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Changes in cell shape are correlated with metastatic potential in
murine and human osteosarcomas
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ABSTRACT
Metastatic cancer cells for many cancers are known to have altered
cytoskeletal properties, in particular to be more deformable and
contractile. Consequently, shape characteristics of more metastatic
cancer cells may be expected to have diverged from those of their
parental cells. To examine this hypothesis we study shape
characteristics of paired osteosarcoma cell lines, each consisting of
a less metastatic parental line and a more metastatic line, derived
from the former by in vivo selection. Two-dimensional images of four
pairs of lines were processed. Statistical analysis of morphometric
characteristics shows that shape characteristics of the metastatic cell
line are partly overlapping and partly diverged from the parental line.
Significantly, the shape changes fall into two categories, with three
paired cell lines displaying a more mesenchymal-like morphology,
while the fourth displaying a change towards a more rounded
morphology. A neural network algorithm could distinguish between
samples of the less metastatic cells from the more metastatic cells
with near perfect accuracy. Thus, subtle changes in shape carry
information about the genetic changes that lead to invasiveness and
metastasis of osteosarcoma cancer cells.
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INTRODUCTION
Despite significant advances in treatment of cancer, it remains the
leading cause of death in both men and women under 80 years of
age in the US (Siegel et al., 2014), with metastasis as the cause of
90% of human deaths from cancer (Gupta and Massague, 2006;
Siegel et al., 2014). Understanding and prevention of cancer
invasion and metastasis is key in reducing cancer mortality (Gupta
and Massague, 2006). Multiple studies have pointed out that the
acquisition of invasiveness appears to require changes in
mechanical properties of cancer cells, which may be linked to
the functional properties that are necessary for metastasis (Makale,
2007; Suresh, 2007). To form successful metastases, tumor cells

must navigate a complex, multi-stage process including:
detachment from primary tumor, migration to vascular supply,
intravasation, survival and transit in blood or lymphatic vessels,
extravasation, and successful growth and adhesion in a new site
(Chambers et al., 2002). Metastatic cells have been found to be
softer or more deformable than non-metastatic cells in analysis
with atomic force microscopy (Cross et al., 2007, 2008; Li et al.,
2008; Xu et al., 2012) and optical lasers (Guck et al., 2001, 2005;
Runge et al., 2014). In addition to cell deformability, multiple
studies have shown that molecules responsible for cell-
extracellular matrix and cell-cell adhesion interactions, including
cadherins and integrins, are down-regulated or altered in cancer
cells (Berx and van Roy, 2009; Cavallaro and Christofori, 2004;
Chen et al., 2013; Hanahan and Weinberg, 2011; Rathinam and
Alahari, 2010). Cancer cell deformability is linked with
invasiveness and can be an indicator of metastatic potential
(Kenny et al., 2007; Paszek et al., 2005; Suresh, 2007; Tullberg
and Burger, 1985). However softness is just one aspect of cellular
biomechanics. Cells are active objects and can exert contractile
forces on the extracellular matrix; there are some reports that more
invasive cells are more contractile (McGrail et al., 2015).
Understanding and identifying altered biomechanical properties
of aggressive cancer cells can provide crucial information for
assessing the invasiveness of cancer cells.

Direct assays of mechanical changes require fairly complex and
expensive instrumentation. However, one can hypothesize that
changes in biomechanical properties, including changes in
cytoskeletal properties and expression of adhesion proteins, would
translate into changes in cell shape. It has been shown previously
that changes in gene expression of genes with cytoskeletal function
leads to shape changes that can be detected using morphometric
characteristics (Bakal et al., 2007). Cytoskeletal gene expression
changes that are signatures of metastatic capacity therefore may be
detectable by morphometric analysis. Ability to detect such changes
would be of great use in assessing cancer clinically.

One of the gold standards of predicting clinical outcome of
cancer is tumor grading which includes assessment of cellular
morphology from tumor tissue samples. Tumor grading schemes
focus on overt changes in cellular morphology such as mitotic
index, degree of nuclear pleomorphism and degree of tumor
necrosis (Kirpensteijn et al., 2002; Straw et al., 1996). What is not
known is whether morphometric parameters of the two-dimensional
shape of the cell are sensitive to the changes in cellular properties
that accompany the acquisition of invasiveness.

Our paper is based on the hypothesis that subtle changes in
cellular properties should manifest themselves in small but
detectable morphological changes because of the importance of
cytoskeletal changes for acquisition of invasive capacity. The
biomechanical changes that accompany the emergence of
aggressive tumor cells should be detectable by assaying theReceived 12 July 2015; Accepted 20 January 2016
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changes in shape of these tumor cells. Moreover, the observation of
specific changes in shape may be linked with specific genetic
changes in cancers.
Anecdotal evidence for the change in cell shape has been well

documented. For example, the epithelial to mesenchymal transition
(EMT), associated with development of the invasive phenotype in
carcinomas (Kalluri and Weinberg, 2009), is often accompanied by
acquisition of a mesenchymal-like elongated spindle morphology
(Cowden Dahl et al., 2009; Odenwald et al., 2013). Studies have
found that tumors which have formed metastases at the time of
diagnosis have significantly higher grades, and thus grossly altered
morphology, than non-metastatic osteosarcomas (Loukopoulos
and Robinson, 2007). An understanding of the relationship
between cell shape and the invasiveness of the cancer would lead
to a deeper understanding of the relationship between carcinogenic
transformation and shape regulation and may allow for a more
accurate assessment of cancer outcome from cancer biopsies.
Assays that can reliably estimate the percentage of potentially
invasive cells in a heterogeneous sample of primary tumor cells may
be of great value for guiding therapeutics.
We utilized osteosarcoma cell lines due to the high metastatic rate

of the cancer. Osteosarcoma (OSA) is the most common primary
bone tumor of dogs (Morello et al., 2011) and humans (Ottaviani
and Jaffe, 2009). OSA has a high rate of metastasis and routinely
forms metastases to the lung, often before the primary tumor is
diagnosed and more than 80% of human OSA patients have
metastases at the time of diagnosis (Kaste et al., 1999; Link et al.,
1986; Ward et al., 1994; Yonemoto et al., 1998), most with
pulmonary metastases (Jaffe et al., 2003; Kager et al., 2003).
Comparing the morphology of cells that were closely related

