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A B S T R A C T   

Patients with COVID-19 have high prevalence of albuminuria which is used as a marker of progression of renal 
disease and is associated with severe COVID-19. We hypothesized that SARS-CoV-2 spike protein (S protein) 
could modulate albumin handling in proximal tubule epithelial cells (PTECs) and, consequently contribute to the 
albuminuria observed in patients with COVID-19. In this context, the possible effect of S protein on albumin 
endocytosis in PTECs was investigated. Two PTEC lines were used: HEK-293A and LLC-PK1. Incubation of both 
cell types with S protein for 16 h inhibited albumin uptake at the same magnitude. This effect was associated 
with canonical megalin-mediated albumin endocytosis because: (1) DQ-albumin uptake, a marker of the lyso-
somal degradation pathway, was reduced at a similar level compared with fluorescein isothiocyanate (FITC)- 
albumin uptake; (2) dextran-FITC uptake, a marker of fluid-phase endocytosis, was not changed; (3) cell viability 
and proliferation were not changed. The inhibitory effect of S protein on albumin uptake was only observed 
when it was added at the luminal membrane, and it did not involve the ACE2/Ang II/AT1R axis. Although both 
cells uptake S protein, it does not seem to be required for modulation of albumin endocytosis. The mechanism 
underlying the inhibition of albumin uptake by S protein encompasses a decrease in megalin expression without 
changes in megalin trafficking and stability. These results reveal a possible mechanism to explain the albu-
minuria observed in patients with COVID-19.   

1. Introduction 

Severe COVID-19 involves multiple organ damage (MOD), including 
kidney damage [1,2]. Some studies have reported a correlation between 
acute kidney injury (AKI) and worse outcome in patients with COVID-19 
[3–5], with increased morbidity and mortality [6]. However, this sce-
nario could be worse because some patients with COVID-19 present si-
lent renal injury (subclinical acute kidney injury [subAKI]) 
characterized by tubular damage without changes in the estimated 
glomerular flow rate (eGFR) [3,4]. Accordingly, a higher prevalence of 
albuminuria in patients with COVID-19 has been observed, even in those 
who do not develop AKI [7]. Albuminuria is a well-known marker of 

progression of renal disease and is associated with severe COVID-19 [3]. 
To date, the mechanism underlying albuminuria in patients with 
COVID-19 requires elucidation. In this context, its identification could 
open new perspectives to understand the pathogenesis of kidney damage 
in patients with COVID-19. 

One important clue is provided by the observation that some patients 
with COVID-19 develop Fanconi-like syndrome characterized by prox-
imal tubule (PT) injury associated with low-molecular-weight protein-
uria and albuminuria. This syndrome encompasses changes in PT 
protein endocytic machinery [8,9]. Protein reabsorption in proximal 
tubule epithelial cells (PTECs) occurs mainly via a canonical receptor- 
mediated endocytosis where the receptor is formed by the assembly of 
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three proteins: megalin, cubilin and amnionless (AMN) [10]. Megalin 
(LRP2) is a scavenger receptor that belongs to the LDL-like receptor 
family of proteins [11]. It works in association with the complex cubilin 
and amnionless (CUBAM) to promote protein reabsorption in PTECs 
[10,11]. Megalin plays a crucial role in the internalization of this com-
plex with protein targeted to lysosome degradation. Kidney biopsy 
samples from patients with COVID-19 revealed a decrease in megalin 
expression in PTECs without changes in aquaporin 1 (AQ1) [8]. These 
observations suggest that megalin-mediated albumin reabsorption in 
PTECs could be involved in the albuminuria observed in COVID-19. 

SARS-CoV-2 infection initially involves engagement of the SARS- 
CoV-2 spike protein (S protein) to angiotensin converting enzyme type 
2 (ACE2) present at the cell surface of diverse cell types [12]. However, 
the mechanism of COVID-19 pathogenesis could be more complex than 
has been imagined so far. One attractive hypothesis is the possible role 
of different proteins of SARS-CoV-2 in this process. Some authors have 
proposed that S protein, a structural glycoprotein, could also play an 
important role in the pathogenesis of COVID-19 [13–16]. It was 
observed that isolated S protein modulates cellular function in different 
cell types such as monocytes and endothelial and heart pericytes 
[14–16]. In addition, S protein was found in the urine of patients with 
COVID-19, indicating its presence in the luminal side of PTECs and 
suggesting a possible effect on modulation of the function of PTECs [17]. 

Based on these observations, we hypothesized that isolated S protein 
could modulate albumin handling in PTECs and, consequently 
contribute to the albuminuria observed in patients with COVID-19. In 
the present study, we investigated the possible effect of S protein on 
albumin endocytosis in PTECs. LLC-PK1, a porcine PTEC cell line, and 
HEK-293, a human embryonic kidney cell line, were used. S protein 
inhibited megalin-mediated albumin endocytosis in both cell types. This 
inhibitory effect was associated with a decrease in megalin expression. 

