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Background: The early-stage lung adenocarcinoma (LUAD) rate has increased with
heightened public awareness and lung cancer screening implementation. Lipid
metabolism abnormalities are associated with lung cancer initiation and progression.
However, the comprehensive features and clinical significance of the immunometabolism
landscape and lipid metabolism-related genes (LMRGs) in cancer recurrence for early-
stage LUAD remain obscure.

Methods: LMRGs were extracted from Gene Set Enrichment Analysis (GSEA) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases. Samples from The Cancer
Genome Atlas (TCGA) were used as training cohort, and samples from four Gene
Expression Omnibus (GEO) datasets were used as validation cohorts. The LUAD
recurrence-associated LMRG molecular pattern and signature was constructed
through unsupervised consensus clustering, time-dependent receiver operating
characteristic (ROC), and least absolute shrinkage and selection operator (LASSO)
analyses. Kaplan-Meier, ROC, and multivariate Cox regression analyses and prognostic
meta-analysis were used to test the suitability and stability of the signature. We used Gene
Ontology (GO), KEGG pathway, immune cell infiltration, chemotherapy response
analyses, gene set variation analysis (GSVA), and GSEA to explore molecular
mechanisms and immune landscapes related to the signature and the potential of the
signature to predict immunotherapy or chemotherapy response.

Results: First, two LMRG molecular patterns were established, which showed diverse
prognoses and immune infiltration statuses. Then, a 12-gene signature was identified, and
a risk model was built. The signature remained an independent prognostic parameter in
multivariate Cox regression and prognostic meta-analysis. In addition, this signature
stratified patients into high- and low-risk groups with significantly different recurrence rates
org February 2022 | Volume 13 | Article 7834951
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and was well validated in different clinical subgroups and several independent validation
cohorts. The results of GO and KEGG analyses and GSEA showed that there were
differences in multiple lipid metabolism, immune response, and drug metabolism
pathways between the high- and low-risk groups. Further analyses revealed that the
signature-based risk model was related to distinct immune cell proportions, immune
checkpoint parameters, and immunotherapy and chemotherapy response, consistent
with the GO, KEGG, and GSEA results.

Conclusions: This is the first lipid metabolism-based signature for predicting recurrence,
and it could provide vital guidance to achieve optimized antitumor for immunotherapy or
chemotherapy for early-stage LUAD.
Keywords: lipid metabolism, early-stage lung adenocarcinoma (LUAD), recurrence, immune checkpoints
(ICP), signature
INTRODUCTION

As the leading cause of cancer-related incidence and mortality,
lung cancer accounts for approximately 20% of global cancer-
specific deaths (1). Lung adenocarcinoma (LUAD) is the most
common pathologic type, accounting for almost 40% of all lung
cancer subtypes, and is characterized by rapid progression,
severe prognosis, and early recurrence (2). In recent decades,
the development of molecular targeted therapy and immune
checkpoint inhibitors (ICIs) has to a certain extent improved
patient survival in LUAD. However, the overall survival (OS) of
LUAD patients remains unfavorable, with a 5-year OS rate of
19% (3). Moreover, even for early-stage LUAD disease, the
recurrence rate remains 30–45% within 5 years after surgery
(4, 5). The rate of early-stage LUAD has increased rapidly with
heightened public awareness and implementation of lung cancer
screening (6). Therefore, there is an urgent need to identify those
patients with high-risk early-stage LUAD who are likely to
experience recurrence to optimize personalized therapeutic
strategies and improve patient survival.

As a unique metabolic niche, the tumor microenvironment
(TME) contains cellular components (tumor cells, immune cells,
and stromal cells) and the tumor interstitial space. Because of
high proliferation and inadequate angiogenesis, tumor cells
reprogram their energy metabolism in the TME (7, 8). In
recent years, lipid metabolism has been reported to be a
potential hallmark in multiple malignancies (9–11). Tumor
cells are characterized by excess lipid and cholesterol uptake,
and upregulated uptake promotes the proliferation and division
of tumor cells (12). Moreover, lipid metabolism reprogramming
may also act as a potential pathway for drug resistance in
antitumor therapy (13). An increasing number of studies have
focused on the role of lipid-related phenotypic indices in various
cancers. Ding et al. (14) reported that a specific fatty acid
metabolism-related gene signature could predict patient
survival and response to chemotherapy and immunotherapy in
colorectal cancer. Wu et al. (15) also described a lipid
metabolism-related phenotype and constructed a lipid
metabolic gene signature to predict patient survival in diffuse
org 2
gliomas. However, the features of lipid metabolism alteration and
whether it has the potential to be a biomarker for cancer
recurrence and treatment response in early-stage LUAD
patients still warrant further exploration.