(except for their degree of invasiveness) was important to minimize
variables that would make the sample less homologous. We
therefore sought paired osteosarcoma lines, where a more
aggressive cell line was developed from a less aggressive ancestor
without the use of exogenous transforming agents, as these agents
may alter naturally occurring genetic changes leading to metastatic
properties of osteosarcoma (Su et al., 2009). Without exogenous
agents, we can attribute changes in cell morphology more directly to
the difference in metastatic potential, as the in vivo development of
the highly metastatic line more accurately represents the natural
process of formation of metastases.
The morphology-related genetic changes that accompany

transformation include both changes in cytoskeletal properties as
well as changes in adhesive properties (Cavallaro and Christofori,
2001). We decided to use surfaces of different hydrophobicity in our
experiments to explore this possibility as more hydrophobic
surfaces are less amenable to protein deposition (Grinnell and
Feld, 1982) and thereby are less favorable to cell adhesion than
hydrophilic surfaces. We prepared three different glass surfaces of
varying hydrophobicity (Fig. S1). These are glass detergent washed
and air dried (GDA, contact angle 27.6°), glass acid etched and air
dried (GAA, contact angle too small to measure), and siliconized
ethanol treated (SET, contact angle 99°).
We cultured four paired osteosarcoma cell lines with low and high

metastatic potential: DUNN and DLM8; K12 and K7M2; MG63
andMG63.2; and Saos2 and SAOS-LM7 on these three surfaces for
48 h, and then fixed, stained and imaged the cells. For simplicity we
refer to each pair by the first letter of the parental line, i.e. we refer to
the pairs as the D, K, M and S pairs of lines. We stained the cells for
actin, the plasma membrane and nucleus. We developed a high-
throughput, quantitative image analysis algorithm that chose
individual cells not in contact with others, segmented, optimized

and thresholded the images to obtain accurate representations of
two-dimensional shape and then processed the images to extract 29
morphometric measurements: 21 cellular and 8 nuclear (Table S1).
Representative images of the eight different cell lines are shown in
Fig. 1. Since here we are specifically looking for interpretable
geometric differences, we did not consider other morphological
representations such as shape representations in basis function
expansions (Pincus and Theriot, 2007). We then subjected the data
to statistical analysis to understand the differences between the high
metastatic and low metastatic cell lines, using pairwise comparisons
as well as by the multivariate principal component analysis (PCA)
and nonmetric multidimensional scaling (NMDS). We developed a
neural network machine-learning algorithm to try to distinguish
between cells from the high metastatic and low metastatic cell lines.

RESULTS
Pairwise comparisons: the four paired cell lines
demonstrated two distinct trends of cell shape changes
The 29 morphometric parameters were classified into five
categories of cell shape: (i) projected cell size, (ii) cell roundness
versus elongation, (iii) shape variability, (iv) nuclear size, and
(v) nuclear shape. We identified a subset of the 29 parameters that
were most often statistically significant across the various cell lines

Fig. 1. Representative images of the four cell lines using fluorescence
microscopy. Each set of two panels represent the lowmetastatic (left) and the
high metastatic (right) partner of a paired cell line. The cells nuclei (blue), the
actin cytoskeleton (green) and the lipid membrane (red) of fixed cells are
stained and are pseudo-colored as indicated for contrast. Note that the yellow
color indicates the overlap of the red (membrane) and green (actin) channels.
The cell lines are: (A) Dunn, (B) DLM8, (C) K12, (D) K7M2, (E) Saos2,
(F) SAOS-LM7, (G) MG63 and (H) MG63.2. In all panels, scale bar is 50 μm.
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by performing pairwise t-tests between different morphometric
measurements of the low metastatic line (low-met) and high
metastatic line (high-met) within a paired cell line. In order to adjust
for multiple testing, we performed t-tests on all 29 parameters using
the Holm–Bonferroni correction (Benjamini and Hochberg, 1995),
and identified the parameters that remain significantly different
(Tables S2, S3). The data showed that metastatic cell lines show
distinct differences in shape compared to their non-metastatic
counterparts. Significantly, we discovered that three of the four
paired cell lines, i.e. the D, K, and S lines displayed a similar
pattern of shape changes, while the fourth line, i.e. the M line,
displayed a different pattern (Fig. 2; Table S2). This suggests that
morphological changes due to acquisition of metastatic potential fall
into two distinct classes. For simplicity we denote these two patterns
as type-1 and type-2. When pooled into two classes, the type-1 cells
showed significant differences in 28 out of the 29 parameters we
tested, while the type-2 cells showed significant differences in 26
parameters (Table S3).