2. Methods 

2.1. Materials and reagents 

LLC-PK1 and HEK-293A cells were obtained from ATCC (Manassas, 
VA, USA). Thincert cell culture inserts for 12-well plates (0.4-μm 
diameter) were obtained from GreinerBio-One GmbH (Kremsmünster, 
Upper Austria, Austria). Bovine serum albumin (BSA), fluorescein iso-
thiocyanate (FITC)-conjugated BSA (BSA-FITC), FITC-dextran and 
cycloheximide were purchased from Sigma-Aldrich (St Louis, MO, USA). 
Low- or high-glucose Dulbecco's modified Eagle's medium (DMEM), 
fetal bovine serum (FBS), antibiotic-antimycotic (#15240062), DQ 
green BSA, polyclonal Alexa-488 conjugated anti-rabbit IgG antibody 
(A32731), polyclonal Alexa Fluor 594-conjugated anti-rabbit IgG anti-
body (A32754), polyclonal Alexa-488 conjugated anti-mouse IgG anti-
body (A32723), polyclonal Alexa Fluor 594-conjugated anti-mouse IgG 
antibody A32744) were purchased from Thermo Fisher Scientific 
(Waltham, MA, USA). Monoclonal mouse anti-HA antibody (HA.11) was 
purchased from Covance (Princeton, NJ, USA). Polyclonal rabbit anti- 
megalin (ab76969), monoclonal rabbit anti-ACE2 (ab108252) and 
monoclonal mouse anti-aquaporin 1 (AQP1) (ab9566) antibodies were 
purchased from Abcam (Boston, MA, USA). Monoclonal mouse anti- 
SARS-CoV/SARS-CoV-2 (COVID-19) spike antibody (GTX632604) was 
purchased from Genetex (Irvine, CA, USA). Monoclonal rabbit anti- 
LAMP1 (9091), polyclonal rabbit anti-EEA1 (#2411), monoclonal rab-
bit anti-β-actin (4970), HRP-conjugated anti-mouse IgG (7076) and 
HRP-conjugated anti-rabbit IgG (7074) antibodies were obtained from 
Cell Signaling Tech. (Danvers, MA, USA). VECTASHIELD antifade 
mounting medium was obtained from Vector Laboratories (Burlingame, 
CA, USA). Polyvinylidene difluoride (PVDF) membranes were obtained 
from Merck KGaA (Darmstadt, Germany). All other reagents were pur-
chased from Sigma-Aldrich. 

2.2. Isolation of SARS-COV-2 spike protein 

Recombinant Wuhan S protein with the same sequence as previously 
published by Wrapp et al. [18] was kindly provided by Dr. Leda Castillo 
of Cell Culture and Engineering Laboratory at Federal University of Rio 
de Janeiro. Briefly, it was produced by heterologous expression in HEK- 
293-3F6 cells and purified using affinity chromatography as described 
by Cunha et al. [19]. 

2.3. Culture of kidney cell lines 

LLC-PK1 cells, a well-characterized porcine PT cell line, were 
cultured in low-glucose DMEM supplemented with 10 % heat- 
inactivated FBS and 1 % antibiotic-antimycotic at 37 ◦C in 5 % CO2 
[20]. HEK-293A cells, a parental human embryonic kidney cell line, 
were cultured in high-glucose DMEM supplemented with 10 % heat- 
inactivated FBS and 1 % antibiotic-antimycotic at 37 ◦C in 5 % CO2 
[21]. When indicated, cells were grown in Thincert cell culture inserts 
(0.4-μm diameter), 13-mm-diameter round glass coverslips or culture 
dishes. After reaching the indicated confluence, cells were incubated 
with 5 μg/mL S protein and/or different compounds as indicated in the 
figure legends. After treatment, the cells were used in different experi-
mental assays. 

2.4. Plasmid and siRNA transfection 

LLC-PK1 cells were stably transfected with MegT0-HA plasmid, 
which contains a truncated form of megalin that lacks the extracellular 
domain and is tagged with hemagglutinin (HA), as previously described 
[20]. Porcine Megalin siRNA (BIAGB-000005) and siGENOME control 
pool non-targeting (D-001206-13-05) were purchased from Dharmacon 
(Lafayette, CO, USA). LLC-PK1 cells were transfected with lipofectamine 
2000 reagent (Thermo Fisher Scientific, Waltham, MA, USA) following 
the manufacturer's instructions. For stable transfection with MegT0-HA, 
transfected cells were selected using 1.0 mg/mL G418 (Sigma-Aldrich, 
St. Louis, MO, USA). After 9 days, cells were maintained at 0.5 mg/mL 
G418 and used for the subsequent experiments. For siRNA experiments, 
cells were used after 72 h of transfection. 

