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Abstract

We present the Naive Discriminative Reading Aloud (NDRA) model. The NDRA differs from

existing models of response times in the reading aloud task in two ways. First, a single lexi-

cal architecture is responsible for both word and non-word naming. As such, the model dif-

fers from dual-route models, which consist of both a lexical route and a sub-lexical route that

directly maps orthographic units onto phonological units. Second, the linguistic core of the

NDRA exclusively operates on the basis of the equilibrium equations for the well-established

general human learning algorithm provided by the Rescorla-Wagner model. The model

therefore does not posit language-specific processing mechanisms and avoids the prob-

lems of psychological and neurobiological implausibility associated with alternative compu-

tational implementations. We demonstrate that the single-route discriminative learning

architecture of the NDRA captures a wide range of effects documented in the experimental

reading aloud literature and that the overall fit of the model is at least as good as that of

state-of-the-art dual-route models.

Introduction

Both Coltheart et al. [1] and Perry et al. [2] open what have become canonical papers in the

reading literature with the observation that tremendous advances have been made in the devel-

opment of reading models over the last decades. They note that early cognitive models in psy-

chology provided mainly verbal descriptions of hypothesized cognitive architectures. These

models took the form of flowchart diagrams in which boxes were used to depict mental repre-

sentations, which were manipulated by cognitive processes represented as arrows that con-

nected the various boxes (see Morton [3] for an application of box-and-arrow models to

reading). Although such “verbal” models provide descriptions of behavioral data, their lack of

specificity meant that they could only be related to the psychological and neurobiological real-

ity of language processing at a very abstract level.

The recent development of more formal, computationally implementable models of reading

[1, 2, 4, 5] has done much to address this shortcoming. As Coltheart et al. [1] remark, the

development of a computational model requires a precise specification of any processes and
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representations that are to be implemented. As a result, computational models offer a clear

improvement in specificity over informal “verbal” models of reading. Because computational

models generate precise and explicit predictions, Coltheart et al. [1] continue, it is possible to

evaluate them against existing behavioral data, and even falsify them through later findings. In

addition, recent advances in cognitive and computational neuroscience have provided oppor-

tunities to complement this approach with even more stringent tests that investigate the neuro-

biological plausibility of a model’s architecture and processing mechanisms.

Since the initial implementation of the Dual-Route-Cascaded model by Coltheart et al. [1],

a decade-and-a-half of recursive implementation and assessment of computational models

have provided valuable insights into the successes of and the challenges for models of reading

aloud. Consequently, the qualitative and quantitative performance of current state-of-the-art

models of reading aloud is orders of magnitude better than that of previous generations of

models.

Although current state-of-the-art models of reading aloud [1, 2, 4, 5] differ with respect to

the exact mechanisms they propose, they all divide the process of reading aloud into two

“routes” (i.e., sub-processes). The first route is a “lexical route”, in which mappings from

orthography to phonology are mediated by lexical representations. This allows the reading of

known words such as “wood” and “blood” to be simulated. The second route is a “sub-lexical”

route that directly maps orthographic units onto phonological units and allows for the simula-

tion of reading potentially unknown words, such as “snood”. As such, the general consensus

seems to be that reading aloud is best modeled through a dual-route architecture. To cite

Coltheart et al. [1], p. 303), “Nothing ever guarantees, of course, that any theory in any branch

of science is correct. But if there is no other theory in the field that has been demonstrated

through computational modeling to be both complete and sufficient, resting on laurels is a rea-

sonable thing to do until the emergence of such a competitor—that is, the emergence of a dif-

ferent theory that has also been shown to be both complete and sufficient.”

In what follows, we hope to breathe new life into the single versus dual-route debate by pre-

senting a new single-route model of response times in the reading aloud task, the Naive Dis-

criminative Reading aloud (NDRA) model. The NDRA is an extension of the NDR model for silent

reading by Baayen et al. [6], in which both words and non-words are read through a single lex-

ical architecture. Following the fruitful tradition described above, we evaluate the performance

of the NDRA model for a wide range of effects documented in the experimental word and non-

word naming literature. We show that the NDRA successfully captures the linear and non-linear

characteristics of these effects, as well as a hitherto unobserved frequency effect for non-words.

We further demonstrate that the addition of a sub-lexical route to the NDRA is redundant, in

that it does not improve the performance of the model.