Highly metastatic cancer cells differ in cell volume and
projected cell area
A striking gross morphological difference between the high-met
and low-met line of each pair is a systematic difference in two-
dimensional projected area. Less metastatic type-1 cell lines have a
significantly larger projected cell area (Fig. 2A), and on average,
the type-1 high metastatic lines are 30.7% smaller in area. The
type-2 M lines showed the opposite trend, with highly metastatic
cells being significantly more spread out, more than double the
size of the parental line on some surfaces (Table S2). To determine
whether cell volume corresponded with cell area, we measured cell
volume using a handheld Scepter® counter (Materials and
Methods). We found that for most pairs the cell volume and the
cell area followed the same trend, i.e. the high-met line was
smaller in both area and volume for two lines of type I (K and S),

while the high-met M line was larger in volume and area than its
less metastatic pair. The D line showed an opposite trend with a
large volume but smaller area for the high-met line. However the
percentage difference in mean volume is much smaller than the
percentage change in mean area, suggesting a difference in the
spreading behavior of the cells for both type-1 and type-2 cells.
This trend of a smaller projected high-met line for type-1 cells and
a larger projected high-met line for type-2 cells is consistent across
all 12 measures of two-dimensional cell size (Table S2). Within
the type 1 cells, the largest difference was shown by the metastatic
K12 cells that were over 50% smaller on GDA while the smallest
difference was shown by the LM7 cells which were about 23%
smaller (Table S2).

The change in size is also anisotropic, as the type-1 high-met
lines have a minor axis that is 22% smaller, while the major axis is
only 10.5% smaller, thus the minor axis percent difference is about
twice that of the major axis (Fig. 2B,C), indicating elongation of the
high-met type-1 cells relative to the low-met cells. The smaller size
and elongated shape of high-met lines in type-1 osteosarcoma pairs
are consistent across all three type-1 lines. The type-2 M cell lines
showed the opposite trend for the major and minor axes with the
high-met line having a larger minor axis by 67% and larger major
axis by 48%, respectively.

Highly metastatic cells differ in roundness, elongation and
variability of perimeter
The second category of cell shape assesses how round versus
elongated the cell is, and is best represented by the aspect ratio. As
suggested by the major and minor axis differences discussed above,
the type-1 highly metastatic cell lines had a significantly larger
aspect ratio than the low-met lines, indicative of cell elongation
(Fig. 2D). On average, the type-I highly metastatic cells were about
19% more elongated than the low metastatic cells. The maximum
change here were the LM7 cells on SET with a 60% increase in the

Fig. 2. Pairwise comparison ofmost significant cell shape parameters. Each panel shows the comparison between highmetastatic (grey) and lowmetastatic
(black) cell lines for a single significant parameter on all surfaces. The paired lines are indicated by letters as follows. D: DUNN and DLM8; K: K12 and K7M2;
S: Saos2 and SAOS-LM7; M: MG63 and MG63.2. (A) Cell area, (B) cell major axis, (C) cell minor axis, (D) cell aspect ratio and (E) coefficient of variation (CV) of
the radius from the center of mass to the hull. n=100 for each cell line on each surface. *P<0.05 by two-tailed t-test satisfying the Holm–Bonferroni criteria for
all variables (Table S3).
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aspect ratio, while the smallest were the DLM8 cells with just about
13% increase on SET surfaces.
Variability of cell shape was characterized by the cell shape

parameters of solidity and the coefficient of variation of radii drawn
either to the cell perimeter from the center of mass of the convex hull
(CV Rad Hull) or from the center of mass of the bounding circle to
points on the convex hull (CV Rad Circle). The highly metastatic
type-1 cell lines had more variability in radii drawn to both the
perimeter (Table S2; Fig. 2E) and the convex hull. Another interesting
measure is the circularity of the perimeter, which measures the
deviation of the average shape from that of a circle. Circularity of
the cell perimeter is significantly different between the high-met and
low-met type-1 lines, by a little over 37% on average (Table S2).
The type-2 M lines showed the opposite trend to the ones listed

above. The low metastatic cells had an aspect ratio which was about
22% larger on the GAA surface, and about 15% larger overall. The
type-2 low-met line also displayed greater variability in shape than
the high-met linewith the CV of the perimeter radius larger by about
19% on average and by about 25% on the GAA surface. Similarly
the CV of the Hull radius was larger by almost 28% on average for
the low-met line. The circularity of the low-met type-2 line was also
larger than its high-met partner, in contrast to the behavior shown by
the type-1 lines.

Highly metastatic cell lines show shape differences in the
nucleus
Interestingly, the shape parameters of the nucleus also showed
statistically significant differences between the high and low
metastatic lines (Fig. 3). Nuclear size was larger for the low
metastatic cells for all cell lines, including both type 1 and
type 2. However while the larger nuclear size for low-met cells was
statistically significant for the type-1 cells on GAA and SET
surfaces, as well as for all surfaces, it was significant for the type-2
line only on the GAA surface. In line with the difference in nuclear
area, the major and minor axes were larger for the low metastatic
cells for all four pairs of cell lines (Fig. 3B,C). However, the nuclei
aspect ratio showed mixed results, with the high metastatic lines
demonstrating a larger aspect ratio for the D and M lines, while the

low metastatic lines demonstrated a larger aspect ratio for the K and
S lines (Fig. 3D).

This analysis also underscored the fact that every cell line
contained a heterogeneous collection of cell shapes. The
distributions of each parameter overlapped, which was not
surprising given the fact that we chose the paired lines on the
grounds that they were close to each other in genetic space. In the
light of these results, we asked whether we could still see these
differences using a multivariate measure by utilizing all the
descriptors together.

Multivariate Techniques show overlapping but distinct cell
populations
We performed a principal component analysis (PCA) of the
multivariate data, comparing each paired line separately (Fig. 4;
Fig. S3). The PCA showed that the geometric characteristics of each
cell type were overlapping but clustered distinctly within the space
formed by the first three principal components. The overlap
between the characteristics of the paired cell lines indicates that the
high-met line is still not too dissimilar from the low-met line.
However the genetic changes that accompany the acquisition of
invasive characteristics have also resulted in the cell shape
parameters drifting away from that of the original cell. The
maximum overlap of the first three principal components can be
seen in the SAOS-LM7 and Saos2 pair (Fig. 4D). The type-1 cells
collectively show distinct clustering of the low-met and high-met
populations (Fig. 4E), which is lost when we club the type-1 and
type-2 cells together (Fig. 4F).