2.5. Measurement of receptor-mediated albumin endocytosis, fluid-phase 
albumin endocytosis and albumin lysosomal degradation 

BSA-FITC, dextran-FITC or DQ-albumin were used as markers to 
assess receptor-mediated albumin endocytosis, fluid-phase albumin 
endocytosis and lysosomal albumin degradation, respectively [20]. Cells 
were incubated with 100 μg/mL of these compounds for 30 min (BSA- 
FITC, dextran-FITC) or 60 min (DQ-albumin) at 37 ◦C. Blank conditions 
were obtained in cells co-incubated with 100 mg/mL non-labeled BSA or 
in the absence of dextran-FITC. Non-internalized tracers were removed 
by washing the cells using ice-cold Ringer's solution (20 mM HEPES-Tris 
[pH 7.4] containing 140 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl2, 1 mM 
MgCl2 and 5 mM D(+)-glucose) at least 11 times. Cells were incubated 
with ice-cold lysis buffer (0.1 % Triton X-100 diluted in 20 mM MOPS- 
Tris buffer [pH 7.4]). The samples were harvested and the cell- 
associated fluorescence intensity was determined by fluorimetry. Rela-
tive fluorescence units (excitation = 480 nm, emission = 520 nm) were 
obtained using a microplate spectrofluorimeter (SpectraMax M5, Mo-
lecular Devices, San Jose, CA, USA). Protein concentration was evalu-
ated by the Folin phenol method [22]. The specific measurements were 
calculated as arbitrary units: (relative fluorescence units of the sample 
− relative fluorescence units of the blank) and normalized by the total 
protein concentration. 

LLC-PK1 and HEK-293A cells were cultured in glass coverslips for 
measurements using fluorescence microscopy. Nuclei were stained with 
DAPI and the coverslips were mounted using VECTASHIELD antifade 
mounting medium. The cell images were acquired using a Nikon80i 
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epifluorescence microscope (Nikon Corporation, Tokyo, Japan) and 
cellular fluorescence intensity was determined using Fiji software. 
Specific BSA-FITC uptake was calculated as arbitrary units: (fluores-
cence units of the sample − fluorescence units of the blank) / cell 
number (counted by DAPI+ nuclei). Data were expressed as relative 
units (compared with control conditions). 

2.6. Immunofluorescence and confocal analysis 

Immunofluorescence and confocal analysis were carried out as re-
ported previously [18]. Cells were fixed with 4 % paraformaldehyde for 
15 min, permeabilized with 0.05 % saponin in PBS for 15 min, and non- 
specific binding sites blocked with 5 % BSA in PBS for 1 h at room 
temperature. Primary antibodies were incubated for 1 h at room tem-
perature following the manufacturer's instructions. The cells were then 
washed with PBS and the secondary antibodies were incubated for 1 h at 
room temperature following the manufacturer's instructions. When 
indicated, the nuclei were stained with DAPI. Samples were mounted 
with VECTASHIELD antifade mounting medium and cell images were 
acquired and analyzed in a confocal microscope (Leica TCS SP8; Leica, 
Wetzlar, Germany). Image processing and analysis was performed with 
Fiji software. The colocalization rate was determined by the Pearson 
coefficient using the Coloc2 plugin (Fiji software). 

2.7. Megalin expression determined by immunofluorescence 

Total megalin expression was measured by immunofluorescence as 
described previously [23]. LLC-PK1 and HEK-293A cells were grown in 
coverslips until 60 %–70 % confluence was reached. Cells were incu-
bated with 1:100 polyclonal rabbit anti-megalin antibody following the 
manufacturer's instructions. After washing out, the cells were incubated 
with 1:200 polyclonal Alexa-488 conjugated anti-rabbit IgG antibody. 
The levels of megalin expression were determined by the fluorescence 
intensity per cell (counted by DAPI+ nuclei). 

2.8. Assessment of LLC-PK1 cell polarity 

Cells were grown in Thincert cell culture inserts and allowed to grow 
until 90 % confluence was reached. Then, the inserts were recovered and 
mounted to assess luminal megalin expression, used to determine the 
cell polarity, through confocal microscopy. Intensity plots (gray values) 
show the distribution of megalin expression across the cell height. Data 
are presented as relative units. 

2.9. Colocalization between S protein and ACE2 

LLC-PK1 and HEK-293A cells were grown in coverslips until reach 
60 %–70 % confluence was reached. Cells were incubated with 1:100 
monoclonal mouse anti-S protein and 1:100 monoclonal rabbit anti- 
ACE2 antibodies. After washing out, the cells were incubated with 
1:200 polyclonal Alexa Fluor 488-conjugated anti-mouse IgG and 1:200 
polyclonal Alexa Fluor 594-conjugated anti-rabbit IgG antibodies. 
Coverslips were mounted, and the cell images were analyzed by confocal 
microscopy. Data are presented as the Pearson coefficient obtained per 
cell. 