In this study, a series of bioinformatic methods were applied
to analyze the features of lipid metabolism alterations in early-
stage LUAD based on transcriptional profiling data from
multiple databases. Then, a lipid metabolism-related gene
signature for predicting cancer recurrence was established and
validated. Moreover, we also investigated the differences in lipid
metabolism and immune landscapes between the low- and high-
risk groups. Finally, the potential of our signature as a biomarker
to predict immunotherapy and chemotherapy response in early-
stage LUAD patients was also investigated. Thus, this study will
be helpful for promoting individualized treatment and reducing
the postoperative recurrence rates of early-stage LUAD patients.
MATERIALS AND METHODS

Lipid Metabolism-Related Genes
Lipid metabolism-related genes (LMRGs) were selected through
the Gene Set Enrichment Analysis (GSEA) database and Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. A total
of 1133 LMRGs were extracted from 19 lipid metabolism-related
gene sets of the GSEA database, and 426 LMRGs were extracted
from 16 lipid metabolism-related gene sets of the KEGG
database. The detailed gene sets from the GSEA and KEGG
databases are shown in Table S1. After removing the duplicate
genes , a total of 1189 LMRGs were identified for
further investigation.

Patient and mRNA Data
A total of 805 cases of early-stage (stage I-II) LUAD with
corresponding recurrence-free survival (RFS) data from five
independent cohorts were included for analysis. The clinical
characteristics of the five cohorts are shown in Table 1. The 334
LUAD cases from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/) were used as the training cohort,
February 2022 | Volume 13 | Article 783495
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whereas the 471 LUAD cases from four Gene Expression
Omnibus (GEO) datasets (http://www.ncbi.nlm.nih.gov/geo)
were applied as the validation cohort (including 226 cases from
GSE31210, 81 cases from GSE30219, 121 cases from GSE50081,
and 43 cases from GSE37745). TCGA RNA-seq data of the
enrolled LUAD cases (Illumina HiSeq 2000) with detailed
clinical annotations and survival data were acquired. The
mRNA expression data from the GEO microarray were first
log2 transformed and quantile normalized, and the mean
expression was selected if the genes were detected with more
than one probe. Patients with low levels of gene expression or less
than three months of survival and follow-up time were excluded.

LMRG Molecular Patterns
Univariate Cox regression was applied to identify recurrence-
associated LMRGs, and genes with a P value less than 0.05 were
selected. Unsupervised consensus clustering was applied to
Frontiers in Immunology | www.frontiersin.org 3
investigate the molecular classification of LUAD according to the
recurrence-associated LMRGs by using the “ConsensusClusterPlus”
R package (16), with 1000 iterations to improve the stability. Then,
comparisons were performed within different clusters for the
survival and tumor immune microenvironment (TIM) analyses.

Signature Construction
We also attempted to construct an LMRG-based signature for
recurrence prediction in early-stage LUAD patients. Time-
dependent receiver operating characteristic (ROC) analysis was
used to evaluate the correlation between recurrence-associated
LMRGs and RFS, and genes with an area under the curve (AUC)
less than 0.60 were removed. We then performed least absolute
shrinkage and selection operator (LASSO) analysis to identify
significant prognostic LMRGs and create a recurrence risk score
model based on the LMRGs. Finally, a risk score model was
constructed by taking into account the expression value of
TABLE 1 | Clinical characteristics of the patients from multiple institutions.

Characteristics Datasets

TCGA (n = 334) GSE31210 (n = 226) GSE30219 (n = 81) GSE50081 (n = 121) GSE37745 (n = 43)

Age
<=65 156 176 59 40 20
>65 169 50 22 81 23
unknown 9

Sex
male 153 105 64 62 18
female 181 121 17 59 25

Smoking
no 50 115 22
yes 275 111 88
unknown 9 11

EGFR
wild 290 99
mutation 38 127
unknown 6

KRAS
wild 248 206
mutation 80 20
unknown 6

ALK
wild 306 215
mutation 22 11
unknown 6

T stage
T1 128 68 41
T2 181 12 78
T3 25 1 2

N stage
N0 264 79 90
N1 65 2 31
unknown 5

Stage
stage I 232 168 88 33
stage II 102 58 33 10

OS status
dead 101 35 42 49 27
alive 233 191 39 72 16

Recurrence status
recurrence 127 64 26 37 21
no-recurrence 207 162 55 84 22
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optimized genes and the estimated Cox regression correlation
coefficients: Risk score = Si

1coeffi*expGenei. All enrolled patients
were then classified into high- and low-risk groups according to
the median value of the given risk scores calculated from the
TCGA cohort. Kaplan-Meier analysis, ROC analysis,
multivariate Cox regression analysis, and prognostic meta-
analysis were used to test the suitability and stability of
the model.

Pathway and Functional Enrichment
Analyses
For biological process and pathway enrichment analyses, KEGG
and Gene Ontology (GO) analyses were performed by R
clusterProfiler package. Gene set enrichment analysis (GSEA)
was performed using GSEA software (version 4.1.0).

Tumor Immune Microenvironment Analysis
The CIBERSORT (17) algorithm was employed to quantify the
proportions and distributions of tumor-infiltrating immune cells
(TIICs) based on the RNA-seq data of TCGA specimens. The
LM22 signature algorithm was utilized to calculate the
abundances of 22 types of TIICs. We also used the ESTIMATE
(18) algorithm to evaluate the immune and stromal scores
(reflecting the abundances of immune cells and stromal cells,
respectively) for each lung cancer sample.

GSVA
We also performed gene set variation analysis (GSVA) (19) to
evaluate the correlation between seven clusters of inflammatory
and immune response metagenes and the lipid metabolism-
based signature.