To test whether we could obtain a better separation using a
nonlinear technique, we supplemented PCA by nonmetric
multidimensional scaling (NMDS) (Anderson, 2001). NMDS is
an ordination technique that seeks to find the ‘best’ coordinates for
representing multivariate data in a lower k-dimensional ordination
space. It does so by assessing and optimizing the agreement
between ranked distance between data vectors in the original higher-
dimensional space and the corresponding distance between them in
k-space. Departure from this agreement is formally measured as
‘stress’. Other groups have used multidimensional scaling (MDS) to

Fig. 3. Pairwise comparison of the most significant parameters
of nucleus shape. Each panel shows the comparison between high
metastatic (grey) and low metastatic (black) cell lines for a single
significant parameter. The paired lines are indicated by letters
as follows. D: DUNN and DLM8; K: K12 and K7M2; S: Saos2 and
SAOS-LM7; M: MG63 and MG63.2. (A) Nuclear area, (B) major axis
of the nucleus, (C) minor axis of the nucleus and (D) aspect ratio of
the nucleus. n=100 for each cell line on each surface. *P<0.05 by
two-tailed t-test satisfying the Holm–Bonferroni criteria for all
variables (Table S3).

292

RESEARCH ARTICLE Biology Open (2016) 5, 289-299 doi:10.1242/bio.013409

B
io
lo
g
y
O
p
en

http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.013409/-/DC1
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.013409/-/DC1
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.013409/-/DC1
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.013409/-/DC1


visually separate subpopulations of mesenchymal cells, further
using this analysis to predict the fate of differentiating stem cells
(Treiser et al., 2010). We used permutational multivariate analysis
of variance to obtain the R2 values, where in the NMDS context R2

is a measure of the proportion of the distance variation of the data
that is explained by cell line, i.e. from the high-met or low-met
comparison within each paired line. Fig. 5 shows the NMDS results
for the best-performing surfaces, and shows that the geometric
characteristics overlap between paired lines but nevertheless cluster
distinctly. The R2 values are tabulated in Table 1 along with their
P-values. The maximum proportion of the distance variation that
can be attributed to cell line is 0.16 for the D lines on the GAA
surface, 0.2 for the K lines and 0.06 for the S lines (both on the GDA
surface), and 0.24 for the M lines on the SET surface (0.22 on
GDA). All the R2 values are statistically significant and indicate that

cell shape parameters of the high-met line, despite significant
overlap, have diverged from those of the low-met line. Other
surfaces show varying levels of overlap but in general support this
conclusion (Fig. S4). Interestingly data points corresponding to the
high-met line for both type-1 and type-2 cells occupy a greater area
in 2-space, suggesting that the high-met lines are characterized by
greater heterogeneity of the shape parameters.

Identification of cells by machine learning
We asked whether these subtle but significant differences in cell
shape are sufficient to construct a classification algorithm that could
correctly classify the low-met and high-met cells. Wewrote a neural
network machine-learning algorithm to classify a cell into either the
low-met or the high-met class, based on its geometric parameters
alone, as described in the Materials andMethods section. Following

Fig. 4. Principal components of shape
characteristics. The shape
characteristics data for each cell is
projected onto the first three principal
components of the combined data of each
comparison. In this figure, comparisons
for each paired cell lines that performed
best are shown, as determined by visual
inspection and global comparisons. The
grey diamonds represent the high
metastatic cell line(s) while the black
triangles represent the low metastatic
line(s). Each panel represents one
comparison as follows: (A) DUNN vs
DLM8 onGAA, (B) K12 vs K7M2 onGDA;
(C) MG63 vs MG63.2 on GDA; (D) Saos2
vs SAOS-LM7 on SET; (E) all type-1 low
metastatic lines versus high metastatic
lines on GDA and (F) all low metastatic
versus high metastatic (i.e. both types
combined) on GDA. n=100 for each cell
line on each surface.
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standard practice we divided our data into three mutually exclusive
subsets for training, optimizing and validating the neural network
respectively. The trained algorithmwas then tested blind on the third
subset, the validation set, which was not used for any parameter
adjustment.
The accuracy of classification of the algorithm was found to lie

between 60% and 92%, (Table 2) suggesting as high as about 40%
and as low as 8% overlap of parameters. The latter figure is much

lower than expected from the preceding analysis, probably due to
the efficiency of the neural network in picking up subtle differences.
Single cells from all the four lines can be classified with at least 80%
accuracy on at least one surface.

Next we asked whether the classification algorithm is capable of
accurately classifying random samples of cells from the high-met
and the low-met lines. This process can be construed as a simulation
of what would happen in a clinical setting: the heterogeneous cancer
cell population taken from a tumor biopsy or aspirate would be
assayed using morphometric characteristics. The decision algorithm
used was that if the majority of cells in the sample are of type A, the
sample is of type A, and with this simple rule the algorithm achieves
near perfect classification of samples into the correct cell type
(Table 3). For every line there is at least one surface where samples
can be classified with greater than 95% accuracy. Even for the

Fig. 5. Nonmetric multidimensional scaling. Each panel represents an ordination pattern formed by comparison of geometric characteristics of a low
metastatic and a high metastatic cell line on the surface that showed the highest R2 value for the pair. Each point represents the shape parameters of a single cell,
plotted in black if high metastatic and red if low metastatic. The ellipses represent 95% confidence intervals with the labels ‘High’ and ‘Low’marking the centroid
positions of the corresponding cell line. The comparisons are as follows: (A) DUNN (low) and DLM8 (high) on GAA; (B) K12 (low) and K7M2 (high) on GDA;
(C) Saos2 (low) and SAOS-LM7 (high) on GDA and (D) MG63 (low) and MG63.2 (high) on SET. n=100 for each cell line on each surface.