2.10. Assessment of cellular megalin trafficking 

The assessment of cellular megalin trafficking was performed as 
published previously [23]. Initially, LLC-PK1 cells, stably transfected 
with megT0-HA, were seeded and grown in coverslips until reach 60 %– 
70 % confluence was reached. Colocalization between megT0-HA with 
EEA1 (a marker of early endosomes) or LAMP1 (a marker of lysosomes) 
was assessed to assess megalin trafficking to early endosomes or lyso-
somes, respectively. Cells were incubated for 1 h with 1:100 monoclonal 
mouse anti-HA and 1:50 polyclonal rabbit anti-EEA1 or monoclonal 

rabbit anti-LAMP1 antibodies simultaneously. Polyclonal Alexa Fluor 
594-conjugated anti-mouse IgG (dilution 1:200) and polyclonal Alexa 
Fluor 488-conjugated anti-rabbit IgG (dilution 1:100) antibodies were 
used as secondary antibodies. Coverslips were mounted and the cell 
images were analyzed by confocal microscopy. Data are presented as the 
Pearson coefficient obtained per cell. 

2.11. Protein expression measurement by flow cytometry 

Flow cytometry was performed as published previously [23]. After 
incubation of LLC-PK1 and HEK-293A cells with S protein, the cells were 
washed out twice with PBS, harvested with trypsin/EDTA for 3 min and 
centrifuge at 2500 ×g for 5 min. Pellets were resuspended in PBS con-
taining 5 % FBS, fixed with 4 % paraformaldehyde and permeabilized 
with 0.1 % Triton X-100. Primary antibodies for monoclonal mouse anti- 
S protein, monoclonal rabbit anti-ACE2, polyclonal rabbit anti-megalin 
or monoclonal rabbit anti-AQP1 (dilutions 1:100) were used according 
to the manufacturer's instructions. After washing the unbound anti-
bodies using the permeabilization solution, the samples were incubated 
with appropriate secondary antibodies (dilutions 1:200) as indicated in 
the manufacturer's instructions. Specificity control was carried out by 
incubation of the secondary antibody alone. The flow cytometry analysis 
was carried out using a BD FACSCalibur cytometer (BD Biosciences, San 
Jose, CA) and the data were analyzed with FlowJo software (version 
10.8; BD Biosciences). 

2.12. Cell viability 

Cell viability was determined by Annexin V and propidium iodide 
(PI) staining as recommended by the manufacturer (catalog no. 556547; 
BD Biosciences). Briefly, after the incubation with S protein, cells were 
washed out twice with PBS and harvested with trypsin-EDTA solution 
for 2 min. Then, DMEM supplemented with 10 % FBS was added and the 
cells were centrifuged at 2500 ×g for 5 min; 10− 6 cells were resuspended 
in buffer solution (catalog no. 556547; BD Biosciences). Annexin V and 
PI were added and the cells were incubated in the dark for 15 min. Cells 
were acquired in a FACSCalibur cytometer (BD Biosciences) and 
analyzed using the FlowJo software (version 10.8; BD Biosciences). 

2.13. Cell proliferation 

Cell proliferation was assessed using CellTrace CFSE as described by 
the manufacturer (catalog no. C34554; Invitrogen, Thermo Fisher Sci-
entific). Briefly, the cell suspension was centrifuged at 2500 ×g for 5 min 
and the cells were resuspended in CellTrace CFSE staining solution for 
20 min at 37 ◦C. The cells were washed out, centrifuged for 2500 ×g for 
5 min, resuspended in DMEM with 10 % FBA and grown in six-well 
plates for 3 days. At this point, an aliquot was taken to analyze the 
maximum CFSE staining. S protein was added in the last 16 h. At the 
end, CFSE staining was analyzed to assess cell proliferation. Cells were 
acquired in a FACSCalibur cytometer (BD Biosciences) and analyzed 
using the FlowJo software (version 10.8; BD Biosciences). 

2.14. Assessment of megalin stability 

Megalin stability was assessed using the cycloheximide pulse-chase 
method [24]. Briefly, LLC-PK1 cells transfected with MegT0-HA were 
incubated or not with 5 μg/mL S protein overnight. Then, 10 μg/mL 
cycloheximide (a protein synthesis inhibitor) was added at different 
periods as indicated in the figure legends. Cells were washed out with 
PBS and incubated with lysis buffer (20 mM HEPES [pH 7.4], 2 mM 
EGTA, 1 % Triton X-100, 0.01 % SDS, 50 mM sodium fluoride, 5 mM 
sodium pyrophosphate, 5 mM sodium orthovanadate, 10 mM sodium 
β-glycerophosphate, 1 mM PMSF, 1× complete protease inhibitor 
[Sigma]) for 40 min. Then, the samples were cleared by centrifugation 
(1000 ×g for 10 min at 4 ◦C) and the supernatant was recovered and 

