activity (37, 38, 40, 43, 122, 123). Notably, anti-PD-1 therapy
is particularly synergized by inhibiting CD73, (37) and studies
report A2AR combined with anti-PD-1 therapy is most effective
with cancer cells expressing high CD73. The latter suggests
CD73 expression may stratify patients likely to benefit from
anti-PD-1 therapy-A2AR blockade combination (122, 123).
In melanoma, CD73 is a poor pretreatment biomarker for
immunotherapy, however, its expression level in relapse tumors
has predictive value (41). Therefore, CD73 as a biomarker may
be tumor and sample (e.g., primary, metastasis, relapse) specific.
Ciforadenant (formerly, CPI-444), an oral A2AR antagonist,
recently completed a first-in-human study in patients with renal
cell cancer (124). Preclinical studies have shown ciforadenant
combined with anti-PD-L1 or anti-CTLA-4 therapy eliminates
tumors in up to 90% of mice, restores antitumor immunity,
and is effective in mice that failed prior anti-PD-L1 or anti-
CTLA-4 therapy (68). Moreover, ciforadenant produced an
antitumor memory response in which tumor growth was
completely inhibited in mice with cleared tumors when later
rechallenged (68). In clinical trials, cirforadenant combined
with atezolizumab (anti-PD-L1 therapy) provide great disease
control and survival benefit in patients, yet without high
objective response rates (124). While reasons are unclear, the
Fong and colleagues predict the response is due to persistent
antitumor immunity that maintains durable control over tumor
growth (124). Monotherapy ciforadenant also provided disease
control in some individuals (124). Mechanistically, ciforadenant
suppresses the expression of multiple checkpoint pathways on
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CD8+ effector T cells and CD4+ FoxP3+ Tregs and appears
to have profound effects in restoring antitumor immunity at
the draining lymph nodes by decreasing PD-1 and LAG-3
expression (69). Thus, a significant benefit of A2AR antagonism
is its expansion of responsive cytotoxic T lymphocytes (69).
A2AR and/or CD73 blockade also improves anti-CTLA-4
therapy efficacy in melanoma (43). Recently, anti-CD73 therapy
combined with an agonist antibody to 4-1BB (4-1BB therapy)
showed to restore antitumor immunity (125). 4-1BB is an
activation-induced T cell costimulatory molecule that enhances
cytotoxic T cell and NK cell activity (126, 127). 4-1BB therapy
has entered into clinical trials involving GI cancer patients
(NCT03330561). Poor efficacy and toxicity have been a concern
in the past with 4-1BB therapy (128). Further preclinical studies
are warranted.

Cancer vaccines educate the immune system to recognize
cancer cells. Targeting A2AR in this setting also represents
a promising strategy. Responses to melanoma and lymphoma
tumor vaccines are increased in A2AR-deficient mice; these
mice showed increased expansion of tumor-specific CD8+ T
cells and increased survival compared to wild-type mice (129).
The effectiveness of adoptive T cell transfer is also increased
with genetic deletion or blockade of CD73 or A2AR. Tumor-
bearing mice benefit from improved tumor control and survival
due to increased infiltration and activation of adoptive T
cells (30, 69, 70).

Additionally, preclinical studies show chimeric antigen
receptor T (CAR T) cell efficacy is greatly increased by A2AR
antagonism (130). CAR activation increases A2AR expression
and suppression of mouse and human CAR T cells, which can
be reversed by A2AR antagonism or genetic targeting, increasing
the therapy benefit of CAR T cells. Efficacy is increased further
by combination therapy (A2AR blockade and anti-PD-1 therapy)
(130). Increased CD73 expression is seen in patients progressing
under adoptive T cell transfer therapy (41). Accordingly, future
approaches targeting CD73 in combination with A2AR blockade,
anti-PD-1 therapy, and/or adoptive T cell transfer may prove
beneficial. Head-to-head comparison studies blocking CD39
and CD73 (44) or CD73 and A2AR (39) also show promise
for significantly increasing antitumor immunity. Co-targeting
CD73 with A2AR inhibits the compensatory response of A2AR
blockade to increase CD73 (39). Whereas, co-targeting CD39
with CD73 is beneficial by targeting two different mechanisms
(44). Blocking CD39 elevates ATP levels. High ATP levels
promote DC and macrophage antitumor activity, which adds
to the antitumor immunity benefits of blocking CD73 (44).
Combining CD73 anti-antibodies or small molecule inhibitors
with chemotherapy or targeted therapies [e.g., antibodies against
epidermal growth factor receptor (EGFR)] also shows merit in
preclinical studies (36, 81). BRAF and MEK inhibitors combined
with A2AR blockade show significant benefit in controlling
melanoma tumor growth and metastasis in mice (42). A benefit
of BRAF andMEK inhibitor combination is that it downregulates
CD73 expression (42). Accordingly, this combination strategy
provides the advantage of dampening CD73 expression without
added drug/antibody therapy. Preclinical studies that focus on
GI cancers will be essential in understanding the therapeutic

potential of CD73 and/or adenosine receptor blockade in
these tumors.

GASTRIC CANCER

Gastric cancer (GC) is the fifth and third most common
cancer and cause of cancer deaths worldwide, respectively
(1). Although incidence and death rates are declining (131),
advancements in prevention and treatment remain a priority.
Five year survival rates drop to 20–30% or less once the
cancer moves beyond the lining of the stomach (132). The
majority of GC cases are advanced stage (133). Treatment
includes gastric resection, radiation, chemotherapy, and targeted
therapy, including antibodies against (VEGF)/VEGF receptor
2 (VEGFR2), and HER2 (131). Recently, ICI therapy was
approved for GC (Table 1) (6). However, most patients do
not benefit. Other immunotherapies being studied in GC
include combination ICI therapy, adoptive cell transfer, vaccines
[e.g., melanoma-associated antigen (MAGE) A3 peptides;
Bacillus Calmette-Guerin (BCG)], and agonist antibodies for
costimulatory receptors [e.g., OX40 (also known as tumor
necrosis factor receptor superfamily, member 4), 4-1BB] (134).

Few studies have assessed CD73 expression in GC (Table 2).
CD73 expression is higher in GC vs. normal tissue and associates
with poor tumor differentiation, increased depth of invasion,
positive nodal status, presence of metastasis, advanced-stage
disease, and poor overall survival (Table 2) (75, 135). Increased
CD73 in GC may be due in part to hypoxia. Hypoxia-inducible
factor-1α (HIF-1α) staining closely correlates with high CD73
expression in gastric tumors (75). In contrast, gene expression
studies have shown high CD73 expression associates with
favorable overall survival in GC (136). Notably, CD73 expression
does not always correlate to protein expression, which may
explain the differences between these studies (136). Additionally,
significant heterogeneity for CD73 is seen in GC (75, 135).
For example, 30–50% of advanced stage, deeply invasive, and
lymph node-positive tumors express low or no CD73 (75).
Significant heterogeneity for CD73 expression is also described
for melanoma (41, 42). In melanoma, CD73 expression is
influenced by sample type (e.g., primary, metastatic, or relapse
tissue); therapy treatment; and presence of activating MAPK
(e.g., BRAF) mutations, mitogenic and inflammatory signals
[e.g., hepatocyte growth factor (HGF) and TNF-α], and necrosis
(41, 42). Increased CD73 expression with BRAF mutation is
also seen in serous ovarian cancer; these patients have better
clinical outcomes (137). BRAF mutations are found in 10–20%
of colorectal cancer and frequently are MSI-H (138–140). CD73
expression is also impacted by NT5E promoter methylation,
described for both melanoma and breast cancer (141, 142).
Suffice to say, multiple molecular and genetic factors can affect
CD73 expression in human tumors.

Looking ahead, assessing CD73 expression to common
molecular and/or genetic alterations of GC and The Cancer
Genome Atlas (TCGA) may help to better understand CD73
in GC (23). Studies assessing the association of CD73
expression to immune checkpoints, such as PD-L1, may also
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TABLE 2 | Summary of studies assessing CD73 expression in human GI cancers.