Table 1. Nonmetric multidimensional scaling statistics

Cell line Surface Stress R2 P-value

D GAA 0.07 0.16 0.001
GDA 0.07 0.05 0.001
SET 0.07 0.06 0.001

K GAA 0.06 0.06 0.001
GDA 0.06 0.20 0.001
SET 0.06 0.04 0.001

S GAA 0.06 0.04 0.001
GDA 0.06 0.06 0.001
SET 0.06 0.05 0.001

M GAA 0.07 0.11 0.001
GDA 0.06 0.22 0.001
SET 0.05 0.24 0.001

Comparisons between a paired cell line on each surface. The ‘Stress’ is a
measure of the departure of the ranked distances of the cells in the low-
dimensional NMDS space from that in the original high dimensional space.
The low numbers in the table indicate that NMDS was able to preserve the
ranked differences. The R2 (for NMDS) is an average measure of the
proportion of the total distance between cells that can be explained by the
membership in the two lines, i.e. high-met and lowmet. Both the R2 values and
their P-values were calculated using permutational multivariate analysis of
variance. The surface abbreviations are as follows. GAA, glass acid etched;
GDA, glass detergent washed; SET, siliconized glass, ethanol treated. n=100
for each cell line on each surface.

Table 2. Proportion of individual cells correctly identified by the neural
network algorithm

GAA GDA SET ALL

DUNN vs DLM8 0.9 0.6 0.76 0.62
K12 vs K7M2 0.74 0.82 0.6 0.72
Saos2 vs SAOS-LM7 0.76 0.78 0.84 0.74
MG63 vs MG63.2 0.84 0.94 0.88 0.92
All low-met vs high met 0.61 0.64 0.67 0.59
Type-1 low-met vs high-met 0.65 0.64 0.68 0.67

The numbers represent the proportion of the sum of true positives and true
negatives to all cases (see Materials and Methods section). Each row is a
specific indicated comparison while the columns represent the surface on
which the cells were cultured, with the last column representing the results of
data from all surfaces combined. The surface abbreviations are as follows.
GAA, glass acid etched; GDA, glass detergent washed; SET, siliconized glass,
ethanol treated.
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S-line, where NMDS revealed only a 6% maximum difference
between the cell line parameters, the neural network achieves a
maximum classification accuracy of 99%.
Note that the algorithm performs relatively poorly when used to

classify samples from all low-met lines against all high-met lines as
compared with when it is used on type-1 cells and type-2 cells
separately. Thus, shape changes in the three paired lines in type-1
appear similar enough that despite originating from different species
and different cell lines, they can be accurately classified into high-
met and low-met cells with reasonable accuracy.

DISCUSSION
We have shown that highly metastatic osteosarcoma cell lines
derived from less metastatic parental cells show differences in
shape that can be broadly classified into two types. In type-1,
displayed by 3 out of 4 paired cell lines, the highly metastatic cells
are smaller in two-dimensional area, more elongated, and the
radius of the cell perimeter from the center of mass is more
variable. In type-2 cells, displayed by one cell line pair, the cells
become larger, more rounded, with a less variable perimeter. In
both cases, the distribution of the geometric characteristics that we
measured was more diverse for the high-met cell line. There was a
significant overlap between the parameters of the low-met and the
high-met line. However use of multivariate data analysis
techniques such as PCA and NMDS indicated that despite the
overlap, the data points of the two cell lines clustered slightly
differently from each other. The differences were sufficient to
enable a trained neural network to correctly classify an individual
cell as belonging to the high-met or low-met line with over 80%
accuracy on at least one surface, and to almost perfectly classify
samples of cells from either line.
Our data suggest that genomic changes leading to acquisition of

invasive properties also give rise to detectable shape changes, and
hence shape changes carry information about the state of the cell.
While this study was restricted to these four pairs of osteosarcoma
cell lines, we suspect that the broad conclusions are more general.
Genetic changes that drive the acquisition of invasive properties
may affect cell shape in various ways. For example, there could be
down-regulation of adhesive proteins, a softening of the cell due to
down-regulation of keratin and up-regulation of vimentin and
changes in cellular contractility due to Rho-ROCK signaling. Each
of these is likely to have a different set of effects on cell shape, and
requires further investigation. Identifying and understanding the full
typology of shape changes could have a major impact on our

knowledge of metastasis and its relation with the cellular
cytoskeleton. It may be eventually possible to read out genetic
changes corresponding to specific changes in cell shape (Bakal
et al., 2007). Determining the causal links between genetic changes
and the shape of the cell are outside the scope of the present paper
(and are future goals), but we provide evidence that these links exist
since functional changes in invasive properties correlates with
changes in cell shape.

