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The outcome of colon adenocarcinoma (COAD) patients remains dismal, and

lactate metabolism has been characterized to promote tumor development

and immune evasion. Based on the above background, it is worthwhile to

explore novel prognostic and therapeutic biomarkers for COAD patients from

the aspect of lactate metabolism. Above all, 228 available lactate-metabolism-

related genes (LMRGs) were acquired, and the landscape of copy number

variation and the expression difference of mRNA levels between colon normal

and tumor samples were investigated among these LMRGs. Importantly, eight

overall survival (OS)-involved LMRGs were then distinguished by means of

univariate Cox regression analysis in both GSE40967 and TCGA-COAD data

sets. Subsequently, prognostic risk scores were established, integrating seven

OS-related LMRGs by LASSO Cox regression analysis in the GSE40967 set, and

then verified in the TCGA-COAD cohort. From the comprehensive analyses,

COAD patients with high risk had comparatively more inferior survival

probability in all populations of the study, and they tended to have more

severe clinicopathological features with the risk score increasing. Moreover, by

integrating age, AJCC T and pathological stage, and risk score, we constructed

a prognostic nomogram that demonstrated great prediction effectiveness for

OS of COAD patients. Furthermore, the potential effect of various risk score on

tumor immune was assessed from enrichment of immune-related pathways,

tumor-infiltrating immune cells, and expression levels of immune checkpoints

separately. We could draw a conclusion that COAD patients with higher

lactate-metabolism-related risk scores may acquire an immunosuppressive

tumor microenvironment, which subsequently led to immune escapes and

poor prognoses. Conclusively, all findings in the present study illustrate a great

prognostic value of the lactate-metabolism-related risk signature, providing
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more in-depth insights into the indispensable function of lactate metabolism in

prognosis and tumor immunity of COAD.
KEYWORDS

colon adenocarcinoma, lactate metabolism, risk signature, tumor immune
microenvironment, immunotherapy
Introduction

Colon adenocarcinoma (COAD) has been the third most

common malignant tumor with 10% of all cancers and high

mortality (1). Therapeutic advancements, including surgical

technique, chemotherapy, and molecular targeted therapies,

have greatly improved the outcome of patients with COAD

(2). However, with the increases in incidence and drug

resistance, the prognosis of some patients with COAD remains

dismal (3). To further enhance the curative effect and survival of

such population, more effective biomarkers and more accurate

cancer identification are still urgent and worth exploring.

To date, there has been a general consensus that aerobic

glycolysis (the Warburg effect) has emerged as a metabolic

hallmark of cancers, and tumor cells secrete large amounts of

lactate, which always results in lactate accumulation in the

tumor microenvironment (TME) (4). Hence, lactate

metabolism has attracted more attention in cancer metabolic

research recently. A considerable amount of evidence has

uncovered the nonnegligible role of lactate metabolism

alterations as biomarkers of cancer prognoses (5–8). For

COAD, lactate originated by the noncancer stem cells

promoted self-renewal of cancer stem cells (CSCs) and

consequently contributed to tumor progression (9). Besides

this, meta-analyses revealed that high levels of lactate

dehydrogenase were correlated with unfavorable overall

survival (OS) in colorectal cancer (CRC) patients (10).

Nonetheless, a full-scale landscape of the impact of lactate

metabolism on prognosis of COAD still lacks.

COAD development is verified to be a complicated process

involving the interactions between the tumor, TME, and host

immune system (11). Accumulating evidence reveals that TME

is closely related to the progression, relapse, metastasis, and

therapeutic resistance of CRC (12). To be exact, the TME is

especially lactate-enriched (13). For tumor-infiltrating immune

cells, which are a part of the complex microenvironment, playing

a leading role in the TME, lactate accumulation supported tumor

immune escape by depressing the cytotoxic activities of T cells

and connatural lymphocytes such as natural killer (NK) and

natural killer T (NKT) cells (14, 15). In CRC, lactate-mediated

acidification of TME is revealed to induce apoptosis of liver-

resident NK cells in liver metastasis (16). In addition, decreasing
02
lactate production in cancer cells is observed to synergize with

immunotherapy by preventing the acidification of the TME in

melanoma (17). On the whole, the effect of lactate metabolism

on the TME cannot be underestimated. However, a

comprehensive analysis of such influence in COAD has not

yet been reached.