Existing models

In the reading aloud task, participants are presented with printed words on a computer screen

and asked to pronounce these words as quickly and accurately as possible. Orthography and

phonology play an important role in this process. These roles are undisputed in all current

models of reading aloud, which contain both orthographic and phonological representations

in one form or another. The role of semantics has been subject to a little more debate. While

previous single-route models of reading aloud mapped orthography directly onto phonology,

however, the consensus in more recent models is that the orthography-to-phonology mapping

is mediated by semantic representations at least some of the time. Dual-route models of read-

ing aloud have posited that while non-words are read through a direct orthography-to-phonol-

ogy mapping, reading real words involves lexico-semantic representations.

NDRA: A single route model of reading aloud based on discriminative learning
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Below, we discuss some of the existing state-of-the-art models of reading aloud. First, the

triangle model [4, 7, 8] will be introduced. Next, we discuss the Dual-Route Cascaded Model

[1]. We conclude with a description of the model of reading aloud that currently yields the

best simulation results: the Connectionist Dual Process model [2, 5, 9].

The triangle model

The triangle model [4, 7, 8] is a model comprising of three levels of description: orthography,

phonology and semantics. Mappings between these levels of description are implemented as

three-layer connectionist networks. The architecture of the model is presented in Fig 1.

In the original version of the triangle model only the direct mapping from orthography to

phonology was implemented [7]. This original model therefore was a single-route model of

reading aloud that directly mapped orthography onto phonology. Representations consisted of

triplets of orthographic and phonological features [10] (Note, however, that these Wickelfea-

tures were replaced by more localist representations in Plaut et al. [8]). Associations between

these orthographic and phonological units were learned through a 3-layer connectionist

network.

Harm and Seidenberg [4] added semantics to the triangle model. The latest version of the

model therefore has two routes from orthography to phonology. The first route is a direct

mapping from orthography to phonology, as in Seidenberg and McClelland [7]. In the second

route the mapping from orthography to phonology is mediated by semantic representations.

The addition of a second route to the model allowed Harm and Seidenberg [4] to simulate a

number of effects in the experimental literature that were not captured by previous versions of

the triangle model, including effects of homophones and pseudo-homophones.

Being a connectionist model, the triangle model operates on the basis of a general learning

mechanism. As such, the triangle model has increased plausibility over models that posit task-

specific processing mechanisms [11]. Connectionism, however, has its own share of disadvan-

tages. First, most connectionist networks are multi-layer networks, in which the mapping

between input and output units is mediated by one or more layers of hidden units (Note, how-

ever, that Harm and Seidenberg [4] implemented a 2-layer orthography to phonology map-

ping that does not contain hidden units.). The contents of these hidden layer units are opaque.

This reduces the transparency and interpretability of connectionist models [6].

In addition, connectionist models learn through back-propagation of error. In back-propa-

gation learning the model output is compared to the target output. The model weights are

Fig 1. Triangle model. Basic architecture of the triangle model.

https://doi.org/10.1371/journal.pone.0218802.g001
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then updated on the basis of the difference between the model output and the target output

[11, 12]. As noted by Perry et al. [2], back-propagation learning has been criticized for being

neurobiologically implausible [13–16].

The Dual-Route Cascaded model

A second class of models was developed in parallel to the different versions of the triangle

model. While later versions of the triangle model did include a second, lexical route [4], the

Dual-Route Cascaded model (henceforth DRC) [1] was the first computational implementation

of a dual-route architecture. The architecture of the DRC model is displayed in Fig 2.

The first stage of the model is shared by both routes and consists of an interpretation of the

visual input in terms of visual features [17] that activate letter units. From this orthographic

level the phonological representations required for speech can be accessed through two routes.

The sub-lexical route maps letter units directly onto phonemes, whereas in the lexical route

this mapping is mediated by a lexico-semantic system.

Fig 2. DRC model. Basic architecture of the Dual-Route Cascaded (DRC) model.

https://doi.org/10.1371/journal.pone.0218802.g002
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The sub-lexical route of the DRC model is based on grapheme-to-phoneme conversion

rules [18]. This route, which is posited to be necessary for reading non-words, operates seri-

ally in an all-or-none fashion. This sub-lexical route also underlies the successful simulation

of the increased processing costs associated with words with irregular orthography to pho-

nology mappings (i.e., mappings not predicted by the set of rules in the model). As a result of

the all-or-none operation of the grapheme-to-phoneme conversion rules, however, the

model has problems simulating the results of graded consistency experiments in which the

number and frequency of words with consistent (i.e., the same) and inconsistent (i.e., differ-

ent) orthography-to-phonology mappings is taken into account. Furthermore, the rule-based

implementation of the sub-lexical route is psychologically and biologically less plausible than

the learning algorithms that underlie the direct orthography to phonology mapping in other

models. This concern, however, was alleviated by Pritchard et al. (2016) [19], who demon-

strated that the grapheme-to-phoneme rules in the DRC can be learned through implicit

induction [19].