R.P. Silva-Aguiar et al.                                                                                                                                                                                                                        



BBA - Molecular Basis of Disease 1868 (2022) 166496

4

solubilized in Laemmli sample buffer. Megalin expression was deter-
mined by immunoblotting. Proteins (50–60 μg) were resolved in 9 % 
SDS-PAGE and transferred to PVDF membranes. Detection of megT0-HA 
was performed using monoclonal mouse anti-HA (dilution 1:1000, 
overnight, 4 ◦C) and HRP-conjugated anti-mouse IgG (dilution 1:4000, 
1 h, room temperature). Detection of β-actin was performed using rabbit 
anti-β-actin (dilution 1:1000, overnight, 4 ◦C) and HRP-conjugated anti- 
rabbit IgG (dilution 1:5000, 1 h, room temperature) antibodies. After 
antibody labeling, detection was performed using ECL prime as sub-
strate. Images were obtained using the Image Quant LAS4000 Image 
processing system (GE Healthcare Life Sciences, Pittsburgh, PA, USA) 
and analyzed using NIH ImageJ software (version 1.6.0). The level of 
megalin expression was calculated by the ratio of the optical densities of 
megT0-HA and β-actin. Data are presented as arbitrary units. 

2.15. Measurement of angiotensin II levels 

Angiotensin II (Ang II) concentrations were determined by ELISA as 
previously published [25,26]. After treatment, the cell supernatants 
were harvested and clarified by centrifugation at 1000 ×g for 10 min to 
remove any cell debris. Then, 1× complete protease inhibitor (Sigma- 
Aldrich) was added to avoid peptide degradation. The concentration of 
Ang II was determined using an Angiotensin II EIA Kit (#RAB0010) 
purchased from Sigma-Aldrich, following the manufacturer's 
instructions. 

2.16. Statistical analysis 

The results are presented as median (interquartile range). Each point 
(n) represents the mean of 3 different triplicates used in independent 
experiments. The statistical analysis was performed using GraphPad 
Prism 8 (GraphPad Software, San Diego, CA, USA; www.graphpad.com). 
The normality distribution was assessed by the Shapiro-Wilk test. An 
unpaired Student's t-test or Mann-Whitney test was used to compare two 
groups as indicated in the figure legends. For comparison among three 
or more groups, one-way ANOVA followed by Tukey's post hoc test or 
Kruskal-Wallis test followed by Dunn's post hoc test was used as indi-
cated in the figure legends. Significance was determined as P < 0.05. 

3. Results 

3.1. SARS-CoV-2 spike protein modulates albumin endocytosis in 
proximal tubule epithelial cells 

Initially, the effect of S protein on the albumin uptake in PTECs was 
assessed. LLC-PK1 and HEK-293A cells were incubated for 2 or 16 h with 
5 μg/mL of S protein and then albumin endocytosis was measured by 
different methods (Fig. 1A). Using cell-associated fluorescence, it was 
observed that overnight incubation of these cells with S protein 
decreased the uptake of BSA-FITC (Fig. 1B). This effect was not observed 
when cells were incubated for 2 h. Similar results were obtained when 
BSA-FITC uptake was assessed by fluorescence microscopy, as observed 
from BSA-FITC+ puncta inside cells (Fig. 1C, D). It is worth to mention 
that the capacity of BSA-FITC uptake is higher in LLC-PK1 cells than in 
HEK-293A cells (2.5 fold). DQ-BSA was used as a tracer to identify if 
internalized albumin was degraded in lysosomes [27]. S protein also 
inhibited lysosomal albumin degradation, indicating that albumin up-
take follows the canonical pathway (Fig. 1E). On the other hand, fluid- 
phase albumin endocytosis measured by dextran-FITC uptake was not 
changed (Fig. 1F). To date, cell death, measured by Annexin V and PI 
staining, and cell growth, measured by FACS using a CFSE dilution 
assay, were not changed by S protein in both LLC-PK1 and HEK-293A 
cells. These results indicate that the effect of S protein is not associ-
ated with cell viability (Supplementary Fig. 1A, B). 

We then investigated the laterality of the effect of S protein on al-
bumin endocytosis. Because HEK-293A cells do not polarize [28], we 
used only LLC-PK1 cells to address this issue. To address this question, 
LLC-PK1 cells were grown in Transwell inserts and, after confluence was 
reached, S protein was added to the upper (luminal side) or lower 
(basolateral side) chambers (Fig. 2A). Cell polarization was assessed by 
the expression of megalin at the luminal side (Fig. 2B). The effect of S 
protein on albumin endocytosis was observed only when LLC-PK1 cells 
were incubated at the upper chamber (Fig. 2C). 