In this study, we identified prognostic lactate-metabolism-

related genes (LMRGs) and establish a reliable nomogram model

on the basis of LMRGs to predict the survival outcomes of COAD

patients. Moreover, the potential relationship between the

signature and the TME was further explored. Our study

provides more evidence that lactate metabolism is strongly

correlated with patient prognosis and tumor immunity in COAD.
Materials and methods

Data retrieval and collection of LMRGs

From The Cancer Genome Atlas (TCGA) database (41

normal colon samples and 473 COAD samples, https://portal.

gdc.cancer.gov/repository) and GSE40967 in the Gene

Expression Omnibus (GEO) database (585 COAD samples,

https://www.ncbi.nlm.nih.gov/geo/), the public transcriptome

expression matrices and clinical information of COAD

patients were retrieved. Afterward, 573 COAD patients in

GSE40967 were set to the training set, whereas 457 COAD

samples of TCGA were selected as an external validation set after

exclusion of patients with no OS information. From the

Molecular Signature Database v7.5.1 (MSigDB), 284 LMRGs

were downloaded (18). Furthermore, 228 overlapping LMRGs

were collected for ulterior analyses after intersecting the

aforementioned 284 LMRGs with all genes in GSE40967 and

TCGA-COAD data sets (Supplementary Figure 1).
Verification of copy number variation
(CNV) frequency and differentially
expressed genes (DEGs) among LMRGs

The CNV data of patients from TCGA-COAD was attained in

the UCSC Xena database (https://xenabrowser.net/datapages/).
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Subsequently, the CNV frequency of the above 228 LMRGs was

computed, and a bidirectional column chart was used to visualize

the result. The DEGs within LMRGs were verified after comparing

the normal and cancer samples in the TCGA-COAD data set when

the threshold was set with false discovery rate (FDR)< 0.05 and

|log2FC| > 1 using the “edgR” R package (19, 20). These significant

DEGs were also described with a heat map and a volcano plot.
Acquisition of OS-related LMRGs
in COAD

To demonstrate the profound prognostic significance of 228

LMRGs in COAD, Cox proportional hazards regression analyses

were carried out for univariate analyses to obtain OS-related

LMRGs with P<.05 in the GSE40967 (n = 573) and TCGA-

COAD (n = 457) cohorts, respectively. Ulteriorly, the overlapping

OS-related LMRGs were screened out for further research.

Meanwhile, the relevant characteristics among the above

LMRGs were illustrated in a correlation matrix plot, and the

“RCircos” R package was utilized to display mRNA expressions

and chromosomal positions of those candidate LMRGs (21).
 

Establishment and validation of lactate
metabolism–correlated prognostic
signature in COAD

To establish a statistically prognostic signature according to

these eligible OS-related LMRGs, least absolute shrinkage and

selection operator (LASSO) Cox regression analysis was

accomplished in the training cohort. In addition, seven

LMRGs were retrieved to construct a signature for COAD

patients, whereas the prognostic significance of each LMRG

included in the signature was portrayed, respectively. According

to the predictive signature, the lactate-metabolism-related risk

score of individual COAD patient would be calculated as follows:

%Risk   Score

=oExpression   of  Each  LMRG ∗  Corresponding

Regression  Coefficient

Meanwhile, the risk score was adjusted by a linear

transformation in every data set with the following formula:

adj:Risk   score =
Risk score −min Risk scoreð Þ

max Risk scoreð Þ  −min Risk scoreð Þ 
Subsequently, patients in each cohort were divided into high-

and low-risk subgroups using the median cutoff value. To uncover

the feasibility of the risk model, Kaplan–Meier survival analysis of

OS difference was executed between high- and low-risk groups in

two data sets separately, and Kaplan–Meier survival analyses of

progression-free survival (PFS), disease-free survival (DFS), and
Frontiers in Oncology 03
disease-specific survival (DSS) were further performed between

different risk groups in the TCGA-COAD cohort.
Completed investigation of risk score
and clinical parameters in patients
with COAD