Tumor type Study Findings # of patients Test method(s) CD73 high advance

stage tumors

Clinical

significance

Reference

(PMID)

Gastric Cancer Lu et al. CD73 expression is higher in gastric cancer vs. normal tissue;

High CD73 expression is positively correlated with tumor

differentiation, histology, depth of invasion, nodal status,

metastasis, American Join Committee on Cancer (AJCC) stage,

and poor survival

68 IHC 50% Poor prognosis 23569336

Jiang et al. High CD73 expression associates with favorable overall survival

in gastric cancer;

Meta-analysis study reports large heterogeneity for high CD73

expression for tumors (tumors: ovarian, breast, colorectal,

gastric, gallbladder, prostate, rectal, renal, bladder, head and

neck cancer, and NSCLC)

Oncomine database mRNA, IHC

(meta-analysis)

– Better overall survival 29514610

Hu et al. CD73 expression is higher in gastric cancer vs. normal;

High CD73 associates with advanced clinical stage, deep

tumor invasion, lymph node metastasis, distant metastasis, and

poor survival

408 (gastric cancer;

TCGA)

131 (gastric cancer;

FFPE)

mRNA (TCGA), IHC,

Western Blot

69% Poor prognosis 30992388

Liver Cancer Shrestha et al. CD73 associates with poor overall survival and recurrence-free

survival;

Patients with tumors expressing high PD-L1 and high CD73

have poor prognosis

1,170 (combined

datasets; GSE10143;

GSE10186;

GSE17856; TGCA

Liver Cancer)

mRNA – Poor prognosis;

Poor recurrence free

survival in patients

with high PD-L1

30057891

Shali et al. CD73 expression is higher in tumor vs. normal tissue;

CD73 expression is positively correlated with epidermal growth

factor receptor (EGFR) expression

30 IHC – – 30417547

Ma et al. CD73 expression is higher in hepatocellular carcinoma (HCC)

vs. normal tissue;

High CD73 expression correlates with microvascular invasion,

poor differentiation increased time to recurrence, shorter overall

survival, increased circulating tumor cells, and to

epithelial-to-mesenchymal transition in HCC

232 (mixed: primary

tumors, recurrence

lesions, and

metastases)

mRNA, IHC, Western

Blot

57% Poor prognosis 30971294

Sciarra et al. Immunohistochemistry study of CD73 expression in normal and

hepatobiliopancreatic tissues;

CD73 expression is present in all HCC, staining for CD73

ranges from intensity of 1+ to 3+ with a median intensity of 2+;

Aberrant membranous and/or high/strong cytoplasmic

expression for CD73 is seen in invasive HCC

24 IHC CD73+ Staining

Intensity = 3: 63%

– 30607549

Snider et al. NT5E is regulated by alternative splicing, producing a second

transcript, NT5E-2 in liver cirrhosis and HCC;

NT5E-2 is specific to humans and produces a protein product

known as CD73 short (CD73s) that lacks enzyme activity (lacks

exon 7) and is localized to the cytoplasm;

NT5E-2 is expressed at baseline in many normal human tissues;

CD73s expression is 6–8-fold higher in HCC compared to

normal liver tissues, whereas CD73 (NT5E) mRNA is

dramatically deceased (>90%) in HCC

6 (HCC)

4 (Cirrhosis) 2

(Normal Liver)

mRNA,

Immunofluorescence,

Western Blot, Enzyme

Activity

mRNA Expression HCC:

NT5E-2 = 6–8-fold

increase;

NT5E = 90% decrease

Human specific

isoform for CD73,

NT5E-2 (CD73s) that

lacks enzyme activity

CD73s increases in

HCC, whereas CD73

decreases in HCC.

CD73s is restricted to

the cytoplasm

25298403

(Continued)
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TABLE 2 | Continued

Tumor type Study Findings # of patients Test method(s) CD73 high advance

stage tumors

Clinical

significance

Reference

(PMID)

Alcedo et al. CD73 exhibits aberrant N-linked glycosylation in HCC cells and

is independent of HCC etiology, tumor stage, or fibrosis

presence. Aberrant glycosylation of CD73 results in a 3-fold

decrease in enzyme activity;

CD73 does not correlate with tumor immune subtype in HCC

HCC samples from

PanCancer Atlas

Consortium (mRNA)

and 33 HCC (all other

assays)

mRNA,

Immunofluorescence,

Western Blot, Enzyme

Activity, Mass

Spectrometry

CD73 Enzyme Activity:

aberrant glycosylation of

CD73 = 3-fold decrease

in enzyme activity

CD73 is aberrantly

glycosylated which

significantly

decreases its enzyme

activity

31592495

Pancreatic Cancer Zhou et al. CD73 expression is higher in pancreatic ductal

adenocarcinoma (PDAC) vs. normal tissues;

High CD73 expression associates with increased tumor size,

tumor stage, TMN stage, and poor prognosis

114 mRNA, IHC 40% (TMN stage) Poor prognosis 30927045

Sciarra et al. Immunohistochemistry study of CD73 expression in normal and

hepatobiliopancreatic tissues;

CD73 is negative in acinar and islet epithelial cells, variable in

pancreatic ducts, and mildly localized to stromal cells of normal

and inflamed tissues;

CD73 is expressed in 100% of PDAC;

CD73 is expressed in a subset of pancreatic neuroendocrine

neoplasms (PanNET/PanNEC) and almost absent in acinar cell

carcinoma;

Different staining patterns for CD73 are observed in PDAC,

well- and moderately-differentiated tumors (grade 1 and grade

2) express apical CD73 staining similar to pancreatic ducts or

express mixed membrane and cytoplasm staining;

Poorly-differentiated PDACs express aberrant CD73 staining;

PDAC, pancreatic ductal adenocarcinoma; MCA, mucinous

cystadenoma; IPMN, intraductal papillary mucinous neoplasm;

PanNET/PanNEC, pancreatic neuroendocrine tumor/pancreatic

neuroendocrine carcinoma; ACC, acinar cell carcinoma

42 (PDAC) 5 (MCA)

13 (IPMN)

23 (PanNET/PanNEC)

19 (ACC)

IHC CD73+ Staining

Intensity = 3: 62%

(PDAC) 0% (MCA) 0%

(IPMN) 4%

(PanNET/PanNEC) 5%

(ACC)

PDAC: poor tumor

differentiation and

poor overall survival

30607549

Katsuta et al. PanNET/PanNEC express mild to moderate CD73 and

associates with invasion into adjacent organs

44 IHC 54% Invasion into adjacent

organ

26691441

Colorectal Cancer Wu et al. CD73 expression is higher in colorectal cancer (CRC) vs.

normal tissue;

High CD73 expression associates with poor tumor

differentiation, advanced tumor stage, metastasis, and poor

overall survival

223 (cohort 1)

135 (cohort 2)

IHC, Western Blot – Poor prognosis 22287455

Zhang et al. CD73 expression in rectal cancer only samples;

CD73 expression is increased in both tumor and stromal cells;

High CD73 expression in cancer cells associates with poor

patient prognosis;

High CD73 expression in stromal cells associates with favorable

characteristics (early T and tumor-node-metastasis (TMN)

stages) and overall survival;

Patients with high CD73 expression in both the cancer cells

and stromal cells have similar good outcomes. No CD73

expression in both cell compartments is also favorable

90 IHC – High CD73

expression cancer

cells = poor

prognosis;

High CD73

expression stromal

cells = favorable

outcomes

25677906

(Continued)
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be helpful. Forty percent of GC cases are PD-L1 positive
(143), and preclinical studies suggest high CD73 expression
in PD-1/PD-L1 expressing tumors may identify patients that
would benefit from combination anti-PD-1/PD-L1 therapy and
CD73 and/or A2AR blockade (122, 123). Few studies globally
assess CD73 expression with other ecto-enzymes involved
in ATP and adenosine synthesis and metabolism and its
intracellular uptake (144), such as other E-NTPDases, ecto-
nucleotide pyrophosphatases/phosphodiesterases (e.g., CD203a),
nitcotinamide dinucleotide enzyme (e.g., CD38), prostatic acid
phosphatase, alkaline phosphatase (45, 145, 146), adenosine
deaminase, and equilibrative and concentrative nucleoside
transporters (ENTs and CNTs, respectively). Reviewed recently
by Boison and Yegutkin (144), this may present a major
gap in developing effective adenosine-based therapies (144).
Accordingly, a more global view of extracellular adenosine
metabolism and signaling in GC may also prove significant.

Considering CD73/extracellular adenosine’s role in immune
cell escape, studies of CD73’s association to H. pylori-mediated
tumorigenesis may provide additional insight.H. pylori infection
is responsible for up to 60% of GC cases and arises in the
background of inflammation (147, 148). Immune cell evasion
is important for H. pylori infection and supported by evidence
of higher PD-L1 expression in H. pylori positive compared
to negative gastric biopsies (149) and that H. pylori-induced
PD-L1 expression on gastric epithelial cells converts naïve T
cells to CD4+ FoxP3+ Tregs that inhibit T cell proliferation
(150). CD73 expression by CD4+ CD25+ Tregs enhances
H. pylori infection by increasing local extracellular adenosine,
which suppresses IFN-γ production (151). Consistent with
this, infected CD73-deficient mice experience worse gastritis
and more severe inflammation (e.g., increased IL-2, TNF-α,
and IFN-γ and impaired Treg function) (151). Taken together,
these studies support that CD73/extracellular adenosine in
collaboration with other immune checkpoints may downregulate
immune cell responses necessary for recognizing and clearing
transformed cells arising in chronically infected gastric tissues,
thus supporting GC development. With H. pylori infection,
CagA and VacA containing exosomes are released from gastric
epithelial cells, stimulating pro-inflammatory responses and
affecting the expression of tumor suppressor and oncogenic genes
(152). Considering CD73 expression on exosomes promotes
tumor immunosuppression (97, 98), it would be interesting to see
if CD73 is also expressed on H. pylori-mediated exosomes and if
its presence or increased presence is a biomarker for the onset
of GC.