Because megalin is a scavenger receptor involved in the reabsorption 
of different proteins and peptides, and ACE2 is reported to bind to S 
protein, we decided to investigate the possible involvement of these 
proteins in the uptake of S protein in PTECs. Initially, it was observed 
that the uptake of S protein was higher in HEK-293A cells than in LLC- 
PK1 cells (Fig. 3A, B). Colocalization of S protein uptake (green color) 
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and ACE2 expression (red color) were assessed using the indirect 
immunofluorescence technique. Although LLC-PK1 and HEK-293A cells 
uptake S protein and express ACE2, colocalization was only observed in 
HEK-293A cells (Fig. 3C, D). In agreement, the catalytical ACE2 inhib-
itor MLN-4760 (ACE2i) almost completely abolished S protein uptake in 
HEK-293A cells but not in LLC-PK1 cells (Fig. 3E, F). To test the 
involvement of megalin in S protein uptake in LLC-PK1 cells, the cells 
were transfected with siRNA for megalin (Fig. 3G, H). Megalin expres-
sion was decreased in 26 % in the cells transfected with siRNA compared 
with those transfected with scramble siRNA (scrRNA). This decrease was 
followed by a proportional decrease in S protein uptake. 

So far, our results show that S protein has a specific inhibitory effect 
on canonical megalin-mediated albumin endocytosis in both LLC-PK1 
and HEK-293A cells. On the other hand, S protein uptake is mediated 
preferentially by different pathways in these cells. 

3.2. ACE2 and the inhibitory effect of S protein on albumin uptake 

We then decided to investigate the possible role of ACE2 on the 
inhibitory effect of S protein on albumin uptake. The incubation of LLC- 
PK1 or HEK-293A cells with ACE2i decreased BSA-FITC uptake in a 
similar and non-additive manner to S protein (Fig. 4A, B). In addition, 
we observed that S protein did not change ACE2 expression in LLC-PK1 
and HEK-293A cells (Fig. 4C, D). Because ACE2 breaks down octapep-
tide angiotensin II (Ang II) into heptapeptide angiotensin-(1-7) [Ang(1- 
7)] [29], the Ang II level was assessed in the luminal medium of both 
cells. The Ang II level was not changed by S protein (Fig. 4E). On the 
other hand, the luminal level of Ang II was increased when both cell 
types were incubated with ACE2i alone or simultaneously with S pro-
tein. Moreover, the inhibitory effect of S protein on albumin uptake was 
not modified by addition of losartan, A779, and PD123319, antagonists 
of AT1, MAS, and AT2 receptors, respectively (Fig. 4F, G). Together, 
these data show that ACE2 is not involved in the inhibitory effect of S 
protein on albumin endocytosis. 

3.3. Megalin expression is changed by S protein 

In this step, we investigated the possible effect of S protein on 
cellular megalin trafficking, stability and/or megalin expression in LLC- 
PK1 cells. LLC-PK1 cells were transfected with megalin construct lacking 

the whole extracellular domain tagged with HA epitope (MegT0-HA) 
[7]. This approach is well known to study the traffic and half-life of 
megalin [20,24]. EEA1 and LAMP1 were used as markers of early 
endosomes and lysosomes, respectively. S protein did not change the 
colocalization between MegT0-HA with EEA1 (Fig. 5A, B) or LAMP1 
(Fig. 5A, C). In addition, megalin stability was not changed by incuba-
tion of LLC-PK1 cells with S protein, assessed using the cycloheximide 
(CHX) pulse-chase approach (Fig. 5D, E). 

On the other hand, megalin expression was reduced in LLC-PK1 and 
HEK-293A cells measured by FACS analysis (Fig. 6A–B). Similar inhi-
bition of megalin expression was also observed when immunofluores-
cence visualized by confocal microscopy was used (Fig. 6C, D). These 
results agree with the observed inhibitory effect of S protein on albumin 
endocytosis (Fig. 1B–H). Overnight incubation of the cells with S protein 
had no significant effect on aquaporin-1 (AQ1) expression in LLC-PK1 
and HEK-293A cells (Fig. 6E, F), indicating its specific effect on the al-
bumin endocytosis machinery. 

4. Discussion 

Our study provides a new insight regarding the mechanism under-
lying albuminuria in patients with COVID-19. This process encompasses 
direct modulation of canonical megalin-mediated albumin endocytosis 
in PTECs by S protein due to the reduction in megalin expression. In the 
present study, we used two renal tubular cell lines: LLC-PK1 and HEK- 
293A. Despite being embryonic cells, HEK-293A cells express all com-
ponents of the protein endocytic machinery similar to LLC-PK1 cells 
[30,31]. LLC-PK1 cells form a polarized monolayer and present the main 
characteristic of PTECs [30]. Transcriptomic analysis indicates that LLC- 
PK1 cells have high similarity to mice PTECs [32]. 