To elucidate the availability of the risk signature based on

LMRGs in clinical situations, we compared the distribution of

adjusted risk values with different degrees of various

clinicopathologic parameters using boxplots with the Kruskal

test. Additionally, heat maps were plotted to decipher the

correlation between each selected LMRG’s expressions and

important clinical indicators, comprising risk score, T, N, AJCC

stage, and survival status in the training and validation sets.
Construction and evaluation of lactate-
metabolism-related clinical nomogram in
COAD

Furthermore, univariate and multivariate Cox regression

analyses were delineated to explore whether the lactate-

metabolism-related risk score could be an independent

predictor of COAD. Based on the results presented, a lactate-

metabolism-related nomogram, integrating risk score, age, T,

and AJCC stage in the GSE40967 was constructed through the

“rms” and “regplot” R packages (22, 23). In an effort to evaluate

the predictive performance of the nomogram, we performed the

calibration analysis and decision curve analysis (DCA) and

plotted corresponding curves (24).
Identification of different biological
functions within two risk subgroups

The “GSVA” R package was carried out to investigate the

distinctions of biological processes and signaling pathways between

high- and low-risk groups in the training and validation sets,

respectively (25, 26). “c2.cp.kegg.v7.5.1.symbols.gmt” [KEGG] was

dug out from MSigDB as the reference molecular signature

database, and P values<.05 were deemed statistically significant

after being adjusted. Ultimately, the top 20 significant KEGG

pathways were displayed as heat maps.
Potential implications for TME landscape
and immunotherapy based on the
risk signature

To reveal the potential implications for immunotherapy

based on lactate-metabolism-related risk score, different
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expression levels of three immunologic checkpoints, namely

PDCD1 (PD-1), CD274 (PD-L1), and CTLA4, were detected

between high- and low-risk groups using the Wilcox test. To

determine the relative tumor-infiltrating abundance of 22

immune cells in the two subgroups, the CIBERSORT

deconvolution algorithm was employed in the training set

(27, 28).
Statistical analysis

Statistical analyses were done with R software (Version 4.0.2,

http://www.R-project.org). The log-rank test was applied to

conduct the comparison between Kaplan–Meier curves in this

study (29). The Kruskal test was utilized to uncover the

differences of adjusted risk scores in various clinical

parameters. The discrepancy of checkpoints in low- and high-

risk groups was detected by the Wilcox test. The correlation

matrix diagram was examined using Spearman’s correlation test.

All P values were bilateral, and statistical significances were set

at P<.05.
Results

Identification of prognostic LMRGs
in COAD

Initially, 228 common LMRGs were obtained through the

intersection of two databases (GSE40967 and TCGA-COAD).

We first assessed the global CNV alterations of 228 LMRGs in

TCGA-COAD, which showed that there existed extensive CNV

mutations among LMRGs. The top 20 genes in CNV

amplification and deletion status are displayed in Figure 1A

together. Then, the mRNA expression profiles of COAD samples

in TCGA-COAD were analyzed to find differentially expressed

LMRGs with the threshold of FDR< 0.05, |log2FC| > 1 and

visualization of a heat map (Figure 1B) and a volcano plot

(Figure 1C), respectively. Moreover, to identify prognostic

candidate LMRGs in COAD for further research, univariate

Cox regression analyses were performed to sift OS-related

LMRGs in both TCGA-COAD and GSE40967 data sets

(Figure 1D). In total, 22 and 98 significant OS-related genes

were yielded, respectively, and eight equitant LMRGs

(PLEC, BCS1L, CPT2, SDHB, COQ2, SLC39A8, PDSS2, and

DLD) were factored into subsequent analyses (Figure 1E).