Immune Checkpoint Profile Analysis
The somatic mutation data were also downloaded from TCGA
database. Tumor mutation burden (TMB), a potential biomarker
for immunotherapy response, was calculated based on somatic
nonsynonymous mutations. The expression levels of PD-L1 were
also extracted and assessed. Both TMB and PD-L1 level are
widely used biomarkers for the efficacy evaluation of ICIs (20,
21). Moreover, tumor immune dysfunction and exclusion
(TIDE), a computational algorithm that can evaluate the
signatures of T cell dysfunction (22), was also applied to
predict the clinical response to immunotherapy of LUAD
patients based on expression profiles. The TIDE score has been
reported to show superior efficiency in the prediction of anti-
PD1 or anti-CTLA4 therapy response compared with the
biomarkers TMB and PD-L1 level (22). In addition, as another
biomarker of immunotherapy response, tumor-specific
neoantigen data were also obtained from The Cancer
Immunome Atlas (TCIA) and analyzed (23, 24).

Chemotherapeutic Response Prediction
Furthermore, based on the Genomics of Drug Sensitivity in
Cancer (GDSC) database, we performed chemotherapeutic
response prediction for each LUAD sample. Four commonly
used drugs were selected, namely, cisplatin, docetaxel,
doxorubicin, and gemcitabine. The R package “pRRophetic”
Frontiers in Immunology | www.frontiersin.org 4
(25) was utilized for calculation, and the half-maximal
inhibitory concentration (IC50) was estimated for each of the
above drugs.

Statistical Analysis
All data analyses were performed by using R 4.0.3 software, SPSS
26.0, and GraphPad Prism 8. Correlation analysis was performed
with Pearson’s correlation test. The Kruskal-Wallis test was used
to compare more than two groups, and the Wilcoxon test was
used to compare two groups. A two-tailed P-value <0.05 was
considered statistically significant.
RESULTS

Recurrence-Associated LMRG
Identification and Clustering
The overall workflow of the current study is displayed in Figure
S1. Based on 334 early-stage LUAD patients from the TCGA
database, we performed univariate Cox regression analysis and
found that 83 LMRGs were significantly associated with cancer
recurrence (Table S2, p<0.05). Figure 1A shows the heatmap of
the expression patterns of the 83 LMRGs. The GO and KEGG
biological process and pathway enrichment analyses showed that
these significant LMRGs were primarily involved in the fatty acids
biosynthetic process and other lipid metabolic pathways
(Figures 1B, C). Unsupervised consensus clustering based on
the expression patterns of the 83 recurrence-associated LMRGs
revealed the optimal number of clusters to be two (k value=2)
(Figure 1D). Hence, all 334 LUAD patients were divided into two
subsets, cluster 1 (137, 41.0%) and cluster 2 (197, 59.0%). The
survival analyses showed that patients in the cluster 2 group
showed a significantly inferior RFS and OS rate compared with
those in the cluster 1 group (Figure 1E, P<0.001). There were
several recurrence-associated LMRGs which were not detected in
the validation groups. However, although the number of genes
missing from the validation group was small, we still performed
this analysis on the validation groups by their optimal k values
separately. The results showed that the recurrence-associated
LMRGs could divide patients into different gene cluster groups.
There were also significant differences in both RFS and OS
between different gene cluster groups (FigS2). These results
revealed that the recurrence-associated LMRGs were indeed
closely related to the recurrence and long-term survival in early-
stage LUAD. Through CIBERSORT and ESTIMATE analyses, we
quantified the abundance of 22 types of TIICs and the immune
and stromal scores in every LUAD sample of the TCGA cohort.
Our results showed that resting memory CD4 T cells, regulatory T
cells (Tregs), monocytes, resting dendritic cells, and resting mast
cells were more abundant in cluster 1 patients (Figure 1G,
P<0.05), whereas activated memory CD4 T cells, M0
macrophages, M1 macrophages, and neutrophils were more
abundant in cluster 2 patients (Figure 1G, P<0.05). Moreover,
the immune score was significantly higher, indicating a higher
abundance of infiltrating immune cells, in the patients of cluster 1
(Figure 1G, P<0.05). However, no significant difference in the
stromal score between the two subsets was observed.
February 2022 | Volume 13 | Article 783495
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LMRG-Based Signature Construction
In the subsequent ROC analysis, we calculated the corresponding
AUC value of each of the 83 LMRGs to filter them, and 69 genes
with an AUC value less than 0.6 were screened out. Finally, we
applied LASSO regression analysis to identify the most powerful
LMRGs, and a final set of 12 genes (LDHA, NSDHL, TP53INP2,
FLT1, IRS1, ELOVL7, AGPS, FHL2, MED6, PLIN3, VDAC1, and
SULT2B1) was selected for model construction (Figures 2A–C).
The recurrence risk score of each sample was calculated with the
following formula: Risk score = (0.269752653768969 * LDHA) +
(0.114984371234971 * NSDHL) + (0.0310569577143764 *
TP53INP2) + (0.17593670859331 * FLT1) + (0.103773854013971
* IRS1) + (0.133274629300893 * ELOVL7) + (0.0763835280754936
* AGPS) + (0.00688026723004499 * FHL2) + (0.549703365193899
* MED6) + (0.109916205934083 * PLIN3) + (0.0437103013689035
* VDAC1) + (0.160609136698149 * SULT2B1).
Frontiers in Immunology | www.frontiersin.org 5
Prognostic Significance of the LMRG-
Based Signature