The classic mechanism proposed to underly the pathogenesis of 
COVID-19 involves binding of the virus to a specific receptor, usually 
ACE2, which allows infection of the cells, triggering injury and organ 
damage [1,2,12]. Some evidence indicates that S protein, a structural 
protein of SARS-CoV-2, could trigger a cellular response and modulate 
cellular function in different cell types participating in the pathogenesis 
of COVID-19. It was observed that S protein induces a non-infective 
cellular dysfunction of heart pericytes, which could be associated with 
microvascular injury [16]. In addition, Buzhdygan et al. [33] showed 
that S protein induces rupture of endothelial barrier integrity. An S 

Fig. 2. The S protein effect is associated with the 
luminal membrane. (A) Scheme showing the experi-
mental design used. LLC-PK1 cells were seeded on 
Transwell inserts as described in the Materials and 
Methods section. S protein was added in the upper 
chamber or bottom chamber to assess the effect on 
the luminal and basolateral membrane, respectively. 
(B) Representative immunofluorescence images of 
LLC-PK1 cells grown in Transwell inserts (n = 3). 
Megalin (green) and DAPI (blue) are shown. The XZ 
axis shows polarized megalin expression in the apical 
membrane with the intensity plot (gray value) shown 
at the right. Scale bar, 5 μm. (C) BSA-FITC uptake was 
measured by cell-associated fluorescence in cells 
treated in the upper chamber or the bottom chamber 
with 5 μg/mL S protein for 16 h (n = 3). Dashed line 
represents the control, which was taken as 1.0. Data 
are presented as median (interquartile range). *P <
0.05 versus control.   
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protein effect was also observed in C57BL/6J male mice infected with 
spike protein-pseudotyped lentivirus [34]. The presence of spike protein 
in different organs associated with acute pneumonia and the pro- 
inflammatory profile was detected [34]. In the present work, we used 
S protein at 5 μg/mL, a concentration that has been previously used 
[35]. Serum S protein concentration was shown to range from 0.005 to 
0.3 μg/mL [16]. So far, there are no studies regarding the concentration 
of S protein in the lumen of PTs. Massive water reabsorption occurs in 
PTs [36], therefore it is plausible to imagine that the S protein con-
centration could reach a higher value in PTs than in serum. In a study 

with urine collected from 132 participants 25 % presented a mean 
concentration of S protein in the urine of 0.033 μg/μg creatinine [17]. 
Therefore, the S protein concentration at 5 μg/mL could be higher than 
that detected in human PTs of COVID-19 patients what could represent a 
limitation to our study. 

S protein cannot be freely filtrated in the glomerulus due to its size 
(>150 kDa) [37]. Here, we showed that S protein modulates albumin 
endocytosis in LLC-PK1 cells only when added at the luminal side. Then, 
what is the site of origin of the S protein observed in the tubular lumen? 
One possibility could be secretion of S protein to the luminal side of 

Fig. 3. Differential role of megalin and ACE2 in S protein internalization in proximal tubule epithelial cells. (A) S protein uptake in LLC-PK1 cells (blue) and HEK- 
293A cells (gray) (n = 3). (B) Quantification of S protein uptake in each cell line. (C) Representative confocal images of immunofluorescence for S protein (green) and 
ACE2 (red) in LLC-PK1 and HEK-293A cells (n = 3). Scale bar, 10 μm. (D) Colocalization of S protein and ACE2 in LLC-PK1 and HEK-293 cells, measured by Pearson 
coefficient (each point represents single cells of three different experiments). (E, F) Flow cytometry analysis of S protein uptake in LLC-PK1 and HEK-293 cells pre- 
treated or not with 100 nM MLN-4760, ACE2 inhibitor (ACE2i), for 2 h (n = 3 or 4 as indicated at the top of the bars). (G, H) Flow cytometry analysis of megalin 
expression (left) and S protein uptake (right) in LLC-PK1 cells transfected with siRNA scramble or siRNA megalin, as described in the Materials and Methods section 
(n = 3). MFI was calculated as the difference between control (scrRNA, red curve) and siRNA conditions (blue curve) after subtracting the negative control (orange 
curve). Data are presented as median (interquartile range). *P < 0.05 versus control (F, H) or versus LLC-PK1 cells (B, D). 
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SARS-CoV-2-infected tubular and glomerular cells [38]. Once in the 
lumen of PTECs, S protein could modulate the function of PTECs. 
Strengthening this view, George et al. [17] showed that 25 % of SARS- 
CoV-2-positive patients presented urinary S protein, indicating its 
presence in the lumen of tubular segments. They also found a statistical 
correlation between urinary S protein and albuminuria in these patients. 