Meanwhile, to obtain a more advanced understanding of

these genes, a correlation network plot was presented to

unravel the correlation features among eight eligible LMRGs

(Figure 1F), and chromosomal positions and mRNA expression

levels of these eight genes were illustrated by a circos

plot (Figure 1G).
Frontiers in Oncology 04
Establishment and validation of lactate-
metabolism-related prognostic signature
for patients with COAD

The above eight candidate LMRGs were subsequently

analyzed through carrying out the LASSO Cox regression

analysis in COAD patients of the GSE40967 training data set,

and seven pivotal genes (PLEC, BCS1L, CPT2, SDHB, COQ2,

SLC39A8, and PDSS2) were determined to build the prognostic

signature (Figures 2A, B). In addition, Kaplan–Meier survival

analyses were conducted to investigate the survival capability of

every signature-contained gene in the training (Figure 2C) data

set. From the results, we found that high expression of PLEC and

low expressions of BCS1L, CPT2, SDHB, COQ2, SLC39A8, and

PDSS2 were significantly correlated with more unfavorable OS in

COAD, which further supports the effectiveness of the selected

genes. At length, a risk signature was constructed as follows: risk

score = Expression of PLEC * 0.265886 - Expression of CPT2 *

0.106776 - Expression of BCS1L * 0.196516 - Expression of

SLC39A8 * 0.040630 - Expression of PDSS2 * 0.059233 -

Expression of SDHB * 0.033911- Expression of COQ2 * 0.196516.

Then, to further test the prognostic value of our risk signature,

patients of the TCGA-COAD training set and the GSE40967

validation set were independently segregated into high- and low-

risk subgroups based on the median value of the risk score

(Figure 3A). As we expected, patients of the high-risk group had

higher incidence of deaths and shorter OS probability in both

training and validation cohorts (Figure 3B). Meanwhile, the

Kaplan–Meier survival analysis of OS indicated that high-risk

COAD patients had considerablymore unfavorable OS probability

across all cohorts (Figure 3C, GSE40967, p = .00044 TCGA-

COAD, p = .0044). Moreover, we performed survival analysis in

patients of TCGA-COAD according to another survival index, and

the results show that patients with high risk had similarly poorer

PFS (p = .00085), DFS (p = .0076), and DSS (p = .00056), which

strongly proves the above conclusions (Figure 3E). Additionally,

we carried out time-dependent ROC curves to evaluate the

performance of the risk prediction model, which depicted good

predictive capability with AUCs in the training set as 0.606, 0.603,

0.643, 0.625, and 0.611 for 1-, 2-, 3-, 4-, and 5-year OS, and AUCs

in the validation set were 0.613, 0.648, 0.615, 0.607, and 0.565 for

1-, 2-, 3-, 4-, and 5-year OS, respectively (Figure 3D).
Evaluation of the correlation between
risk scores and clinicopathological
indicators in COAD

Overall appraisal of the relationship between risk scores and

common clinicopathological factors in COAD patients was then

assessed. In the GSE40967 cohort, conspicuous discrepancies

were observed between risk scores and clinical features,

including survival status (p<.0001), T (p<.05), N (p<.0001),
frontiersin.org
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and AJCC stage (p<.0001) (Figure 4A). Similarly, significant

correlations were also observed in the above indicators of the

TCGA-COAD cohort (survival status, p<.05; N, p<.001; AJCC

stage; p<.0001) except for T (Figure 4B). Of great interest, we

noticed that the clinical features of COAD patients tended to be
Frontiers in Oncology 05
more severe as the risk scores increased, which reconfirmed the

predictive value of the risk signature. Moreover, heat maps were

also plotted to display the correlations between seven identified

LMRGs and clinicopathological features in GSE40967

(Figure 4C) and TCGA-COAD (Figure 4D) data sets.
A B

D

E

F G

C

FIGURE 1

Identification of prognostic LMRGs in COAD patients. (A) The global CNV frequency of LMRGs in the TCGA-COAD cohort. (B) The heat map of
differentially expressed LMRGs between adjacent and tumor samples in TCGA-COAD. (C) The volcano plot presenting differentially expressed
genes among LMRGs. (D) OS-related LMRGs in GSE40967 and TCGA-COAD cohorts, respectively. (E) The Venn diagram to identify eight
intersected prognostic LMRGs. (F) The correlation matrix plot exhibiting eight candidate LMRGs. (G) The Circos plot to illustrate regions on
chromosomes and expressions of eight candidate LMRGs.
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Construction and assessment of a
prognostic nomogram based on the risk
score signature

To further determine if the risk signature could serve as an

independent prognostic indicator for COAD patients, we then

conducted univariate and multivariate Cox regression analyses in

GSE40967. The results disclosed that age, T, N, AJCC stage, and risk
Frontiers in Oncology 06
scores were all signally related to OS probability in the univariate