The lexical route of the DRC model is based on the interactive activation model of McClel-

land and Rumelhart [20] and is parallel rather than serial in nature. Like the rule-system in the

sub-lexical route, the interactive activation model in the lexical route of the DRC model is fully

hard-coded and ignores the problem of learning. Pritchard et al. (2018) [21], however, pro-

posed a self-teaching model based on the DRC model. This demonstrates that the architecture

of the DRC is not incompatible with learning. A remaining problem with the DRC model is that

it does not capture a number of important findings in the experimental literature [22, 23] (see

Perry et al. [2] for a comprehensive discussion of the shortcomings of the DRC model in this

respect).

The Connectionist Dual Process model

The latest dual-route model is the Connectionist Dual Process model (henceforth CDP) [2, 5,

9]. Similar to the DRC, the different versions of the CDP model consist of a lexical and a sub-lexi-

cal route. The basic architecture of the CDP model is presented in Fig 3.

The major advancement of the CDP over the DRC model is the implementation of a two-layer

associative learning network in the sub-lexical route [9, 24]. To learn the connection strengths

between orthographic and phonological units the network uses the delta rule [25], which is a

general algorithm for human learning [26]. As such, the implementation of the sub-lexical

route of the CDP models is an important step towards a neurobiologically plausible model of

reading aloud. In the most current versions of the CDP model this learning network was com-

plemented with a graphemic buffer in the sub-lexical route [2]. This graphemic buffer orga-

nizes the orthographic information into a graphosyllabic template that uses the most frequent

graphemes as representational units [5, 27].

In the original CDP model the lexical route was, in the words of Perry et al. [2], p. 297), “not

implemented beyond the provision of frequency-weighted lexical phonological activation”

(see Zorzi et al. [9]). The CDP+ model [2] implemented the lexical route of the DRC model to

overcome this problem. In doing so, however, the latest versions of the CDP model inherited

the problems of interactive activation models. As such, one of the problems of the CDP+ model

is that there is no learning in the lexical route (see Perry et al. [2], p. 303).

The lexical and sub-lexical routes of the CDP+ model are connected at the orthographic

input and phonological output levels. On the input side of the model the visual input (i.e., the

printed word) is first decoded into features with a slightly altered version of the McClelland

and Rumelhart [20] feature detectors. These features are then translated into letters. At the

NDRA: A single route model of reading aloud based on discriminative learning
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output side of the model the information from the lexical and sub-lexical routes is integrated

in a phonological decision system. Naming latencies in the CDP+ model are based on a settling

criterion that terminates processing when the network is in a stable state [9].

In a comprehensive study, Perry et al. [2] demonstrated that the CDP+ model accounts for a

wide range of experimental findings and shows item-level correlations with observed naming

latencies that are an order of magnitude higher than those in the DRC and the triangle model.

We therefore consider the CDP+ model the leading model of reading aloud.

In a recent extension of the CDP+, Perry et al. [5] extended the model to bi-syllabic reading

aloud. This CDP++ model correctly captures a number of experimental effects that are specifi-

cally relevant for multi-syllabic words, including effects of stress and the number of syllables.

For mono-syllabic words, the CDP++ model behaves similar to the CDP+ model, with minor

changes in parameter settings and the assignment of graphemes to slots in the graphemic

buffer.

Fig 3. CDP model. Basic architecture of the Connectionist Dual Process (CDP) model.

https://doi.org/10.1371/journal.pone.0218802.g003
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The Naive Discriminative Reading Aloud model

Here, we propose the Naive Discriminative Reading Aloud (NDRA) model of response times in

the reading aloud task. The NDRA differs from existing models of reading aloud in two ways.

First, the computational implementation of the NDRA is entirely based on the general princi-

ples of human learning described by the Rescorla-Wagner equations [28]. These equations

are similar to the delta rule that is used in the sub-lexical network of the CDP model. As such,

the NDRA stands in sharp contrast to the lexical route of the CDP and DRC models, which are

based on the interactive activation model of McClelland and Rumelhart [20]. The computa-

tional engine of the NDRA also differs substantially from the connectionist networks that

underlie the triangle model. It uses simple, transparent two-layer learning networks that

directly map input units onto output units. In contrast to connectionist networks, these net-

works do not rely on the often uninterpretable hidden layer units or back-propagation of

error. We provide a detailed description of the Rescorla-Wagner learning principles below

[28].