One important concern is regarding the species of the cells used in 
the present work. Hoffman et al. [39] showed a lower rate of infection of 
LLC-PK1 cells with pseudovirus containing S protein of SARS-CoV-2 
compared with human cell lines. This was associated with a specimen- 
specific interaction between the receptor binding domain (RBD), 
located in the S1 domain of S protein, and ACE2 receptor. Accordingly, 
we observed that HEK-293A cells have more S protein uptake than LLC- 
PK1 cells. Despite the use of cells from different species, S protein 
showed a similar capacity to inhibit albumin uptake and megalin 
expression. These results indicate that the inhibitory effect of S protein 
on albumin endocytosis is dissociated from S protein uptake. Accord-
ingly, Avolio et al. [16] showed that activation of extracellular signal- 
regulated kinase 1/2 (ERK1/2) by S protein, in heart pericytes, is 
mediated by a plasma membrane CD147 receptor. 

It is well known that ACE2 is highly expressed at the luminal mem-
brane of PTECs and responsible for the breakdown of Ang II into Ang(1- 
7) [1,12,39]. The interaction between S protein and ACE2 could 
modulate its activity and, consequently, the balance between these 

peptides [29]. Furthermore, activation of the Ang II/AT1R axis was 
shown to inhibit albumin endocytosis in PTECs [40,41]. Therefore, one 
attractive hypothesis could be involvement of the ACE2/Ang II/AT1R 
axis in the effect of S protein on albumin endocytosis. In agreement, Lei 
et al. [15] showed that S protein induces vascular endothelial cell injury 
due to downregulation of ACE2. Despite all this evidence, the following 
results indicate that the inhibitory effect of S protein canonical megalin- 
mediated albumin endocytosis in LLC-PK1 and HEK-293A cells does not 
involve ACE2 protein: (1) S protein did not change the expression of 
ACE2 and the Ang II level; (2) AT1R, AT2R, and MASR antagonists do 
not modify the inhibitory S protein; (3) ACE2 inhibitor increased the 
Ang II level contrary to S protein. Further experiments are necessary to 
identify the receptor that mediates the effect of S protein on albumin 
uptake. 

Megalin has been shown to be a target of different compounds 
involved in the modulation of albumin reabsorption in PTECs [23,40]. 
Furthermore, some syndromes linked to changes in the function of 
PTECs such as Donnai-Barrow syndrome and Dent disease, have 
decreased surface megalin expression associated with an albuminuria 
phenotype [42,43]. In the present work, we showed that the reduction in 
albumin uptake induced by S protein involves a decrease in total meg-
alin expression without changes in cellular megalin recycling and sta-
bility. In agreement, Werion et al. [8] showed in post-mortem patients 
stricken by COVID-19 a specific reduction in megalin expression in 

Fig. 4. The S protein effect does not involve the ACE2/Ang II/AT1R axis. (A,B) BSA-FITC uptake in (A) LLC-PK1 and (B) HEK-293 cells treated with 5 μg/mL S 
protein, 100 nM ACE2i or both components for 16 h (n = 3 or 5 as indicated at the top of the bars). (C,D) Quantification of ACE2 expression by flow cytometry in LLC- 
PK1 (left) and HEK-293 cells (right) treated with 5 μg/mL S protein for 16 h (n = 3). (E) Quantification of angiotensin II (Ang II) levels through ELISA in the su-
pernatant of LLC-PK1 (left) and HEK-293 cells (right) treated with 5 μg/mL S protein, 100 nM ACE2i inhibitor, or both components for 16 h (n = 3). (F,G) BSA-FITC 
uptake in (F) LLC-PK1 and (G) HEK-293. Cells were treated with 5 μg/mL S protein incubated simultaneously with 100 nM losartan (an AT1R antagonist), 100 nM 
A779 (a MASR antagonist), or 100 nM PD123319 (an AT2R antagonist) (n = 4–9 as indicated in the bars). Dashed lines represent the control, which was taken as 1.0. 
Data are presented as median (interquartile range). *P < 0.05 versus control. 
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PTECs associated with low-molecular-weight proteinuria, neutral 
aminoaciduria, and urinary β2-microglobulin, markers of PT injury. 
Accordingly, Korman et al. [9], using a cohort of 42 patients with 
COVID-19, observed a high frequency of acute Fanconi-like syndrome 
associated with a proteinuria phenotype that could precede initiation of 
AKI. Interestingly, changes in megalin-mediated albumin endocytosis 
have been associated with a pro-inflammatory phenotype and tubule- 
interstitial injury observed in a subAKI animal model [44]. This phe-
nomenon has been postulated to precede the development of AKI in 
patients with COVID-19 [4]. 

Our results are in line with an increasing number of reports 
demonstrating that SARS-CoV-2 S protein per se modulates cellular 
function as observed previously in other cell types [14–16,45]. Thus, in 
addition to viral infection, viral proteins could be a new source of 
cellular response during the onset and progression of COVID-19, playing 
a role in its pathogenesis. Our results suggest that viral S protein could 
participate in the genesis of tubular proteinuria observed with high 
prevalence in patients with COVID-19. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bbadis.2022.166496. 
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