Additional studies show CD73 promotes tumor cell
proliferation, migration, invasion, and stemness in GC cells
(135, 153). Antitumor roles for extracellular adenosine are also
reported, including AMP-kinase (AMPK)-mediated, caspase-
independent apoptosis, via intracellular uptake of extracellular
adenosine through ENTs, and caspase-dependent apoptosis,
mediated by A1R and A3R (154, 155). ENTs passively transport
nucleosides based on a concentration gradient (Figure 1)
(156, 157). A1R and A3R signaling both inhibit adenylyl
cyclase activity and can activate multiple downstream signaling
pathways, including phospholipase C, producing inositol 1,
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4, 5-triphosphate (IP3) and diacylglycerol (DAG), mitogen-
activated protein kinase (MAPK), and phosphoinositide 3-kinase
(PI3K) (Figure 1) (158–160). A3R agonist, CF102, is in clinical
trials for antitumor benefit in liver cancer (NCT02128958).
A3R is also reported to increase HIF-1α through a non-
transcription-dependent, non-HIF-1α oxygen-dependent
degradation mechanism in several cancer cell lines (161).
Though the role of A3R-mediated upregulation of HIF-1α is
unclear, these data suggest A3R may both suppress and promote
tumor progression. A2AR expression is increased in human GC
tissue and correlates with poor tumor differentiation, advanced
stage, lymph node positivity, and worse patient outcomes
(162). Studies show A2AR, via PI3K-AKT-mTOR signaling,
promotes GC cell stemness, EMT, and tumor cell migration and
invasion (162). Altogether, more work is necessary to understand
the role of CD73/extracellular adenosine in GC. Targeting
specific adenosine receptors (e.g., A2AR) may be promising, but
represents an area in need of more research.

LIVER CANCER

Liver cancer is the fourth most common cause of cancer
death and sixth in terms of incidence worldwide (2). Ninety
percentage of liver cancers are hepatocellular carcinoma (HCC)
(163). Chronic liver disease (e.g., cirrhosis and fibrosis) is a
major risk factor and most commonly caused by hepatitis
B or C infection or long-term alcohol abuse (2, 164, 165).
The 5-year survival rate for HCC is 18% (2). Treatment
includes tumor resection, liver transplant, and targeted therapy
(e.g., multi-kinase inhibitor, sorafenib) (166). However, 70% of
patients do not qualify for surgery, due to advance disease,
and sorafenib therapy is limited in its benefit; patient survival
is prolonged only by a few months (166). ICI therapy was
recently approved as second-line therapy for HCC (Table 1)
(7, 9). Other promising immunotherapies are in development
and are aimed at boosting existing or de novo immune responses,
including vaccines and oncolytic viruses, and combination ICI
therapy (167). Anticipation awaits the results of NCT03298451,
a phase 3 clinical trial assessing anti-PD-L1 and anti-CTLA-4
combination therapy vs. monotherapy as better first-line options
than sorafenib [HIMALAYA trial, (NCT03298451)].

In recent years, HCC has been a platform for the discovery of
novel biology for CD73 in human tumors (Table 2) (168, 169).
Studies by Snider and colleagues (168) identified an alternative
splicing variant of NT5E, NT5E-2 expressed in liver cirrhosis and
HCC. NT5E-2 produces a protein product, CD73-short (CD73s),
and is a human-specific isoform that lacks enzyme activity and is
unable to dimerize due to the loss of exon 7 with splicing (168).
CD73s expression is limited to the cytoplasm and complexes
with CD73 to promote proteasome-dependent degradation of
CD73 (168). In HCC human tissues, CD73s expression is 6–8-
fold higher compared to normal liver, whereas CD73 expression
is downregulated by more than 90% (168). Accordingly, these
studies indicate CD73s may be the major source of “CD73”
overexpression in HCC. In contrast, other studies (170, 171)
report CD73 is overexpressed in HCC and associates with poor

tumor differentiation, microvascular invasion, and poor overall
and recurrence-free survival (Figure 1) (170, 171). NT5E-2
expression was not assessed in these studies, which is a limitation.
In line with CD73s expression, Sciarra et al. (172) especially noted
significant cytoplasmic CD73 expression in tumors, particularly
with invasive tumors (172) (Table 2).

Many immunohistochemistry data for high CD73 expressing
tumors, including gastric and pancreatic cancer, show significant
cytoplasmic staining of CD73 (75, 77). Current commercial
antibodies are not marketed to distinguish between CD73 and
CD73s. Thus, other human tumors with CD73 overexpression
may overexpress CD73s. Notably, NT5E-2 is expressed at
low levels in most normal human tissues and its expression
increases with the onset of disease (123, 159). Currently, NT5E-
2 remains unstudied in other human tumors despite possible
clinical implications. Similarly, recent studies by Alcedo et al.
(169) report CD73 enzyme activity in HCC is significantly
limited by aberrant glycosylation (169). The authors discovered
that in HCC cells, unlike normal hepatocytes, CD73 carries
abnormal N-linked glycosylation in its C-terminal catalytic
domain, which greatly impairs the enzyme activity of CD73
(169). Aberrantly-glycosylated CD73 also showed to remain
partially localized to the cytoplasm with golgi structural protein,
GM130 (169). Importantly, these studies show that CD73 protein
expression levels may not necessarily reflect its ability to generate
extracellular adenosine. Studies by Snider et al. (168) and Alcedo
et al. (169) are significant in that they demonstrate CD73
overexpression in human tumors can be misleading. Thus, CD73
immunohistochemistry may fall short in identifying patients
likely to benefit the most from CD73 blockade therapy. As
mentioned, commercial antibodies are unknown to be specific
for recognizing CD73 vs. CD73s. Additionally, they are not
primed for recognizing aberrant glycosylation. Instead, CD73
enzyme histochemistry is necessary, which is more challenging
for clinical workups. These studies also raise questions as to
how close preclinical studies of CD73/extracellular adenosine
model human tumors. For instance, syngeneic and spontaneous
mouse tumor models do not account for the biology of CD73s,
which negatively regulates CD73 (168). A species-specific role
of CD73 is also seen for arterial calcifications in humans
and is not recapitulated in CD73-deficient mice (173, 174).
CD73 downregulation in human tumors has been described
in endometrial cancer. Its loss associates with more aggressive
disease and poor overall survival (175). In normal endometrium,
CD73-generated adenosine protects epithelial integrity, which
CD73 loss and subsequently the loss of cell-cell adhesions
promotes tumor progression (175). In contrast, in normal breast
tissue, CD73 is expressed in myoepithelial cells as opposed
to differentiated cells (e.g., acinar and ductal epithelial cells)
(176). Myoepithelial cells are stem cell-like and exhibit highly
invasive behavior similar to tumor cells (177). Consistent with
this, CD73 is upregulated in cancer cells of triple-negative
breast cancer (TNBC), which are tumors characterized by a
gene expression signature similar to basal/myoepithelial cells
(36, 177, 178). Accordingly, studies that reconcile tissue- and
cell-specific roles for CD73 in normal GI tissues may help
better understand CD73 in GI cancers (179, 180). Similar to
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endometrial cancer (175), CD73 is downregulated in cancer
cells of bladder and prostate tumors and associates with poor
prognosis (181, 182). The role of CD73 in bladder and prostate
epithelium is unknown. Notably, CD39 deficiency promotes
both induced and spontaneous autochthonous tumors in the
liver (183).