Cox analysis (Figure 5A), whereas age, T, AJCC stage, and risk score

remain independent prognostic factors after adjustment in the

multivariate Cox analysis (Figure 5B). Subsequently, we developed

a risk score–based nomogram to predict the individual OS

probability of 2, 3, and 5 years according to the multivariate Cox

analysis result (Figure 5C). Not surprisingly, the nomogram

indicated that COAD patients with higher total points suffered a
A B

C

FIGURE 2

Construction of lactate-metabolism-related prognostic signature for COAD patients of the GSE40967 training group. (A) LASSO Cox regression
analysis of the eight prognostic LMRGs. (B) Partial likelihood deviance for the LASSO regression to determine seven optimal prognostic LMRGs.
(C) KM survival analyses of OS on the basis of mRNA expression levels of 7 LMRGs.
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lower survival chance. Moreover, calibration of the nomogram was

assessed in a calibration plot, which displayed great fitness through

comparing observed to predicted risk (Figure 5D). The DCA curve

of the nomogram presented a more favorable clinical net benefit

than any single factor (Figure 5E). Up to this point, the prognostic

nomogram based on LMRG-related risk signature has been verified

to have better OS prediction capability for COAD patients.
Frontiers in Oncology 07
Evaluation of the correlation between
risk score signature and
immune landscape

As lactate metabolism has been recognized to play a vital role

in TME, we first exploited “GSVA” enrichment analysis to unveil

the discrepancy of immune-related pathways between high- and
A

B

D

E

C

FIGURE 3

Assessment and validation of the availability of risk score in GSE40967 and TCGA-COAD sets. (A) Risk score distribution of COAD samples with
different risks. (B) The distribution of risk score and OS time of COAD patients. (C) The Kaplan–Meier survival curves of OS according to high-
and low-risk groups in patients with COAD. (D) The time-dependent ROC curves and AUC values for OS of the prognostic risk model. (E) The
Kaplan–Meier survival curves of PFS, DFS, and DSS according to different risk groups.
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low-risk groups. As shown in Figure 6, neuroactive ligand

receptor interaction, cytokine cytokine–receptor interaction,

natural killer cell-mediated cytotoxicity, and chemokine

signaling pathway were obviously enriched in the low-risk

group of GSE40967 (Figure 6A), whereas neuroactive ligand

receptor interaction, cytokine cytokine–receptor interaction, B-

cell receptor signaling pathway, T-cell receptor signaling

pathway, toll-like receptor signaling pathway, and chemokine

signaling pathway were similarly enriched in the low-risk group
Frontiers in Oncology 08
of TCGA-COAD (Figure 6B). Then, we further compared the

expression levels of common immune checkpoints within the

two groups, and the results manifested that PD-1, PD-L1, and

CTLA4 were all significantly augmented in the high-risk groups

of both GSE40967 (Figure 6C) and TCGA-COAD data sets

(Figure 6D), which unearthed the fact that COAD patients of

high-risk groups may have an immunosuppressive TME and

may also respond better to immunotherapy targeting the

immune checkpoints.
A

B

D

C

FIGURE 4

Correlation of lactate-metabolism-related risk signature and clinical indicators in COAD patients. (A, B) Box plots to present the relationship
between different risk groups and clinicopathological characteristics of patients in GSE40967 (A) and TCGA-COAD (B), respectively.
(C, D) Correlation heat maps of risk signature-contained LMRGs and clinicopathological factors in GSE40967 (C) and TCGA-COAD
(D) separately. *p < 0.05; ***p < 0.001; ****p < 0.0001; ns, not significant.
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To more robustly demonstrate the effect of various risk

scores on TME, the CIBERSORT algorithm was performed to

estimate the infiltrating degree of immune cells in the TME of

COAD in GSE40967. From the result, we found that naive B

cells, resting memory CD4+ T cells, activated memory CD4+ T

cells, and activated dendritic cells were markedly enriched in the

TME of low-risk group, whereas macrophages M0 were notably

strengthened in the high-risk group (Figure 6E). Judging from

the results above, COAD patients with low risk might attain an

immune-activated TME, which also supported that low-risk

patients had more favorable prognoses.
Frontiers in Oncology 09
Discussion

Although the treatment methods of COAD have been greatly

improved, the prognoses of COAD patients remain dismal (30).