All the patients in the TCGA cohort were classified into low- and
high-risk groups according to the median cutoff value of the
given risk scores (Figure 2D). The detailed expression levels of
the 12 genes between the two groups are also shown in
Figure 2D. The performance of this signature was evaluated
through time-dependent ROC curves, and the AUCs were 0.753,
0.650, 0.580, and 0.951 for predicting 1-, 3-, 5-, and 10-year RFS,
respectively (Figure 2E). In addition, patients in the high-risk
group showed an inferior RFS rate (Figure 2F, P<0.001) and a
higher recurrence rate (Figure 2G, P=0.004) than those in the
low-risk group. Patients who experienced cancer recurrence also
showed a significantly elevated risk score (Figure 2H, P<0.001).
In subgroups stratified by TNM stage, similar results were found:
A B

D E F

G

C

FIGURE 1 | Identification of LMRG molecular patterns with distinct prognoses and immune infiltration statuses. (A), Heatmap of the expression patterns of 83
recurrence-associated LMRGs. (B, C), GO and KEGG analyses of the identified genes. (D), Consensus clustering results, in which the optimal cluster number was 2
(k value=2). (E, F), Kaplan–Meier curve survival analysis of patients stratified by cluster subtype. (G), Immune cell infiltration landscapes and the immune and stromal
scores of the two cluster subtypes. *, ** and *** represent P < 0.05, P < 0.01, and P < 0.001, respectively. ns indicates not significant.
February 2022 | Volume 13 | Article 783495
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the high-risk patients with either stage I (Figure 2I, P=0.006) or
stage II disease (Figure 2J, P=0.014) showed a poorer RFS rate
than low-risk patients. In addition to RFS, patients in the high-
risk group similarly showed an inferior OS rate compared with
those in the low-risk group (Figure 2K, P<0.001).

The performance of this predictive model was further
evaluated and well validated in subgroups stratified by age, sex,
smoking status, and driven gene mutation status. As illustrated in
Figure S3, nearly all subgroups exhibited a significantly impaired
RFS rate in the high-risk group compared with the low-risk group
(P<0.05), which verified the robust discriminatory ability of the
risk model. Although not significant, patients in the high-risk
group in the nonsmoker (P=0.081) and ALK-wild-type subgroups
(P=0.053) similarly showed a lower RFS rate than those in the
low-risk group, which could be due to the limited sample sizes of
these subgroups.

Signature Validation in GEO Datasets
The other four independent cohorts from the GEO database were
utilized as the validation cohorts to evaluate the performance of
our LMRG-based signature. The risk scores for the validation
Frontiers in Immunology | www.frontiersin.org 6
cohorts were generated, and patients were divided into high- and
low-risk groups using the median cutoff value of the generated
risk scores. The survival analysis (Figure 3) revealed that patients
in the high-risk group showed an inferior RFS compared with
those in the low-risk group in GSE31210 (P=0.0004), GSE30219
(P=0.0046), and GSE50081 (P=0.0072). However, in the
GSE37745 cohort, patients in the low- and high-risk groups
showed a similar RFS rate, which may be due to the small sample
size of the two cohorts. Moreover, we conducted a prognostic
meta-analysis to evaluate the comprehensive predictive value of
our model in all five cohorts. The results revealed that the
LMRG-based signature was a significant predictor of cancer
recurrence in early-stage LUAD (Figure 3, HR = 2.09, 95%CI:
1.65–2.66, P < 0.0001). The prognostic meta-analysis was also
conducted in subgroups stratified by TNM stage. The GSE30219
cohort was not included in the subanalysis because stage
information was unavailable. As shown in Figure S4, the
LMRG-based signature was similarly revealed as a significant
predictor of cancer recurrence in stage I disease (HR = 2.08, 95%
CI: 1.50–2.89, P < 0.0001) and stage II disease (HR = 1.56, 95%
CI: 1.03–2.35, P = 0.0345).
A B

D

E

F

G

I

H

J

K

C

FIGURE 2 | Construction of a recurrence-associated LMRG-based signature for early-stage LUAD. (A, B), LASSO coefficient profile analysis and cross-validation to
identify the most useful prognostic genes. (C), Twelve lipid metabolism genes identified for signature construction. (D), Distributions of risk scores, recurrence
statuses and gene expression. (E), ROC results of the LMRG-based signature for the prediction of recurrence risk at 1, 3, 5, and 10 years. (F) Kaplan-Meier curves
of RFS in the TCGA cohort based on risk score. (G, H), Correlation between recurrence status and risk score. (I, J), Kaplan-Meier curves of RFS in stage I and
stage II early-stage LUAD based on risk score. (K), Kaplan-Meier curves of OS in the TCGA cohort based on risk score.
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The ability of our LMRG-based signature to predict OS was
also investigated. The survival analysis (Figure S5) revealed that
patients in the high-risk group showed an inferior OS than those
in the low-risk group in GSE31210 (P=0.0003) and GSE30219
(P=0.0015), whereas in the GSE37745 (P=0.46) and GSE50081
(P=0.29) cohorts, the survival difference between the two groups
failed to reach a significant level. The final prognostic meta-
analysis similarly revealed our LMRG-based signature to be a
significant predictor of OS in early-stage LUAD (Figure S5E,
HR = 2.00, 95%CI: 1.56–2.57, P < 0.0001). Thus, the above results
altogether verified the robustness and universality of
our signature.