Our discovery that shape changes fall into two types or classes is
also potentially significant. Our hypothesis arising from this work is
that these two classes correspond to the twomodes of cell migration,
i.e. mesenchymal and amoeboid (Wolf et al., 2003). Mesenchymal
motion consists of cell polarization, extension, substrate binding
followed by actin-based contraction and release of focal adhesions
at the trailing edge. This kind of migration is dependent upon
adhesion receptors, as well as on the expression of enzymes that
degrade the extracellular matrix such as MMPs (Wolf et al., 2003).
However when enzyme activity of MMPs is blocked, cells are found
to move in an amoeboid manner, wherein the cell squeezes itself
into the empty spaces in the extracellular matrix. The two modes of
motion are associated with different morphologies, with the
mesenchymal mode corresponding to an elongated morphology
and the amoeboid mode corresponding to a rounded morphology
(Sanz-Moreno and Marshall, 2010). Recent studies have shown that
the amoeboid mode of migration is associated with Rho signaling
through ROCK and requires the protein ezrin, which links the cell
membrane and the cellular cytoskeleton (Sahai andMarshall, 2003).
Thus downregulation of MMPs and upregulation of ezrin appears
associated with amoeboid motility. The highly metastatic MG63.2
line was found to be characterized by downregulation of MMPs and
upregulation of ezrin (Su et al., 2009), suggesting that its preferred
mode of motility could be amoeboid and providing an explanation
for the rounded morphology it possesses as compared with the
parent MG63 line. This suggests that cancer cells may acquire
intrinsic preference for one mode of motility over the other as they
acquire invasive characteristics, even if they are capable of
switching modes of motility (Liu et al., 2015; Wolf et al., 2003).
Thus type-1 cells could have an intrinsic preference for
mesenchymal motility while type-2 cells could have an intrinsic
preference for amoeboid motility.

Our work suggests that it is possible to develop a consistent
reproducible framework for computational morphometrics of cell
shape. Further work is required to validate and refine the framework
through use of other cell lines, including primary tumor lines,
other cancer types and species. A reproducible quantitative
framework is important for improving the subjectivity of traditional
morphological analysis performed by trained histopathologists.
While there is a strong correlation between tumor grade and
metastatic outcome, there is not yet an ability to predict metastatic
potential, based on tumor grade, in individual cases (Loukopoulos
and Robinson, 2007). One study found low reliability of the grading
of chondrosarcomas, despite the fact that grading scores guide
therapeutic decision-making (Eefting et al., 2009). A summary of
numerous studies on the reliability and reproducibility of urologic,
prostrate or renal cell cancer grading found low agreement and
reproducibility (Engers, 2007). Our work provides some evidence
that computational image processing based morphometry to assess
tumor grade may help overcome some of these challenges.

A small number of recent publications have highlighted the
functional importance of cell shape by using high throughput image
analysis to characterize the relation between cellular morphology
and cellular properties. Treiser et al. (2010) used quantitative

Table 3. Accuracy in sample identification of the neural network

Comparison GAA GDA SET ALL

DUNN vs DLM8 1 0.69 0.91 0.83
K12 vs K7M2 0.97 1 0.96 0.73
Saos2 vs SAOS-LM7 0.99 0.99 0.99 0.95
MG63 vs MG63.2 1 1 1 1
All low-met vs all high-met 0.67 0.73 0.88 0.7
All type-1 low-met vs high met 0.89 0.81 0.9 0.9

The numbers represent the proportion of random samples (with sample size
10) from the high metastatic and low metastatic cell lines that were correctly
identified by the neural network algorithm. The accuracy is the proportion of
the sum of true positives and true negatives to all cases (see Materials and
Methods section), hence the maximum possible accuracy is 1. Each row is a
different comparison as specified, and the columns represent the three
surfaces separately and combined (last column). The surface abbreviations
are as follows. GAA, glass acid etched; GDA, glass detergent washed; SET,
siliconized glass, ethanol treated.
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morphometric descriptors along withMDS to predict differentiation
of mesenchymal stem cells along bone or fat lineages at an early
time point. They showed that subtle genetic differences between
cells proceeding down the two lineages could be inferred from
looking at small changes in cellular morphometrics. Yin et al.
(2013) utilized high throughput imaging and computational
methods to classify Drosophila haemocyte cells into five discrete
shapes based upon quantitative shape and morphology metrics, and
argued that transitions between these shapes are switch-like. They
utilized RNAi to identify genes which play a large role in regulating
cell shape, including demonstrating that the loss of PTEN induces
elongation of cells. They did not however look for systematic
differences between closely related cancer cell lines. While we have
not tried to ascertain whether specific types of shapes are present in
our data, the message of this paper is that differences in quantitative
shape parameters, even within the same type, should carry useful
information about the internal state of the cell. The overlap between
the multidimensional shape parameters in principal component
space or in NMDS space indicates that each pair of the cell lines we
study has not diverged significantly in shape characteristics.
However both these studies support our contention in this paper
that the understanding of cell shape can give significant insight into
cell properties and function.
Studies of metastasis in cancer cells have focused mainly on

changes at the level of gene, protein and microRNA expression, and
to a smaller extent, at the level of cellular mechanics. In contrast our
work demonstrates that these changes do lead to reproducible
changes in shape. More work needs to be done to construct a more
comprehensive typology of shape changes in cancer, especially in
other cancer types, and to achieve a mechanistic understanding of
how changes in gene and protein expression result in changes in cell
shape.

MATERIALS AND METHODS
Cell lines and cell culture
We utilized four paired cell lines; two of murine origin: DUNN and DLM8,
K12 and K7M2, and two of human origin: MG63 and MG63.2, Saos2 and
SAOS-LM7. All metastatic lines (DLM8, K7M2, SAOS-LM7, and
MG63.2) have significantly higher rates of pulmonary metastasis reported
in the literature with a 200-fold increase in MG63.2, 100% efficacy of
DLM8 relative to no pulmonary metastases in DUNN, 100% efficacy of
SAOS-LM7, and a 90% efficacy of K7M2 relative to 33% of K12.
Additionally, MG63.2, DLM8, SAOS-LM7 and K7M32 cells were reported
to show greater migration and invasion than their low-metastatic
counterparts: MG63, DUNN, Saos2 and K12 (Asai et al., 1998; Jia et al.,
1999; Khanna et al., 2000; Su et al., 2009). MG63.2 is reported to have
weaker heterotypic adhesion than MG63, while K7M2 have higher initial
rates of adhesion but no difference in ultimate adhesion (Khanna et al.,
2000; Su et al., 2009).