Therefore, there is an urgent need to discover more accurate

prognosis-related biomarkers and provide interventions as early

as possible to improve the prognosis. Recently, it is worth

drawing attention to the lactate metabolism, which has been

reported to have played an unignorable role in tumorigenesis and

progression, including COAD (10, 16). More strikingly, lactate

was always produced by tumor cells and then accumulated in the
A B

D E

C

FIGURE 5

Establishment of a prognostic prediction nomogram based on the risk signature in GSE40967 training set. (A) The univariate Cox regression
analysis of age, T, N, AJCC stage, and risk score for OS. (B) The multivariate Cox regression analysis of age, T, N, AJCC stage, and risk score for
OS. (C) The prognostic nomogram was plotted to predict 2-, 3-, and 5-year survival probability of COAD patients. (D) The calibration plot was
used to evaluate the prediction consistency of OS. (E) The DCA to assess clinical utility of the prognostic nomogram.
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TME, which subsequently generated some effects on tumor

immune infiltrating cells, including inhibition of the functions

of cytotoxic T, NK, and NKT cells (14, 15). Generally, the

immunosuppressive role of lactate metabolism was associated

with poorer response to immunotherapy of immune checkpoint

inhibitors (ICIs). In several cancer types, high lactate

dehydrogenase (LDH) levels have been verified to be

independent biomarkers for predicting therapeutic response of

ICIs (7, 8, 31). However, such research in COAD is still lacking.

Based on the evidence above, we consolidated the mRNA
Frontiers in Oncology 10
expression profiles of LMRGs and the clinical data of COAD

patients to explore novel prognosis-related biomarkers.

For searching the most effective LMRGs to construct the

prognostic signature, we initially conducted univariate Cox

regression analyses of OS in COAD patients of both

GSE40967 and TCGA-COAD data sets. Furthermore, by

optimization of eight available LMRGs with LASSO Cox

regression analysis in GSE409678, seven pivotal genes were

included to determine the risk signature, namely PLEC,

BCS1L, CPT2, SDHB, COQ2, SLC39A8, and PDSS2.
A B

D

E

C

FIGURE 6

Estimation of potential relationship between various risk groups and immune landscape. (A) Results of GSVA analysis in GSE40967 to depict
enriched immune-related pathways. (B) Results of GSVA analysis in TCGA-COAD to reveal enriched immune-related pathways. (C, D)
Comparing expression levels of three classical markers of immune checkpoint between high- and low-risk groups in GSE40967 (C) and TCGA-
COAD (D) separately. (E) Violin plots to show the relatively infiltrating abundances of 22 immune cells in COAD patients of GSE40967. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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Many studies have emerged implicating that PLEC (plectin)

was a pro-tumorigenic regulator of tumor proliferation,

migration, and invasion (32–34). Recent studies revealing the

anticancer effect by directly targeting plectin have opened new

avenues of research into plectin’s role in cancer (35–37). For CRC,

IHC analyses demonstrate increased expression of plectin in

COAD and locally invasive nests compared with normal tissues

(38). Suppression of plectin inhibited adhesion, migration, and

invasion of colon carcinoma cells (39). Strikingly, knockout of

plectin has also been implicated to reduce the motility of dermal

fibroblasts and T cells in vitro as well as impaired the infiltration of

macrophages and T cells during wound healing in vivo (40). Our

study indicates that high expression of PLEC is related to poorer

OS and clinicopathological features in COAD, which is consistent

with the above evidence. However, more mechanisms to underpin

these observations remain to be elucidated.

The carnitine palmitoyltransferase (CPT), including CPT1

and CPT2, are identified as important mediators of fatty acid

oxidation (FAO) (41). CPT2 promotes the b-oxidation of fatty

acids (FAs) through facilitating the conversion of acetyl-

coenzyme A (CoA) to fatty acyl-CoA (42). CPT2 silencing is

reported to facilitate the tumor progression of hepatocellular

carcinoma, which is reconfirmed by our results (43). In addition,

FAO mediated by CPTs also played an important role in tumor

immunity (44).