The LMRG-Based Signature Was an
Independent Predictor of Patient Survival
Since the LMRG-based signature had been well validated in the
other independent cohorts, we carried out univariate and
multivariate Cox regression analyses to evaluate whether this
signature could be an independent predictor of the prognosis of
early-stage LUAD patients. Our results showed that the risk
score remained an independent indicator of unfavorable RFS
(Table 2, HR=1.923, 95%CI: 1.445–2.986, P<0.001) and OS
Frontiers in Immunology | www.frontiersin.org 7
(Table 2, HR=1.935, 95%CI: 1.287–2.909, P=0.002) after
adjusting for other clinical parameters (including age, sex,
smoking history, driver gene mutations, and TNM stage).

Biological Pathways and Functional
Enrichment Analysis
Given the satisfying prognostic performance of our LMRG-
based signature in early-stage LUAD patients, we investigated
the underlying mechanism. First, differential expression analysis
was conducted between the two risk groups (|log2 fold change|
>=0.5, adjusted P value<0.05). The results showed that 547
genes were overexpressed and 445 genes were expressed at lower
levels in the high-risk group (Figure 4A). Then, GO and KEGG
analyses of these DEGs were conducted. The biological process
analysis showed that the DEGs were enriched in multiple
extracellular matrix organization, cell division, metabolism
and immune response pathways (Figure 4B). Moreover,
GSEA was performed to further explore the most significantly
enriched functional terms between the high-risk and low-risk
patients. We found that the cell cycle was enriched in the high-
risk group. However, drug metabolism and fatty acid
metabolism were enriched in the low-risk patients
A B

D

E

C

FIGURE 3 | Validation of the LMRG-based signature in different GEO cohorts. (A–D), Kaplan-Meier curves of RFS in different GEO cohorts based on risk score.
(E), Results of the prognostic meta-analysis based on the TCGA and GEO datasets.
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(Figures 4C, D). The above results indicated that immune
activity and drug metabolism are potential mechanisms
underlying the ability of our LMRG-based signature to predict
the prognosis of early-stage LUAD patients.

Immune and Inflammatory Landscapes
Related to the LMRG-Based Signature
As indicated by the above results, the LMRG-based signature
was closely correlated with tumor immune activities. As such,
we next evaluated the differential levels of specific immune
characteristics, including the abundance of TIICs. Our results
showed that resting memory CD4 T cells, M2 macrophages,
resting dendritic cells, and resting mast cells were more
abundant in patients in the low-risk group (Figure 5A,
P<0.05), whereas activated memory CD4 T cells, M0
macrophages, M1 macrophages, and neutrophils were more
abundant in patients in the high-risk group (Figure 5A,
P<0.05). In addition, the high-risk patients also showed
relatively higher stromal and immune scores (Figure 5A),
indicating higher abundances of stromal cells and infiltrating
Frontiers in Immunology | www.frontiersin.org 8
immune cells, respectively. Moreover, correlation analysis was
also performed between the risk score and the differential TIICs.
The results showed that the risk score was positively correlated
with activated memory CD4 T cells, M0 macrophages, M1
macrophages, and neutrophils but negatively correlated with
resting memory CD4 T cells, resting dendritic cells, and resting
mast cells (Figure 5B).

In addition, a seven-metagene cluster (STAT1, interferon,
HCK, MHC-I, MHC-II, IgG, and LCK) has been reported in
several studies (26–28) to illustrate the inflammatory activities in
the tumor microenvironment. Hence, we analyzed the
correlation between the risk score and this seven-metagene
cluster. The GSVA package was utilized to evaluate the
molecular pathway variation associated with the seven-
metagene set. The detailed expression levels of the genes in the
seven-metagene cluster are shown in Figure 5C. To better
illustrate the correlation, a correlogram was employed. Our
results indicated that the risk score was positively correlated
with STAT1, interferon, and HCK but negatively correlated with
MCH-II (Figure 5D).
TABLE 2 | Univariable and multivariable Cox regression analysis of the LMRG-based signature and survival in TCGA dataset.

Variables Ref. Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

RFS
Age ≤65/>65 ≤65 1.298 (0.907 - 1.858) 0.153

Unknown 0.682 (0.270 - 1.724) 0.419
Sex male/female male 1.128 (0.792 - 1.605) 0.504
Smoking No/Yes No 1.075 (0.650 - 1.777) 0.778

Unknown 1.036 (0.384 - 2.798) 0.944
EGFR Wild/Mutation Wild 1.710 (1.046 - 2.795) 0.032

Unknown 0.839 (0.252 - 2.792) 0.774
KRAS Wild/Mutation Wild 0.889 (0.584 - 1.353) 0.582

Unknown 0.767 (0.229 - 2.575) 0.668
ALK Wild/Mutation Wild 1.345 (0.682 - 2.655) 0.392

Unknown 0.812 (0.245 - 2.694) 0.734
T stage T1/T2 T1 1.515 (1.026 - 2.237) 0.037

T3 2.710 (1.408 - 5.217) 0.003
N stage N0/N1 N0 1.643 (1.097 -2.461) 0.016

Unknown – 0.964
Stage I/II I 2.116 (1.471 - 3.044) <0.001 2.077 (1.445 - 2.986) <0.001
Risk score Low/High Low 1.955 (1.366 - 2.798) <0.001 1.923 (1.343 - 2.752) <0.001
OS
Age ≤65/>65 ≤65 1.401 (0.939 - 2.091) 0.099