For adenosine receptors, studies show A2AR signaling via
PI3K-AKT promotes HCC tumor growth and metastasis and is
reversed by A2AR antagonist treatment (170). A2BR expression
is increased in human HCC tissue and correlates with tumor
progression and is likely due to hypoxia (184). HIF-1α increases
A2BR expression in HCC cells and cancer cell proliferation
(184). Recent studies by Lan and colleagues (185) show HIF-
1α’s induced expression of A2BR is essential in enriching breast
cancer stem cells for the onset of recurrent disease (185).
Studies linking A2BR to tumor progression include work in
bladder (86), breast (186), colon (187), and prostate (188)
cancer and involves A2BR activity on both immune and tumor
cells. A2BR antagonist, ATL801, reduces metastases by more
than 80% in mice, which is due to increased IFN-γ, IFN-
inducible chemokine CXCL10, a ligand for CXCR3, and tumor-
infiltrating CXCR3+ T cells (86). Needless to say, interests
in antagonizing A2BR in human tumors are rising. Studies
by Vecchio et al. (188), in prostate cancer, describe a ligand-
independent, constitutively active A2BR, which drives cancer
cell proliferation (188). Importantly, these studies highlight an
unappreciated view that adenosine receptors in tumors may
not rely on CD73/extracellular adenosine. Aberrant ligand-
independent G protein-coupled receptor constitutive activity is
implicated in several cancers (188). In contrast, A3R expression
is increased in human HCC and A3R promotes cancer cell
apoptosis (189). A3R agonist, CF102, is being evaluated as
second-line therapy for HCC (NCT02128958). Increased overall
survival is reported with NCT02128958 and phase 3 studies
are being planned (190). Taken together, adenosine receptors as
opposed to CD73 may be better predictive targets for therapeutic
benefit in HCC.

PANCREATIC CANCER

Pancreatic cancer is predicted to become the second leading
cause of cancer-related deaths in the United States by 2030
(3, 4). Ninety percentage of pancreatic tumors are pancreatic
ductal adenocarcinoma (PDAC) while 3–5% are neuroendocrine
tumors (PNETs) (191). Smoking, heavy alcohol consumption,
obesity, H. pylori infection, and chronic pancreatitis are risk
factors (192). Prognosis is incredibly poor, approximately 70% of
patients will succumb to the disease in the first year (193). The
5-year survival rate is 9% (193). Standard of care for pancreatic
cancer includes radiation therapy, chemotherapy, and targeted
therapy (e.g., EGFR inhibitors) (192). The prevalence of therapy
resistance to these treatments is a persistent problem. PDAC
patients have not benefited from single agent or combination
ICI therapy (194–196) despite increased expression of PD-
L1 in tumors (197–199). Significant efforts are underway to
improve immunotherapy efficacy, including studies investigating

regulatory B cell inhibition (e.g., Bruton’s Tyrosine Kinase (BTK)
inhibitors), IDO inhibition, and vaccine therapy (200). Though
a predominant target in B cell malignancies, BTK in PDAC
is shown to induce B cell- and macrophage-mediated T cell
suppression, which BTK inhibitors (i.e., ibrutinib) restore T cell-
dependent antitumor immunity and improve responsiveness to
chemotherapy in preclinical studies (201). BTK inhibitors also
produce an unexpected anti-fibrotic effect (202). PDAC cancers
are rich in stromal cells and fibro-inflammatory reactions, which
support chemotherapy resistance (203). A phase 3 clinical trial
of ibrutinib in combination with chemotherapy in PDAC was
recently completed (April 2019; NCT02436668) (204). Results are
not yet publicly available.

Studies of CD73 in human PDAC tissue have only recently
emerged (Table 2). CD73 is upregulated in PDAC compared to
normal pancreatic tissue and correlates with increased tumor
size, advanced stage, lymph node involvement, metastasis,
and poor prognosis (77, 80, 172). While PDAC tumors are
100% positive for CD73 expression (172), interesting staining
patterns for CD73 are seen. Well- and moderately-differentiated
PDAC cells express mixed membrane and cytoplasmic CD73
staining. CD73 staining intensity is low to moderate in these
tumors (172). In contrast, poorly-differentiated PDAC cells
have aberrant CD73 staining, including very strong cytoplasmic
CD73 expression (172). The increase of cytoplasmic CD73
expression in PDAC is unclear. We previously mentioned the
discovery of CD73s in HCC (168). Studies assessing NT5E-2
(CD73s) expression may help to better understand CD73 in
PDAC. CD73 expression in acinar cell carcinomas (ACC) is
rare (172). ACC comprises 1–2% of pancreatic tumors and does
not carry typical genomic alterations seen in PDAC, including
KRAS and TP53 mutations (205), which is suggestive that CD73
expression in PDAC may be linked to KRAS and/or TP53
mutations. KRAS mutation occurs in nearly 100% of PDAC
cases (206). In human colorectal cancer (CRC) and non-small
cell lung cancer (NSCLC) tissue, CD73 staining is increased
in KRAS mutant compared to wild-type tumor (207). KRAS
alterations associate with increased CD73, CD39, A2AR, and
A2BR gene expression in CRC and NSCLC cell lines, which
correlates with anti-PD-1 resistance in KRAS mutant tumor
models (207). Moreover, high CD73 expression and KRAS
alterations associate with worse overall survival compared to
patients with KRAS alterations and low CD73 expression tumors
(207). EGFR alterations and high CD73 expression also associate
with poor overall survival (TCGA pan-cancer) (207). EGFR
alterations and KRASmutations occur together in 67% of PDAC
cases (208). Accordingly, EGFR alterations may also increase
CD73 expression in PDAC. A positive association between
CD73 expression and EGFR alterations is described in breast
cancer (209).

CD73 expression (3+ staining) increases with aggressive
disease in PDAC (172), which may be an indicator of an
evolving or advancing immunosuppression phenotype. For
instance, in PDAC, a decrease in CD8+ T cell infiltration
into tumors is seen with the rise of infiltrating Tregs with
disease progression (210). As mentioned, human Tregs rarely
express cell surface CD73 (93, 94), and it is considered that
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CD73-generated extracellular adenosine from other sources [e.g.,
cells (96) or exosomes (97, 98)] activate adenosine receptors
on immune cells for immunosuppression. Accordingly,
the coinciding increase of CD73 in PDAC cells may be
significant in promoting extracellular adenosine-mediated
immunosuppression. Other cells and cell-derived products
possibly contributing are CD4+ CD73+ T cells, B cells,
and CD39+ CD73+ exosomes (211). CD73+ PDAC and
NSCLC cell-derived exosomes activate A3R on intratumor
and peripheral mast cells, which promotes remodeling of the
tumor microenvironment through increasing the expression of
angiogenic factors (212, 213). Additionally, in PDAC models,
tumor-infiltrating CD11b+ CD103– DCs promote tumor
growth by inducing expansion of FoxP3neg CD39+ CD73+
tumor-promoting Tregs (214).

Pancreatic neuroendocrine tumors and carcinomas
(PanNET/PanNEC) account for 1–10% of pancreatic tumors
(215, 216). Thirty to fifty percent of PanNET/PanNEC express
mild to moderate CD73 expression and associates with increased
malignant potential, which is similar to gastrointestinal
(GI)-NET/NECs (80, 172, 217). In GI-NET/NECs, CD73
expression positively correlates with PD-L1 expression
(217), which possibly anti-PD-1/PD-L1 therapy with CD73
and/or A2AR blockade may benefit these patients. Increased
expression of CD73 with PanNET also associates with cancer
cell stemness (e.g., aldehyde dehydroxygenase expression)
and aggressive behavior (80). Filippini et al. (218) recently
reported a transplantable model of mouse pancreatic tumor
organoids into immunocompetent mice that recapitulate
human PDAC progression and that the system serves as a
suitable model for immunophenotypic studies (218). The
organoid-derived isographs induce the expression of many
immunosuppressive/aggressive biomarkers with tumor
development and evolution, including CD73 (218). Studies
using such models may provide a significant understanding of
CD73/extracellular adenosine signaling in immunosuppression
and the immunoevolution of PDAC.

CD73 also shows to promote drug resistance and tumor
growth in PDAC cells. For instance, high CD73 expression
and low miR-30a-5p expression in PDAC cells result in
chemotherapy (e.g., gemcitabine) resistance (77), and CD73
knockdown inactivates AKT and extracellular signal-regulated
kinase (ERK) signaling and slows cancer cell growth (77). In
contrast, studies show extracellular adenosine treatment in
combination with AKT inhibitor, GSK690693, reduces PDAC
growth and induces tumor cell apoptosis and senescence
in patient-derived xenografts (PDX). Mechanistically, the
intracellular uptake of extracellular adenosine via ENTs
(Figure 1) appears important for this response, as dipyridamole
(pan-ENT inhibitor) treatment remarkably recovers cell viability
(219). The difference between these studies likely relates to
the subcutaneous transplanting of tumors (77) vs. tumors
transplanted to the tail of the pancreas (219). Indeed, for
example, CD39 deficiency can promote the development of
both induced and de novo tumors in the liver, which is in
contrast to its role in antitumor immunity of subcutaneous
transplanted tumors (183, 220). It is considered that the

surrounding microenvironment and interaction with these
cells by the tumor likely produce different responses and
outcomes. In the next several years, adopting in-depth and
detailed characterization of CD73/extracellular adenosine in
immunocompetent, autochthonous pancreatic cancer models,
humanized models, and human organoids will be essential for
better understanding the possible therapeutic benefit of targeting
CD73 and adenosine receptors in pancreatic tumors.