DUNN, DLM8, K12, and K7M2 cell lines were a gift from Dr D. Thamm
(Colorado State University, CO, USA), MG63 andMG63.2 cell lines were a
gift fromDr D. Duval (Colorado State University, CO, USA), and Saos2 and
SAOS-LM7 a gift from Dr E. S. Kleinerman (MD Anderson Cancer Center,
TX, USA). All cell lines were maintained under typical culture conditions at
37°C and 5% carbon dioxide concentration in Dulbecco’s Modified Eagle
Medium (DMEM) (Sigma). DMEM was supplemented with 10% fetal
bovine serum (Atlas Biologicals), 20 mMHepes (Sigma), and 100 Units/ml
penicillin with 100 µg/ml streptomycin (Fisher Scientific-Hyclone). Cell
lines were not independently authenticated or tested for contamination
by us.

Immunofluorescence microscopy
Cells were cultured on indicated substrate for 48 h. Cells were stained with
Wheat Germ Agglutinin, Alexa Fluor 594 Conjugate (Molecular Probes).

Cells were fixed in 4% paraformaldehyde then stained with Alexa Fluor 488
Phalloidin and DAPI (Molecular Probes). Cells were imaged under a 20×
objective on a Zeiss Axioplan 2 fluorescence microscope (Zeiss,
Thornwood, NY, USA) using filter sets: DAPI BP 445/50 blue filter, HQ
Texas Red BP 560/40, and Green BP 474/28.

Preparation of surfaces
Three different surfaces were prepared for this work from either a #1.5
22 mm×22 mm glass coverslip (Richard Allen Scientific) or a #2
22 mm×22 mm siliconized glass coverslip (Hampton Research). The
formulated surfaces follow: glass detergent washed and air dried (GDA),
glass acid etched and air dried (GAA), and siliconized ethanol treated (SET).
GAA andGDA surfaces were initially prepared by sonication for 30 min in a
mild detergent solution. Following sonication, the coverslips were
sequentially rinsed with Milli-Q (MQ) water, isopropyl alcohol (IPA),
and a second rinse with MQ water prior to any further downstream
processing. In the case of the GDA surface, no further downstream
processing was required and the surfaces were blown dry with sterile 0.2 µm
filtered nitrogen with an air gun from an in house boil off nitrogen source.
GAA surface was subjected to a downstream 1 M hydrochloric acid etching
at 60°C for 12-16 h. After the etching period, the coverslips went through
the same rinse process described above (MQ to IPA back to MQ) before
being blown dry in the same manner as the GDA surface. The SET surface
was subjected to a rinse in 100% ethyl alcohol and then they were blown dry
with the nitrogen gun to ensure removal of any residual liquid and debris.
Prior to use in cell culture, all surfaces were exposed to UV sterilization to
minimize potential contamination risks.

Contact angle measurements
Contact angles for different substrates were measured using sessile drop
method by Rame Hart Goniometer (Model # 100_25_M). 3 µl of Milli-Q
water were placed on XYZ plane using needle. Images were captured and
analyzed using Rame Hart DROP Image Advanced software. Contact angle
were measured for three different spot on one slide and this was repeated
three times on different slides to see variability of slide’s contact angle.
Representative images are shown in Fig. S1.

Cell volume measurement using Scepter cell counter
Volume measurements were made by the Scepter™ Handheld Automated
Cell Counter, Millipore, with a 60 µm sensor. First, cells were plated in a
culture dish. Once they were ready to be split, they were trypsinized and re-
suspended in 1× PBS. After checking that cell density was in the operating
range (10,000-500,000 cells/ml) the Scepter sensor was submerged in the
cell suspension. The upper and lower gates were adjusted to remove debris
information, and cell volume information recorded.

The distributions of cell volumes werewell approximated by a log-normal
distribution. Thus we log-transformed and calculated the mean and the
standard error of the mean of the resulting normal distribution. The mean
cell volume for the cell lines were 1.01, 1.12, 1.60, 1.41, 1.49, 1.43, 1.66,
1.80 pl for DUNN, DLM8, K12, K7M2, Saos2, SAOS-LM7, MG63 and
MG63.2, respectively. Thus the percentage differences between the volume
of the high-met line from the low-met line are−10.9% (D lines), +11.9% (K
lines), +4% (S lines) and −8.4% (M lines). We performed t-tests against the
null hypothesis that the volume data for both pairs of each paired line came
from a distribution with the same mean. The mean volumes for the two
partners in a paired line were statistically different from each other, with P-
values much smaller than 0.05 in each case.