Unknown 0.302 (0.073 - 1.260) 0.1
Sex male/female male 0.988 (0.667 - 1.463) 0.952
Smoking No/Yes No 1.036 (0.595 - 1.801) 0.902

Unknown 1.075 (0.388 - 2.979) 0.889
EGFR Wild/Mutation Wild 1.518 (0.875 - 2.632) 0.137

Unknown 0.523 (0.114 - 2.393) 0.403
KRAS Wild/Mutation Wild 0.862 (0.535 - 1.390) 0.543

Unknown 0.475 (0.102 - 2.204) 0.342
ALK Wild/Mutation Wild 1.037 (0.480 - 2.238) 0.927

Unknown 0.503 (0.111 - 2.290) 0.374
T stage T1/T2 T1 1.530 (0.982 - 2.386) 0.06

T3 2.099 (0.949 - 4.643) 0.067
N stage N0/N1 N0 2.383 (1.563 - 3.633) <0.001

Unknown 0.900 (0.124 - 6.507) 0.917
Stage I/II I 2.868 (1.917 - 4.290) <0.001 2.785 (1.862 - 4.165) <0.001
Risk score Low/High Low 2.011 (1.338 - 3.022) 0.001 1.935 (1.287 - 2.909) 0.002
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Immune Checkpoint Profile and
Immunotherapy Response Prediction
Since the LMRG-based signature was revealed to be associated
with immune activity, we next evaluated the immune checkpoint
profile and conducted a preliminary analysis of immunotherapy
response. The TMB has been well studied as a biomarker of
response to checkpoint inhibitors, and high TMB patients may
be more likely to benefit from ICIs in NSCLC (29). As illustrated
in Figure 6A, patients in the high-risk group showed a
significantly higher TMB than those in the low-risk group
(P<0.001). In addition, somatic mutation analysis was applied
to explore the distinct genomic variations between the two
groups. Patients in the high-risk group showed an elevated
mutation rate compared with those in the low-risk group
(Figure S6, 92.8% vs. 88.2%). Tumorigenesis-associated genes,
including TP53, TNN, and MUC16, showed a much higher
mutation rate in the high-risk group than in the low-risk group
(Figure S6). We also found that PD-L1, PD-1, and CTLA-4
showed a distinct expression level between the high-risk and low-
risk groups (Figures 6B–D, P<0.01), which was consistent with
the results of the TMB analysis. Besides, patients in the high-risk
group also showed a significantly higher LAG3 and TIM3 than
those in the low-risk group (Figures S7A, S7B, P<0.01).
Neoantigens play a vital role in the antitumor response (30),
and previous research has revealed that neoantigens could be a
Frontiers in Immunology | www.frontiersin.org 9
biomarker for predicting immunotherapy response in lung
cancer (31). Our results showed that the high-risk patients had
a significantly elevated number of neoantigens (Figure 6E,
P<0.001), both clonal (Figure 6F, P<0.001) and subclonal
(Figure 6G, P<0.05) neoantigens. The TIDE score, indicating
the potential for tumor immune evasion, has shown superior
immunotherapy response prediction compared with TMB,
PD-L1 level, and neoantigen burden (22). We revealed that
high-risk patients showed a significantly decreased TIDE score
(Figure 6H, P<0.01).

Moreover, we found that high-risk patients showed a
significantly decreased tumor-associated macrophage (TAM)
M2 score (Figure S7C, P<0.001) and a significantly increased
myeloid-derived suppressor cell (MDSC) score (Figure S7D,
P<0.001), cancer-associated fibroblast (CAF) score (Figure S7E,
P<0.05), and CD8 score (Figure S7F, P<0.001). Moreover,
correlation analysis was also carried out, and the risk score was
found to be positively correlated with T cell exclusion (Figure
S7G, P<0.01) but negatively correlated with T cell dysfunction
(Figure S7H, P=0.0015). Hence, we can conclude that high-risk
patients are likely to benefit from the administration of
checkpoint inhibitors. These interesting findings demonstrated
that the high- and low-risk patients had diverse immune statuses,
and our LMRG-based signature could identify those who were
suitable for treatment with checkpoint inhibitors.
A

B D

C

FIGURE 4 | Biological process and pathway analyses of the LMRG-based signature. (A), Heatmap of the differentially expressed genes between the two risk
groups. (B), GO and KEGG analyses of the identified genes. (C, D), Representative pathways enriched in the identified genes as determined by GSEA (normal
p value<0.05).
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Chemotherapy Response Prediction
Since the pathway analysis revealed that low-risk patients
showed enrichment of drug metabolism, we carried out
chemotherapy response prediction. The four conventionally
used drugs for NSCLC were used for the analysis. The results
showed that the estimated IC50 for each of the four agents
(cisplatin, docetaxel, doxorubicin, and gemcitabine) was
significantly higher in the low-risk group than in the high-risk
group (Figure 7, P<0.001), indicating that LUAD patients with
lower risk scores tended to be more resistant to chemotherapy
than those with higher risk scores.
DISCUSSION