COLORECTAL CANCER

Colorectal cancer (CRC) is the third most common cancer and
the second cause of cancer-related deaths worldwide (5). CRC
incidence rates are declining in the United States and are stable
in most other Western countries, whereas rates are rising in
Eastern Asia and Eastern Europe and likely reflect the adoption
of a Western lifestyle (221, 222). CRC risk factors include
obesity, Western diet, lack of physical activity, excessive alcohol
use, hereditary syndromes (e.g., Lynch syndrome), and smoking
(223). Treatment includes surgery, combination chemotherapy,
radiation therapy, and targeted therapy, including antibodies
against VEGF/VEGFR or EGFR (224). Although advances in
better screening and treatment have been made in the last
decade, long-term survival remains poor for metastatic CRC
patients. The 5-year survival rate is <15% (225). ICI therapy
was recently approved for refractory dMMR/MSI-H metastatic
CRC (Table 1) (8, 10, 11). Of CRC cases that are dMMR/MSI-
H, only 4% are metastatic. Accordingly, several approaches,
including IDO inhibitors, vaccine therapy, and combination ICI
therapy are being studied to extend immunotherapy efficacy to
more patients (226). A better understanding of CD73/adenosine
receptor signaling in CRC may help in these efforts.

Early studies assessing CD73 in CRC were part of larger
efforts examining enzymatic patterns of key enzymes involved
with purine metabolism and salvage, including ADA, alkaline
phosphatase, hypoxanthine-guanine phosphoribosyltransferase
(Table 2) (227, 228). Studies by Camici et al. (227) reported
no difference with CD73 enzyme activity between CRC and
normal tissue (227). In contrast, Eroglu et al. (228) showed
higher CD73 enzyme activity in tumors compared to normal
tissue (228). No associations were found with high CD73
enzyme activity and poor clinical features. Instead, high
CD73 enzyme activity was associated with well-differentiated
tumors and low CD73 enzyme activity associated with poorly-
differentiated tumors (228). More recent studies show high
CD73 expression correlates with poor tumor differentiation,
lymph node involvement, advanced stage, and poor survival
(78). In rectal cancer, CD73 expression in the different cell
types carries different clinical prognosis (229). High CD73
expression in cancer cells and low CD73 expression in stromal
cells associates with poor overall survival, whereas low CD73
expression in cancer cells and high CD73 expression in
stromal cells is more favorable (229). Bladder cancer is similar.
CD73 positive expression by epithelial cells predicts better
progression-free survival and overall survival, whereas stromal
cell CD73 positivity predicts poor outcome (230). Accordingly,

Frontiers in Immunology | www.frontiersin.org 12 April 2020 | Volume 11 | Article 508

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Harvey et al. CD73 Immunotherapy in Gastrointestinal Cancers

these studies support that CD73 in tumors may suppress
and promote tumor progression. Although unknown, targeting
tumors with dual roles for CD73may prove challenging for CD73
inhibitor therapy.

Tumor heterogeneity is likely one explanation for the reported
differences of CD73 expression in CRC. CRC tumors carry
significant inter- and intra-heterogeneity (231, 232), so much so
that in recent years an international consortium was formed to
establish a robust molecular and genetic classification scheme
for CRC. These global efforts led to the development of the
consensus molecular subtypes (CMS) (233). Accordingly, future
efforts assessing CD73 expression to the CMS groups (e.g., CMS1,
CMS2, CMS3, CMS4) may provide a better understanding of
CD73 in CRC and the possible molecular and genetic alterations
that drive its downregulation and/or overexpression. Indeed,
high CD73 expression in CRC may be associated with CMS2
tumors. In CRC, CD73 is a predictive biomarker of patient
response to anti-EGFR therapy (234). In line with this, the
CMS2 group predicts tumors that are more responsive to
anti-EGFR and anti-HER2 therapy (235). Also consistent is
that CD73 promotes CRC cell proliferation and tumor growth
through β-catenin (WNT)/cyclin D1 signaling (236) and CMS2
tumors are characterized by WNT and MYC signaling (233).
KRAS mutations/alterations are likely also linked to CD73
expression in CRC; discussed previously in the section on PDAC
(207). Thus, investigating CD73 expression in KRAS mutant
tumors may provide additional insight. A focus on metastatic
samples may also be important. Liver metastasis occurs in
50% CRC patients (237). Recently, studies have shown high
CD73 expression associates with significantly shorter time to
recurrence and poor survival (238). In renal cancer patients, an
adenosine high (AdenoSighi) expression signature was identified
in pretreatment biopsies and associated with clinical response to
A2AR antagonism (124). Similar efforts in identifying biomarker
signatures may provide greatly to improving immunotherapy
efficacy in CRC.

In preclinical studies, CD73 deletion increases CD8+ T cells
and IFN-γ production to suppress the growth of MC-38 mouse
colon cancer (32). The depletion of CD73 on CD4+ Foxp3+
Tregs also is significant in restoring antitumor immunity in
this model (32). Similarly, CD39-deficient mice are resistant to
MC-38 metastasis (239, 240). Whereas, overexpression of CD39
increases MC-26 mouse colon cancer cell metastasis to the liver
(220). CD39 deletion does not increase the development of
primary MC-26 orthotopic transplant tumors in heterozygous
CD39 mice or mice transgenic for human CD39 compared
to wild-type mice (220). Recent studies show support for co-
targeting CD39 and CD73 in combination with ICI therapy
and/or chemotherapy (44). Tumor-bearing mice benefit from
increased antitumor immunity in these studies, which is due to
the recovery of DC, macrophage, and effector T cell antitumor
activity (44). In line with these studies, inhibiting CD39 or CD73
on MDSCs from CRC patients is effective in dampening the
immunosuppressive activity of these cells (114).

Adenosine receptors may also be possible therapeutic targets.
High A2AR expression associates with larger tumor size,
increased tumor invasion, and higher TNM (TNM Classification

of Malignant Tumors) stage in CRC (241). High A2AR
expression also predicts poor patient survival and is positively
correlated with PD-L1 expression (241). Consistent with the
possible benefit of combined A2AR antagonist and ICI therapy
(43, 68, 122, 123), studies with MC-38 cells, show A2AR
antagonist, ciforadenant, combined with anti-PD-L1 or anti-
CTLA-4 therapy eliminates 90% of tumors in mice by restoring
antitumor immunity (68). Notably, MC-38 cells are normally
highly sensitive to ICI therapy (37, 123). Additionally, in many
studies, MC-38 cells are grown subcutaneously. Accordingly,
it is not known how close these preclinical studies model
immunosuppression and immunotherapy efficacy for CRC.
A2BR is also upregulated in CRC and likely is linked to
tumor hypoxia and progression (187). In vitro studies show
A2BR expression is upregulated in CRC cells by hypoxia and
promotes cancer cell proliferation, which is dampened by A2BR
antagonism (187). A2BR antagonism also dampens A2BR-
mediated CD73 expression by cancer-associated fibroblasts
(CAFs) and CAF-associated immunosuppression activity (242).
A3R is overexpressed in human CRC tissue and stimulates
tumor growth via extracellular signal-regulated protein kinases
1 and 2 (ERK1/2) (243, 244). In contrast, studies also report
A3R activity inhibits tumor growth by modulating glycogen
synthesis kinase-3β (GSK-3β) and NF-Kappaβ (NF-κβ). A3R
agonist treatment inhibits CRC cell proliferation, limits liver
metastasis, and increases the cytotoxicity of chemotherapy (e.g.,
5-fluorouracil) (245–247). Interestingly, treatment of CRC cells
with caffeine, a non-selective adenosine receptor antagonist,
inhibits A3R-mediated stabilization of HIF-1α (248). It is unclear
if HIF-1α mediated by A3R promotes tumor progression or
antitumor activity. HIFs are described to have pro- and antitumor
activity in CRC (249). Moreover, overexpression of HIF-1α
does not increase CRC tumorigenesis and does not result in
spontaneous tumor formation in mice (250). Taken together,
while many adenosine pathway members show evidence for
possible therapeutic targeting in CRC, detailed studies in human
tumors and relevant preclinical models are greatly needed.