Image processing
Images of isolated cells that were not in contact with other cells were chosen.
To ensure adequate statistical power we picked a sample of 100 such cell
images (so that the power of the test for comparing means would be 80% at
1% significance level for a half-standard deviation effect size). Images were
collected blind in the sense that the students doing the imaging were not
previously aware of any differentiating characteristics discovered. The
images were collected at one time for each cell line on each surface. The
image processing involved three distinct steps; enhancement, conversion
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into binary format, and automated cropping of each cell for measurement of
shape metrics. Three channels were captured as described above. Prior to
processing the images were converted into 16 bit TIFF images. The exported
TIFF images were loaded into MATLAB where the actin, membrane, and
nuclei channels were enhanced separately by contrast stretching. The actin
and membrane images were combined into a single TIFF images to get full
characterization of the shape. Finally, erosion with a three pixel mask was
applied to sharpen edge boundaries. The enhanced TIFF images of the
combined membrane-actin image and separate nuclei image were exported
into ImageJ analysis for manual conversion into binary formatted images by
thresholding (a representative example is shown in Fig. S2). Once the
images had been converted into binary format, they were again loaded into
MATLAB for shape analysis. Segmentation was achieved through use of the
built-in MATLAB function toolbox so each cell could be individually
cropped and reconstructed in a new image in which shape measurements
(listed in Table S1) could be made on both the cell and corresponding nuclei
and stored for statistical analysis. Minimum Bounding Circle was found
using MATLAB function minboundcircle, open source code developed
by John D’Errico (http://www.mathworks.com/matlabcentral/fileexchange/
34767-a-suite-of-minimal-bounding-objects/content/MinBoundSuite/
minboundcircle.m). Scripts for image processing will be made available
upon request.

Data analysis
t-test
Individual cell metrics were compared as discussed in the results section
utilizing the built in MATLAB ttest2 function which returns a test for the
null hypothesis that the data come from independent random samples with
normal distributions and equal means without assuming equal variance.
This is a two-tailed test. The null hypothesis is initially rejected at a 5%
significance level. All 29 parameters are then retested with the significance
level determined by the Holm–Bonferroni correction for multiple tests.

Principal component analysis (PCA)
PCA is a method to project each sample in specific dimension to a space
with equal or smaller dimension. This process is done in such a way that the
first principal component has the maximum variance, second principal
component has the next maximum variance, and this rule continues for
subsequent components. The principal component vectors also form an
orthogonal basis. We used singular value decomposition (SVD) to perform
PCA on the data. First, data was standardized so that mean of new data is
zero and standard deviation is 1. Then, SVD of the data was computed and
the principal components extracted from the right singular vectors of the
data. Each data point was then projected into the space formed by the first
three principal components, and was plotted for visualization. The variance
captured by the first three principal components lie in the range 44%-47% of
the total variance for every comparison made.

Nonmetric multidimensional scaling (NMDS)
We performed separate analyses for each of the three surfaces (GAA,
GDA, SET) and each paired cell line (D, K, S and M). First, each of the
29 cell morphology variables was relativized by dividing each value by
the maximum value. Statistical software R (version 3.1.2) and package
vegan were used to perform all statistical analyses. The Bray–Curtis
dissimilarity index was used to perform NMDS. Based on observed
stress, convergence behavior, Shepard plots, and parsimony, k was
chosen to be 3.

The ordination pattern was scaled as follows before plotting. First,
centering was done to move the origin to the average of the axes. Second,
principal components were used to rotate the configuration so that the
variance of points was maximized for the first dimension, with the second
dimension explaining the maximum variance of points unexplained by the
first. We then displayed the ordination pattern in 2-space. For the factor
‘Metastatic capacity’ (with levels Low and High) and the factor ‘cell line
pair’ (with levels D, K, M, and S), we generated two separate color-coded
plots with 95% confidence ellipses and labeled locations of the level
centroids. For GAA, GDA, and SET, observed stresses were approximately
0.07, 0.07, and 0.08.

Permutational multivariate analysis of variance using Bray–Curtis
distance between cells (PERMANOVA) was used to obtain R2 values for
‘metastatic capacity’. Specifically, R2 is a measure of the proportion of the
data (distance) variation explained by ‘metastatic capacity’.

Machine learning
A multilayer perceptron (MLP) neural network with one hidden layer,
adapted with permission from a version used by Dr Charles Anderson for
teaching (http://www.cs.colostate.edu/∼anderson/cs545/index.html/doku.
php), was used to classify data, and is available from the corresponding
author upon request. A back-propagation learning algorithm, which uses a
scaled conjugate gradient (SCG), was used to design the MLP and tanh(x)
was used as the activation function. The SCG was adapted from Nabney’s
netlab library (Møller, 1993; Nabney, 2002). Each data set was partitioned
into test, training and validation data at 50%, 25%, and 25% of data
respectively. The test and training data sets were used to find the best
attribute combinations, number of hidden units and weight parameter values
in the non-linear logistic regression model. Initial parameters are chosen
randomly. Training data was used to fit parameters by maximizing a
likelihood function; testing data was then used to calculate the percentage of
cells classified correctly (test percent). To optimize the model, training and
test data were repartitioned and an average test percent was calculated for
different attribute combinations and function structure; we selected the
optimal attribute combination and function structure based on the maximum
average test percent. After the function structure was chosen the test and
training data sets were combined for one last round of optimization of the
weights. The optimized model was then used to predict the class that each
individual cell in the validation data belongs towith no further adjustment of
parameters.

To test the accuracy on random samples of cells from each population,
after identifying the function structure with the training and test data, we
took 100 random paired samples of 10 cells each from the validation data
set. The percentage of cells in each sample predicted to be class 1 are
recorded (P). Thus the percentage of cells predicted to be class 2=1−P.
A decision threshold was determined utilizing the false negative rate (FNR)
and true positive rate (TPR).When Pwas bigger than the decision threshold,
the sample was classified as class 1, and when it was smaller than the
decision threshold as class 2. As detailed in Table S4, the threshold was
optimal at 0.6. From the total 100 pairs, the true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) were calculated. Using this
information, accuracy, false negative rate (FNR) and true negative rate
(TPR) were calculated as defined below:

Accuracy =
TP + TN

TN + FN + TP + FP
;

FNR =
FN

FN + TP
;

TPR =
TP

FN + TP
:
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