SDHB was one of the four subunits comprising the succinate

dehydrogenase (SDH) enzyme complex, which is related to the

tricarboxylic acid (TCA) cycle and oxidative phosphorylation

(45). The lack of SDHB function promotes the occurrence and

development of several cancers, including liver and pancreatic

cancer (46, 47). Similarly, the result of our analyses indicate that

high expression of SDHB was related with better prognosis

in COAD.

PDSS2 (prenyldiphosphate synthase subunit 2) was

characterized as a tumor suppressor, and introduction of

PDSS2 into cancer cells has been verified to inhibit tumor

growth (48, 49). Likewise, the tumor suppressive role of

PDSS2 was further strengthened with findings of COAD

presented in our study. Regrettably, cancer-related studies of

the other few candidate genes, including BCS1L, COQ2, and

SLC39A8, are still absent, and we will seriously consider deeper

research in our future studies.

The above seven LMRGs were selected to establish the

prognostic signature, and then, prognosis and clinicopathological

relevance of the risk signature were comprehensively evaluated.

Based on the survival analyses, COAD patients of the high-risk

group were confirmed to have shorter time of OS, PFS, DFS, and

DSS. Moreover, the AUC values of ROC curves displayed good

accuracy of the risk model in predicting 1-, 2-, 3-, 4-, and 5-year OS

probability in both data sets independently. Furthermore, COAD

patients of both training and validation cohorts were divided into

different subgroups according to survival status, T, N, and AJCC

stage. Not surprisingly, we found that with the risk score increasing,
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COADpatients tended to have worse clinical outcomes. Specifically,

progressively higher risk scores were related to larger tumor size,

more metastatic axillary lymph nodes, and more severe AJCC stage.

Even more remarkably, through univariate and multivariate Cox

regression analyses, the risk signature was considered as an

independent prognostic factor when adjusted with clinical

variables containing age, T, N, and AJCC stage. In addition,

development of a prognostic nomogram also unfolded good

prediction consistency and potential clinical feasibility of the risk

score in COAD patients. Nevertheless, larger cohorts are needed to

confirm the above results in prospective studies.

We have already mentioned that lactate metabolism was

verified to play a significant role in the TME, and advancements

in research on the TME and immunotherapy are expected to

provide more valid improvements for the prognoses of CRC

patients (50). Above all, we explored the difference of immune-

related pathways between high- and low-risk groups using the

“GSVA” enrichment analysis, and we found that some common

immune-related pathways were enriched in the low-risk group

of two data sets, including neuroactive ligand receptor

interaction, cytokine cytokine–receptor interaction, and

chemokine signaling pathway. Meanwhile, by comparing the

expression differences of immune checkpoints, PD-1, PD-L1,

and CTLA4 were all significantly upregulated in the high-risk

group. Moreover, the result of the CIBERSORT algorithm also

demonstrated that naive B cells, resting memory CD4+ T cells,

activated memory CD4+ T cells, and activated dendritic cells

were enriched in the TME of the low-risk group. Clues from the

above three aspects implied that COAD with a higher risk value

might be more likely to be immunosuppressed, which was

consistent with the consensus that activated lactate metabolism

usually promoted immune invasion and suppressed antitumor

immune responses. As for the response to immunotherapy, we

assumed that high-risk COAD patients would be more sensitive

to ICIs as targeting immune checkpoints will transform the

immune microenvironment of COAD with high risk from

immunosuppression relative to immunoactivation.

Though all the conclusions in the present study should be

further verified by experimental data, it primarily provides a

comprehensive description of LMRGs in COAD and

constructed a ponderable risk signature, which also has novel

implications for immunotherapy in COAD patients.
Conclusion

In conclusion, our study establishes a reliable risk signature

based on LMRGs for COAD patients. The signature was

identified as an independent prognostic indicator through

constructing a nomogram model that could accurately

predict the survival probability of COAD patients. In

addition, the potential relationship between different risk

scores and tumor immune microenvironment was explored.
frontiersin.org

https://doi.org/10.3389/fonc.2022.958221
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zou et al. 10.3389/fonc.2022.958221
Broadly speaking, our study may provide important preclinical

implications for cancer research about lactate metabolism

and COAD.
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