CLINICAL IMPLICATIONS

Inhibiting CD73 (and/or A2AR) restores antitumor immunity
in many preclinical studies with combination approaches
showing superior efficacy. Accordingly, several clinical trials
inhibiting CD73 (e.g., antibodies against CD73 or small molecule
inhibitors) in combination with ICI therapy, A2AR antagonism,
targeted therapy, and/or chemotherapy are underway (Table 3).
Preliminary safety profiles report BMS-986179, an anti-CD73
humanized monocolonal antibody, and its combination with
nivolumab (anti-PD-1 therapy) to be well-tolerated in patients
(NCT02754141) (251). Recent studies in renal cell cancer
(RCC) reported the feasibility and safety of A2AR antagonist,
ciforadenant (124). Similar to preclinical studies, durable clinical
benefit was associated with increased recruitment of CD8+
T cells (124). Additionally, combination therapy (ciforadenant
and anti-PD-L1 therapy) showed benefit in patients who had
progressed on anti-PD-1/PD-L1 therapy. Notably, patients in
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TABLE 3 | Summary of clinical trials for CD73, A2AR, and A2BR in cancer.

Adenosine

pathway target

Drug(s) Target(s) Therapy modality

(adenosine pathway)

Phase Details Disease Status ClinicalTrials.gov

Identifier

CD73 LY3475070

Pembrolizumab

CD73

PD-1

LY3475070:

CD73 Small

Molecule Inhibitor

Phase 1 Cohort A: LY3475070 administered orally

Cohort B: LY3475070 + Pembrolizumab administered IV

Cohort C1: LY3475070 + Pembrolizumab administered IV

Cohort C2 LY3475070 administered orally

Cohort D1 LY3475070 + Pembrolizumab administered IV

Cohort D2: LY3475070 administered orally

Cohort E: LY3475070 + Pembrolizumab administered IV

Advanced Solid

Malignancies

Recruiting NCT04148937

Oleclumab

(MEDI9447)

Durvalumab

(MEDI4736)

CD73

PD-L1

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 1

Phase 2

Phase I and Phase II Arm A: Paclitaxel, Carboplatin, Durvalumab, + Oleclumab

Phase II Arm B: Paclitaxel, Carboplatin, + Durvalumab

Triple Negative

Breast Cancer

Recruiting NCT03616886

Oleclumab

(MEDI9447)

Durvalumab

CD73

PD-L1

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 2 Experimental: Chemotherapy and radiation

Experimental: Chemotherapy and pre-operative radiotherapy + Durvalumab

Experimental: Chemotherapy and pre-operative radiotherapy + Durvalumab

and Oleclumab

Luminal B

(Breast Cancer)

Recruiting NCT03875573

Oleclumab

(MEDI9447)

Durvalumab

CD73

PD-L1

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 1 Experimental: Monotherapy, Oleclumab

Experimental: Combination, Oleclumab and Durvalumab

Solid Tumors Active, not

Recruiting

NCT02503774

TJ004309

Atezolizumab

CD73

PD-L1

TJ004309:

CD73 Humanized

Monoclonal

Antibody

Phase 1 Dose escalated TJ004309 + Atezolizumab Solid Tumors

Metastatic Cancer

Recruiting NCT03835949

Oleclumab

(MEDI9447)

Durvalumab

AZD9150

AZD6738

Vistusertib

Olaparib

Trasutzumab

Cediranib

CD73

PD-L1

STAT3

ATR

mTOR

PARP

HER2

VEGFR

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 2 Experimental: Durvalumab + Olaparib

Experimental: Durvalumab + AZD9150

Experimental: Durvalumab + AZD6738

Experimental: Durvalumab + Vistusertib

Experimental: Durvalumab + Oleclumab

Experimental: Durvalumab + Trastuzumab

Experimental: Durvalumab + Cediranib

Non-Small Cell Lung

Cancer

Recruiting NCT03334617

Oleclumab

(MEDI9447)

Durvalumab

Capivasertib

Danvatirsen

Paclitaxel

CD73

PD-L1

AKT

STAT3

Chemotherapy

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 1

Phase 2

Experimental: Durvalumab + Paclitaxel

Experimental: Durvalumab + Paclitaxel + Capivasertib

Experimental: Durvalumab + Paclitaxel + Danvatirsen

Experimental: Durvalumab + Paclitaxel + Oleclumab

Triple Negative

Breast Cancer

Recruiting NCT03742102

Oleclumab

(MEDI9447)

Durvalumab

Gemcitabine

Nab-paclitaxel

Oxaliplatin

Leucovorin

5-FU

CD73

PD-L1

Chemotherapy

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 1

Phase 2

Arm A1: Gemcitabine + Nab-paclitaxel

Arm A2: Oleclumab + Gemcitabine + Nab-paclitaxel

Arm A3: Oleclumab + Durvalumab + Gemcitabine/Nab-paclitaxel

Arm B1: Oxaliplatin + Leucovorin + 5-FU (mFOLFOX)

Arm B2: Oleclumab + mFOLFOX

Carcinoma

Metastatic Pancreatic

Adenocarcinoma

Active, not

Recruiting

NCT03611556

Oleclumab

(MEDI9447)

Durvalumab

CD73

PD-L1

Oleclumab:

CD73 Humanized

Monoclonal Antibody

Phase 1 Experimental: Monotherapy, Durvalumab

Experimental: Combination, Durvalumab + Oleclumab

Muscle Invasive

Bladder Cancer

Recruiting NCT03773666

BMS-986179

Nivolumab

rHUPH20

CD73

PD-1

Hyaluronidase

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 1

Phase 2

Arm A: Monotherapy, BMS-986179

Arm B: Combination Therapy, BMS-986179 + Nivolumab

Arm C: Combination Therapy, BMS-986179 + rHUPH20

Malignant Solid

Tumor

Recruiting NCT02754141

Oleclumab

(MEDI9447)

MEDI0562

Durvalumab

Tremelilumab

CD73

OX40

PD-L1

CTLA-4

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

Phase 2 Cohort A: Oleclumab + Durvalumab

Cohort B: MEDI0562 + Durvalumab

Cohort C: MEDI0562 + Tremelimumab

Ovarian Cancer Recruiting NCT03267589

(Continued)
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TABLE 3 | Continued

Adenosine

pathway target

Drug(s) Target(s) Therapy modality

(adenosine pathway)

Phase Details Disease Status ClinicalTrials.gov

Identifier

CD73 A2AR CPI-006

Ciforadenant

(CPI-444)

Pembrolizumab

CD73

A2AR

PD-1

CPI-006:

CD73 Humanized

Monoclonal

Antibody

Ciforadenant:

A2AR Antagonist

Phase 1 Cohort 1a: (escalating doses) CPI-006

Cohort 1b: (escalating doses) CPI-006 + Ciforadenant

Cohort 1c: (escalating doses) CPI-006 + Pembrolizumab

Cohort 2a: (selective dose) CPI-006

Cohort 2b: (selective dose) CPI-006 + Ciforadenant

Cohort 2c: (selective doses) CPI-006 + Pembrolizumab

Non-Small Cell Lung Cancer

Renal Cell Cancer

Colorectal Cancer

Triple Negative Breast Cancer

Cervical Cancer

Ovarian Cancer

Pancreatic Cancer

Endometrial Cancer

Sarcoma

Squamous Cell Carcinoma of the

Head and Neck

Bladder Cancer

Metastatic Castration Resistant

Prostate Cancer

Non-hodgkin Lymphoma

Recruiting NCT03454451

Oleclumab

(MEDI9447)

AZD4635

Durvalumab

CD73

A2AR

PD-L1

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

AZD4635:

A2AR Antagonist

Phase 2 Module 1: Drug: AZD4635; Drug: Durvalumab

Module 2: Drug: AZD4635; Drug: Oleclumab

Prostate Cancer

Metastatic

Castration-Resistant

Prostate Cancer

Recruiting NCT04089553

Oleclumab

(MEDI9447)

AZD4635

Osimertinib

CD73

A2AR

EGFR

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

AZD4635:

A2AR Antagonist

Phase 1

Phase 2

Arm A: MEDI9447 + Osimertinib

Arm B: MEDI9447 + AZD4635

Non-Small Cell Lung

Cancer

Recruiting NCT03381274

NZV930

NIR178

PDR001

CD73

A2AR

PD-1

NZV930:

CD73 Humanized

Monoclonal

Antibody

NIR178:

A2AR Antagonist

Phase 1 Experimental: NZV930

Experimental: NZV930 + PDR001

Experimental: NZV930 + NIR178

Experimental: NZV930, NIR178, PDR001

Non-small Cell Lung

Cancer (NSCLC)

Triple Negative

Breast Cancer

Pancreatic Ductal

Adenocarcinoma

Colorectal Cancer

Microsatellite Stable

Ovarian Cancer

Renal Cell

Carcinoma

Recruiting NCT03549000

Oleclumab

(MEDI9447)