Metabolic deregulation has been revealed to play an essential role
in various malignancies due to its impact on tumor growth,
proliferation, invasion, and treatment response (32). For
instance, various malignancies are characterized by upregulated
glycolytic metabolism (33). Lipids, including fatty acids,
cholesterol, and phospholipids, act as essential substances to
maintain cytoskeletal structure, provide energy, and participate
in cellular signal transduction. Lipid metabolism reprogramming
has been revealed to be correlated with membrane synthesis,
energy production, and signal transduction, hence impacting the
Frontiers in Immunology | www.frontiersin.org 10
TME, immunity, and drug resistance in multiple malignancies
(34, 35). Moreover, aberrant lipid metabolism has also been
studied and verified as an important factor involved in lung
cancer pathogenesis and progression (36).

Implementation of the current lung cancer screening
program has caused the rate of early-stage lung carcinoma
diagnosis to increase (6). However, there is still a proportion of
early-stage patients who will experience early cancer relapse after
the initial curative treatment. Hence, effective methods are
needed to identify patients at high risk of cancer recurrence to
improving the prognosis of early-stage patients. Among all the
prognostic biomarkers, multiple gene-based signatures based on
specific biological processes have shown superiority in survival
prediction in various malignancies (28, 37, 38). However, to our
knowledge, prognostic gene signatures based on lipid
metabolism have not been reported in early-stage LUAD.

In this study, for the first time, we investigated the
immunometabolism landscape of patients with early-stage
LUAD through genetic subtype analysis and with a gene
signature-based model. We also evaluated the relationship
between the identified LMRGs and the prognosis of early-stage
LUAD. Using multiple datasets from the TCGA and GEO
cohorts, a 12-gene signature was established as a significant
predictor of recurrence and survival. The performance of this
signature was also well validated in internal subsets as well as in
A

B D

C

FIGURE 5 | Immune and inflammatory landscapes related to the LMRG-based signature. (A), Immune cell infiltration levels and immune and stromal scores of the
two risk groups. (B), Correlation heatmap showing the interaction between estimated immune cell infiltration levels and risk score. (C), Relationships between risk
score and seven clusters of inflammatory activity-related metagenes in the TCGA cohort. (D), Corrgrams showing the correlations between risk score and seven
metagenes based on the Pearson r value. * and *** represent P < 0.05 and P < 0.001, respectively. ns indicates not significant.
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external independent cohorts. In addition, we also explored the
potential molecular mechanism underlying the prognostic value
of this signature for early-stage LUAD patients. The results
showed that this signature was associated with diverse lipid
metabolism and inflammatory and immune pathways, and
such pathways may be the mechanism underlying the
prognostic value of this signature. Moreover, our results also
indicated that this signature was related to different immune
checkpoint profiles and drug sensitivities, which verified that this
LMRG-based signature could identify patients who were suitable
for treatment with immunotherapy or chemotherapy.

In the present study, we first identified 83 recurrence-
associated LMRGs through the GSEA and KEGG databases.
Based on the mRNA expression profiles of the 83 LMRGs, a
two-category lipid metabolism molecular pattern was established
using unsupervised consensus clustering for early-stage LUAD
patients. We found significant differences in terms of survival
Frontiers in Immunology | www.frontiersin.org 11
and immune infiltration between the two molecular patterns.
This finding indicated that lipid metabolism abnormalities may
contribute to the aggressiveness and progression of LUAD, hence
impacting patient outcomes. The results of the validation groups
also showed that these recurrence-associated LMRGs could
divide the patients into different gene cluster groups. There
were significant differences in prognosis between the different
cluster groups. These results suggested that these LMRGs were
indeed closely related to recurrence and long-term survival in
early-stage LUAD patients. And all these LMRGs selected were
scientific and credible. Moreover, the underlying mechanism for
this observation may be due to differences in immune activity.

Furthermore, we developed a 12-LMRG recurrence signature
using 334 early-stage LUAD patients from the TCGA database.
This signature includes LDHA, NSDHL, TP53INP2, FLT1, IRS1,
ELOVL7, AGPS, FHL2, MED6, PLIN3, VDAC1, and SULT2B1,
most of which were revealed to be correlated with tumor
A B

D

E F

G H

C

FIGURE 6 | Immune checkpoint profile related to the LMRG-based signature. The estimated TMB (A), PD-L1 (B), PD-1 (C), CTLA-4 (D), neoantigen burden
(E–G) and TIDE score (H) in the two risk groups are shown.
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proliferation and progression (39–47). For instance, NSDHL, a
crucial enzyme for cholesterol biosynthesis, has been reported to
promote metastasis in triple-negative breast cancer (48).
Furthermore, FLT1 was also found to be a potential tumor
suppressor, and the hypermethylation of FLT1 may contribute
to polycyclic aromatic hydrocarbon-induced carcinogenicity
(42). However, the role of MED6 in malignancies has not yet
been reported. Based on our 12-LMRG signature, each early-
stage LUAD patient was assigned a risk score, which estimates
the probability of cancer recurrence; by so doing, the high-risk
patients were effectively identified.

The prognostic performance of this signature for early-stage
LUAD patients was well validated in internal subsets. Since there
has been increasing detection of stage I LUAD due to low-dose
computed tomography (LDCT) screening, we investigated the
signature in the subgroups stratified by TNM stage. The results
showed that the signature performed well in stage I and stage II
disease. In addition, other clinical parameters, namely, age, sex,
smoking status, and driven gene mutations, were verified to be
risk factors or predictive variables for patient survival in LUAD
(49–51). We also evaluated the applicability of the signature in
these subgroups. As expected, the signature similarly performed
well in the clinical subgroups. The robust discriminatory ability
of this signature in subsets of early-stage LUAD patients
highlighted its independent value. Moreover, this signature was
also well validated in four external independent GEO cohorts.
Although the survival difference failed to reach a significant level
in the GSE37745 cohort, further prognostic meta-analysis
verified this signature to be an independent predictor of
prognosis in multiple cohorts. It should be emphasized that
the cutoff for determining if patients fell into the high- or low-
risk group was the median value of the calculated risk scores in
both the training and validation cohorts. Previous signature-
based studies usually divide patients using the optimal cutoff
Frontiers in Immunology | www.frontiersin.org 12
value (28, 52); hence, the universality of the developed model will
be largely affected.

Since our signature was revealed to be effective for survival
prediction across multiple cohorts and subgroups, we aimed to
explore the underlying mechanisms. A total of 992 genes were
revealed to be correlated with the risk score, and further GO and
KEGG analyses suggested that the genes were enriched in
multiple biological processes, especially those related to
extracellular structure, cell division, lipid metabolism and
immune response pathways. Further GSEA showed that
different risk groups had significant differences in drug
metabolism and fatty acid metabolism. The above results
preliminarily explained that the differences in prognosis
between the high- and low-risk groups may be attributed to
immune activity and drug metabolism.

Based on the above results, we then carried out TIIC analysis
and metagene analysis to provide more insight into the immune
and inflammatory landscapes of early-stage LUAD. Our results
showed that the risk score was positively correlated with STAT1,
interferon, and HCK but negatively correlated with MCH-II.
Moreover, TIIC analysis showed that patients in the high-risk
group were characterized by high proportions of activated
memory CD4 T cells, M0 macrophages, M1 macrophages, and
neutrophils and low proportions of resting memory CD4 T cells,
M2 macrophages, resting dendritic cells, and resting mast cells.
The above results suggested that variations in immune and
inflammatory activity and TIIC composition may be potential
mechanisms that affect the probability of recurrence and survival
in early-stage LUAD.

Additionally, ICIs targeting both PD1 and PD-L1 have
achieved great advances in the multidisciplinary treatment of
lung cancer in recent years (53). Our signature was also revealed
to be correlated with tumor immune activity. Hence, we
performed an analysis to describe the immune checkpoint
A B

DC

FIGURE 7 | Impact of risk score on chemotherapy response. The estimated half-maximal inhibitory concentration (IC50) of cisplatin (A), docetaxel (B), doxorubicin
(C), and gemcitabine (D) for response between the low- and high-risk groups.
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profile and made attempts to predict the immunotherapy
response. Using the TIDE algorithm, we found that the high-
risk group patients had high TMB, PD-L1 expression, and
neoantigen burden, which have been proven to be useful
immunotherapy biomarkers (20, 21, 31). These findings
preliminarily indicated that high-risk patients may benefit
from ICIs. Moreover, the TIDE score, a more accurate
predictor of immunotherapy response than TMB, PD-L1
expression, or neoantigen burden (22), was found to be
decreased in patients in the high-risk group. This finding
suggested that the high-risk patients were characterized by
tumor immune evasion potential and were more likely to
benefit from ICIs, which is inconsistent with the above results.
The above interesting findings demonstrated that high- and low-
risk patients had diverse immune checkpoint profiles, and our
LMRG-based signature could identify those who were suitable
for treatment with checkpoint inhibitors.

Notably, we further conducted an analysis to predict
chemotherapy response to understand the role of our signature
in early-stage LUAD. The results showed that the estimated IC50

for each of four conventionally used drugs was significantly
higher in the low-risk group than in the high-risk group,
indicating that the LUAD patients with higher risk scores
tended to be more sensitive to chemotherapy. This finding
indicated that our signature could be applied for personalized
treatment in LUAD patients. Oren (13) found that an upregulated
fatty acid oxidation level was associated with a persistent
proliferative capacity across multiple cancer types. This finding
explains the higher chemoresistance of the low-risk group, which
was characterized by significantly enriched fatty acid metabolism.

Although our LMRG-based signature showed promise for the
prediction of cancer recurrence, as well as immunotherapy and
chemotherapy response, limitations of the study exist. First, all
the analyzed cohorts were from retrospective public databases;
hence, prospective validation of our results in fresh specimens is
needed. Second, the results of the TIIC landscape and immune
checkpoint profile analyses were estimated from transcriptomic
data; hence, the correlation between our signature and
immunotherapy response still warrants further verification in
future immunotherapy cohorts.

In summary, for the first time, we established and described
a novel recurrence-associated LMRG-based signature
for patients with early-stage LUAD. The LMRG-based
signature developed in this study has the potential to be used
as an effective predictor of immune checkpoint inhibitor
and drug response to achieve individualized antitumor
treatment by identifying those patients who may benefit from
immunotherapy and chemotherapy.
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