AZD4635

Durvalumab

Abiraterone

Acetate

Enzalutamide

Docetaxel

CD73

A2AR

PD-L1

Hormone

Therapy

Chemotherapy

Oleclumab:

CD73 Humanized

Monoclonal

Antibody

AZD4635:

A2AR Antagonist

Phase 1 Experimental: Arm A: AZD4635 monotherapy as nanoparticle suspension

125mg BID

Experimental: Arm B: AZD4635 monotherapy as nanoparticle suspension

75mg QD

Experimental: Arm C: AZD4635 monotherapy as nanoparticle suspension

100mg QD

Experimental: Arm D: AZD4635 as nanoparticle suspension 75mg QD plus

Durvalumab

Experimental: Arm E: AZD4635 as nanoparticle suspension 100mg QD plus

Durvalumab

Experimental: Arm EA: AZD4635 as nanoparticle suspension plus Enzalutamide

Experimental: Arm AA: AZD4635 as nanoparticle suspension plus Abiraterone

Acetate

Experimental: Arm F: AZD4635 as nanoparticle suspension plus Durvaluamb in

patients post immunotherapy with non-small cell lung cancer

Experimental: Arm G: AZD4635 monotherapy as nanoparticle suspension in

patients post immunotherapy with non-small cell lung cancer

Experimental: Arm H: AZD4635 monotherapy as nanoparticle suspension in

patients post immunotherapy with other solid tumors

Experimental: Arm I: AZD4635 as nanoparticle suspension plus Durvalumab in

immunotherapy naïve patients with metastatic castration resistant prostate

cancer

Experimental: Arm J: AZD4635 as nanoparticle suspension plus Durvalumab in

immunotherapy naïve patients with metastatic castration resistant prostate

cancer

Advanced Solid

Malignancies

Non-Small Cell Lung

Cancer

Metastatic Castrate-Resistant

Prostate Carcinoma

Colorectal

Carcinoma

Recruiting NCT02740985

(Continued)
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TABLE 3 | Continued

Adenosine

pathway target

Drug(s) Target(s) Therapy modality

(adenosine pathway)

Phase Details Disease Status ClinicalTrials.gov

Identifier

Experimental: Arm K: AZD4635 monotherapy as nanoparticle suspension in

immunotherapy naïve patients with colorectal carcinoma

Experimental: Arm KD: AZD4635 as nanoparticle suspension plus Durvalumab

in immunotherapy-naïve patients with colorectal carcinoma

Experimental: Arm L: AZD4635 monotherapy as nanoparticle suspension in

immunotherapy naïve patients with other solid tumours

Experimental: Arm CA: AZD4635 capsule formulation monotherapy 75mg QD

Experimental: Arm CB: AZD4635 capsule formulation 50mg QD plus

Durvalumab and Oleclumab

Experimental: Arm CC: AZD4635 capsule formulation 50mg QD plus Docetaxel

A2AR NIR178

PDR001

A2AR

PD-1

NIR178:

A2AR Antagonist

Phase 2 Experimental (1): NIR178 + PDR001

Experimental (2): NIR178 BID Intermittent + PDR001

Experimental (3): Part 3, initiation of part 3 will depend on results from parts 1

and 2

Experimental (4): Japanese safety run-in part, two different dosing schedules of

NIR178 will be explored

Non-small Cell Lung Cancer

Renal Cell Cancer

Pancreatic Cancer

Urothelial Cancer

Head and Neck Cancer

Diffused Large B Cell Lymphoma

Microsatellite Stable Colon

Cancer

Triple Negative Breast Cancer

Melanoma

Recruiting NCT03207867

PBF-509

PDR001

A2AR

PD-1

PBF-509:

A2AR Antagonist

Phase 1

Phase 2

Drug: PBF-509_80mg

Drug: PBF-509_160mg

Drug: PBF-509_320mg

Drug: PBF-509_640mg

Drug: Combo PBF-509 (160mg) + PDR001

Drug: Combo PBF-509 (320mg) + PDR001

Drug: Combo PBF-509 (640mg) + PDR001

Drug: RP2D (PBF-509+PDR001)_immuno naïve

Drug: Experimental: RP2D (PBF-509+PDR001)_immuno treated

Non-small Cell Lung Cancer Recruiting NCT02403193

NIR178

Spartalizumab

LAG525

Capmatinib

MCS110

Canakinumab

A2AR

PD-1

LAG-3

c-Met

M-CSF

IL-1β

NIR178:

A2AR Antagonist

Phase 1 Experimental: Spartalizumab + LAG525 + NIR178

Experimental: Spartalizumab + LAG525 + Capmatinib

Experimental: spartalizumab + LAG525 + MCS110

Experimental: spartalizumab + LAG525 + Canakinumab

Triple Negative

Breast Cancer

Recruiting NCT03742349

Ciforadenant

(CPI-444)

Atezolizumab

A2AR

PD-L1

Ciforadenant:

A2AR Antagonist

Phase 1 Experimental: Ciforadenant, 100mg orally twice daily for the first 14 days of

each 28-day cycle

Experimental: Ciforadenant, 100mg orally twice daily for 28 days of each

28-day cycle

Experimental: Ciforadenant, 200mg orally once daily for the first 14 days of

each 28-day cycle

Experimental: Ciforadenant + Atezolizumab

Experimental: Ciforadenant, start with 150mg orally twice daily for 28-day

cycles; then, increase increments by 100 mg/day for 6 dose levels

Non-Small Cell Lung Cancer

Malignant Melanoma Renal Cell

Cancer

Triple Negative Breast Cancer

Colorectal Cancer

Bladder Cancer

Metastatic Castration Resistant

Prostate Cancer

Recruiting NCT02655822

Ciforadenant

(CPI-444)

Atezolizumab

Cobimetinib

RO6958688

Docetaxel

Pemetrexed

Carboplatin

Gemcitabine

Linagliptin

Tocilizumab

Ipatasertib

Idasanutlin

A2AR

PD-L1

MEK

CEA

Chemotherapy

IL-6R

AKT

MDM2

Ciforadenant:

A2AR Antagonist

Phase 1

Phase 2

Active Comparator: Stage 1: Cohort 1: Atezolizumab

Experimental: Stage 1: Cohort 1: Atezolizumab + Cobimetinib

Experimental: Stage 1: Cohort 1: Atezolizumab + RO6958688

Active Comparator: Stage 1: Cohort 2: Docetaxel

Experimental: Stage 1: Cohort 2: Atezolizumab + Cobimetinib

Experimental: Stage 1: Cohort 2: Atezolizumab + Ciforadenant

Experimental: Stage 1: Cohort 2: Atezolizumab + RO6958688

Experimental: Stage 1: Cohort 2: Atezolizumab + Ipatasertib

Experimental: Stage 1: Cohort 2: Idasanutlin + Docetaxel

Experimental: Stage 2: Cohort 1: Atezolizumab + Pemetrexed + Carboplatin

Carcinoma, Non-Small-Cell Lung Recruiting NCT03337698

(Continued)
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TABLE 3 | Continued

Adenosine

pathway target

Drug(s) Target(s) Therapy modality

(adenosine pathway)

Phase Details Disease Status ClinicalTrials.gov

Identifier

A2AR A2BR AB928

IPI-549

Doxorubicin

Paclitaxel

A2AR/A2BR

PI3Kγ

Chemotherapy

AB928:

Dual A2AR and

A2BR Antagonist

Phase 1 Experimental: Dose Escalation-Arm A, AB928 + Pegylated Liposomal

Doxorubicin

Experimental: Dose Escalation-Arm B, AB928 + Nanoparticle Albumin-bound

Paclitaxel

Experimental: Dose Escalation-Arm C, AB928 + Pegylated Liposomal

Doxorubicin + Nanoparticle Albumin-bound Paclitaxel

Experimental: Dose Expansion-TNBC-Arm 1, dose from Arm A for AB928 +

Pegylated Liposomal Doxorubicin

Experimental: Dose Expansion-Ovarian-Arm 2, dose from Arm A for AB928 +

Pegylated Liposomal Doxorubicin

Experimental: Dose Expansion-TNBC-Arm 3, dose from Arm B for AB928 +

Nanoparticle Albumin-bound Paclitaxel

Experimental: Dose Expansion-TNBC-Arm 4, dose from Arm C for AB928 +

IPI-549 + Pegylated Liposomal Doxorubicin

Triple Negative

Breast Cancer

(TNBC)

Ovarian Cancer

Recruiting NCT03719326

AB928

mFOLFOX

A2AR/A2BR

Chemotherapy

AB928:

Dual A2AR and

A2BR Antagonist

Phase 1 Experimental: Dose Escalation, AB928 + mFOLFOX Experimental: Dose

Expansion-GE, dose from escalation for AB928 + mFOLFOX Experimental:

Dose Expansion-CRC, dose from escalation for AB928 + mFOLFOX

GastroEsophageal

Cancer (GE)

Colorectal Cancer

(CRC)

Recruiting NCT03720678

AB928

Zimberelimab

(AB122)

A2AR/A2BR

PD-1

AB928:

Dual A2AR and

A2BR Antagonist

Phase 1 Experimental: Dose Escalation, AB928 + fixed dose of Zimberelimab (AB122)

Experimental: Dose Expansion-Renal Cell Carcinoma, recommended dose for

expansion AB928 + Zimberelimab (AB122)

Experimental: Dose Expansion, recommended dose for expansion AB928 +

Zimberelimab (AB122)

Non-small Cell Lung Cancer

Squamous Cell Carcinoma of the

Head and Neck

Breast Cancer

Colorectal Cancer

Melanoma Bladder Cancer

Ovarian Cancer

Endometrial Cancer

Merkel Cell Carcinoma

GastroEsophageal Cancer

Renal Cell Carcinoma

Castration-resistant Prostate

Cancer

Recruiting NCT03629756

AB928

AB154

Zimberelimab

(AB122)

A2AR/A2BR

TIGIT

PD-1

AB928:

Dual A2AR and

A2BR Antagonist

Phase 2 Experimental: Arm 1, Zimberelimab

Experimental: Arm 2, AB154 + Zimberelimab

Experimental: Arm 3, AB928 + AB154 + Zimberelimab

Non-Small Cell Lung Cancer

Non-squamous Non-Small Cell

Lung Cancer

Squamous Non-Small Cell Lung

Cancer

Lung Cancer

Recruiting NCT04262856

AB928

Zimberelimab

(AB122)

Carboplatin

Pemetrexed

Pembrolizumab

A2AR/A2BR

PD-1

Chemotherapy

AB928:

Dual A2AR and

A2BR Antagonist

Phase 1 Experimental: Dose Escalation Arm A, AB928 + Carboplatin + Pemetrexed

Experimental: Dose Escalation Arm B, AB928 + Carboplatin + Pemetrexed +

Pembrolizumab

Experimental: Dose Expansion Arm 1, recommended dose for expansion

AB928 + Carboplatin + Pemetrexed in patients harboring sensitizing EGFR

mutation

Experimental: Dose Expansion Arm 2, recommended dose for expansion

AB928 + Carboplatin + Pemetrexed + AB122 in patients harboring sensitizing

EGFR mutation

Non-Small Cell Lung Cancer

Metastatic Non-Small Cell Lung

Cancer

Non-squamous Non-small Cell

Neoplasm of Lung Sensitizing

EGFR Gene Mutation

Recruiting NCT03846310

A2BR PBF-1129 A2BR PBF-1129: A2BR Antagonist Phase 1 Experimental: PBF-1129_40mg

Experimental: PBF-1129_80mg

Experimental: PBF-1129_160mg

Experimental: PBF-1129_320mg

Non-Small Cell Lung Cancer Recruiting NCT03274479
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these trials were heavily pretreated (≥3 prior treatments) (124).
It will be interesting in the future to see if CD73 and/or A2AR
therapy efficacy is increased further when used in earlier lines
of therapy (124). Moreover, the authors discovered responding
patients carry an AdenoSighi signature (124). Assessing whether
this signature can also be detected in pretreatment biopsies of
other cancers and possibly primary tumors may be beneficial
(124). Biomarkers or gene signatures will likely be key in
identifying patients benefiting the most from CD73/adenosine
receptor therapy. Clinical trials are underway for AB928, a dual
A2AR/A2BR antagonist, and include a focus on GI cancers
[e.g., esophageal cancer and CRC; NCT03720678 (Table 3)]. A
favorable safety profile of AB928 combined with chemotherapy
has been reported in patients (252). Future studies in GI cancers
that focus on determining if adenosine-mediated resistance to
immunotherapy therapy exists at diagnosis or evolves with
therapy will also be of significant benefit. Encouraging early
results for BMS-986179 combined with nivolumab report
clinical benefit (partial response) in one or more patients
with pancreatic and prostate cancer (NCT02754141) (251).
Both are poorly immunogenic tumors. Preclinical studies
show CD73/adenosine therapy (e.g., A2AR deletion) liberates
CD8+ T cells for antitumor activity even against weakly
immunogenic sarcomas (70). Therapy benefit in these studies
is independent of the anatomical location of the tumor (70).
Thus, therapeutic benefit across many tumors (immunogenic
and non-immunogenic) is expected. Understanding factors
preventing immune cells from recognizing and eliminating
cancer cells will continue to be important in the advancement
of immunotherapy strategies. Poor tumor immunogenicity
can be a result of many features, including HLA class I
molecule downregulation or loss (253); genetic, epigenetic, and
chromosome alterations regulating presentation and processing
of surface epitopes (254–256); expression and secretion of
immunosuppressive factors (e.g., PD-1, TGF-β, adenosine) (257);
and the inability of cancer cells to produce new surface
epitopes that are different from what immune receptors have
regularly experienced (258).Whether CD73 expression associates
with dMMR/MSI-H in GI tumors and its blockade would
further increase immunotherapy efficacy in these tumors is
unknown. In NSCLC studies, tumor mutational burden and
neoantigen burden does not associate with CD73 high or
low expression (74).

Taking advantage of strong associations of CD73 with
molecular and genetic alterations (e.g., KRAS mutation and
EGFR alterations) may benefit GI cancers. Combination studies
of CD73 inhibitors with anti-EGFR therapy and/or tyrosine
kinase inhibitors are in clinical trials for managing resistance
(Table 3). In CRC, high CD73 predicts patients benefiting from
cetuximab (anti-EGFR therapy) (234). Benefits are the same for
both wild-type and mutant KRAS tumors (234). It would be
interesting to see the performance of combination cetuximab
with CD73 inhibitors in preclinical CRC studies considering
that inflammation is a mechanism of resistance to cetuximab
(259). In melanoma, combination BRAF and MEK inhibitors
with an A2AR antagonist induces significant tumor control in

preclinical studies (41). MEK is a promising target for KRAS,
NRAS, and BRAF mutant tumors and is being targeted in CRC
(260). Recently, MEK inhibitor, cobimetinib, combined with
anti-PD-L1 therapy (atezolizumab) failed to improve survival in
microsatellite-stable metastatic CRC patients in a phase 3 clinical
trial (261). Could the inclusion of A2AR antagonists be key
to the success of these studies? AMG510, a selective inhibitor
for KRAS (G12C) recently showed promising antitumor effects,
including increasing ICI therapy sensitivity in preclinical models
(262). Its combination with CD73/adenosine receptor blockade
may be a promising future approach. AMG510 is in clinical
trials (NCT03600883). Mentioned previously, hyperoxia induces
antitumor immunity in preclinical studies, which involves the
downregulation of many adenosine pathway genes (102, 108).
With drug toxicity being a concern with studies pushing past
two targets, approaches like this that can simultaneously dampen
multiple immune checkpoints may be better tolerated and
provide greater benefit (263). Although a drawback of hyperoxia
therapy is that it may/does cause tissue damage (263, 264), it
is interesting to consider whether this response also benefits
in helping to recover antitumor immunity. Hyperoxia is in
clinical trials for many conditions/diseases (ClinicalTrials.gov;
hyperoxia, 87 studies).

CONCLUSIONS

Immunotherapy in GI cancers currently benefits only a few
patients. Blocking adenosine signaling by inhibiting CD73
and/or A2AR/A2BR antagonism has the potential to improve
antitumor immunity in these tumors. However, identifying
which patients may benefit stands in the way. To aid in
these efforts, a better understanding of CD73 in human GI
cancers is greatly needed. This includes initiating studies that
assess CD73 in addition to other ecto-enzymes involved in
extracellular adenosine synthesis and metabolism as well as
their association with key molecular and genetic features.
A focus of CD73 expression in primary, pretreatment, and
relapsed samples will also be of great value in addition to
identifying predictive biomarkers or gene signatures relating to
efficacy of CD73/adenosine receptor blockade. Mechanistically,
studies assessing CD73/extracellular adenosine receptor activity
in humanized and autochthonous tumor mouse models and
patient-derived organoids will provide needed insight into the
role of CD73/extracellular adenosine in these tumors. Moreover,
studies in HCC have revealed CD73 overexpression in human
tumors can be misleading. Future studies also incorporating this
insight have the best chance of helping to better define CD73 in
GI cancers.
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