Second, unlike the models discussed in the previous section, the NDRA consists of a

single lexical architecture. The most recent version of the triangle model and the DRC

and CDP models assume the use of both a lexical and a sub-lexical route in reading aloud,

whereas the earlier single-route implementations of the triangle model were sub-lexical in

nature. By contrast, NDRA applies a single lexical mechanism in both word and non-word

reading.

The architecture for word reading in the NDRA is straightforward and similar to the processes

underlying word reading in the lexical routes of existing models. Visual stimuli activate ortho-

graphic units. These orthographic units activate lexical representations of target words. In

addition, they spread activation to lexical representations of orthographically similar words.

The lexical representations of both the target word and the orthographic neighbors then acti-

vate phonological output units.

We propose that the reading of non-words occurs in a similar fashion. For non-words,

however, no lexical representations exist. Therefore, instead of activating the lexical represen-

tations of both the target word and orthographically similar words, non-word orthographies

only activate the lexical representations of orthographic neighbors and only these lexical repre-

sentations subsequently activate phonological units.

In what follows we demonstrate that a wide range of non-word reading effects documented

in the experimental literature follow straightforwardly from this simple architecture. This

architecture also accounts for a novel finding, namely a non-word frequency effect in reading

aloud. This non-word frequency effect suggests that the distinction between words and non-

words may not be as black and white as previously thought and provides independent evidence

for the involvement of lexical processes in non-word reading.

Model architecture

The architecture of the NDRA model is presented in Fig 4. The model assumes that reading

aloud involves three processing stages. In the first stage, the visual input is interpreted and

decoded into orthographic units. In the second stage, these orthographic units activate lexical

representations in the mental lexicon that we will refer to as lexemes (i.e., lexical targets that

link orthographic, phonological and semantic properties of words [29]). In the third stage

these lexemes activate phonological output units. The second and third stages of the model are

implemented as two-layer associative learning networks, using the Rescorla-Wagner learning

rule.

NDRA: A single route model of reading aloud based on discriminative learning
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Fig 4. NDRA model. Basic architecture of the Naive Discriminative Reading Aloud (NDRA) model.

https://doi.org/10.1371/journal.pone.0218802.g004
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The Rescorla-Wagner model

In the Rescorla-Wagner model [28] cues are associated with outcomes. Both cues and out-

comes are not position-specific. In a model of silent reading, for instance, cues may be letters

or letter bigrams, whereas outcomes may be lexical representations for words. We define the

presence of a cue or outcome X at time t as PRESENT(X, t) and its absence as ABSENT(X, t). The

association strength Vtþ1
i between outcome O and cue Ci at time t + 1 is given by the recurrent

relation:

Vtþ1
i ¼ Vt

i þ DV
t
i : ð1Þ

The change in association strength DVt
i is defined by Rescorla and Wagner [28] as:

DVt
i ¼

0 if ABSENTðCi; tÞ

aib1ðl �
P

PRESENTðCj;tÞ
VjÞ if PRESENTðCj; tÞ& PRESENTðO; tÞ

aib2ð0 �
P

PRESENTðCj;tÞ
VjÞ if PRESENTðCj; tÞ& ABSENTðO; tÞ

8
>>>><

>>>>:

ð2Þ

Standard values for the parameters are λ = 1, all α’s equal, and β1 = β2. When a cue and an out-

come co-occur, the association of the cue to that outcome is strengthened. When a cue occurs

without the outcome being present, the association strength decreases.

The Rescorla-Wagner model describes learning over time. The current paper, however,

focuses on the adult language processing system. For simplicity, we assume that the adult

system is in a relatively stable state. We therefore use the implementation of the equilibrium

equations for the Rescorla-Wagner model [30] in version 0.2.18 of the NDL package for the sta-

tistical software R to estimate the connection strength (Vik) of cue (Ci) to outcome (Ok):

Pr ðOkjCiÞ �
Xn

j¼0

Pr ðCjjCiÞVjk ¼ 0 ð3Þ

where Pr(Cj|Ci) is the conditional probability of cue Cj given cue Ci, Pr(Ok|Ci) is the condi-

tional probability of outcome Ok given cue Ci and n + 1 is the number of different cues. The

estimation of the connection strength in Eq 3 is completely parameter-free and determined by

the distributional properties of the training data.

The association strengths from cues to a specific outcome Ok are estimated separately and

independently of all other outcomes. This assumption of independence is a simplification of

reality similar to the independence assumption in naive Bayes classifiers that increases the

computational efficiency of the model without compromising accuracy. It motivates the word

naive in the name of the Naive Discriminative Reading Aloud model.

For a given input only a small set of cues is active. Denoting the set of active cues by C, the

activation ak of an outcome Ok is defined as

ak ¼
X

j2C

Vjk: ð4Þ

with j ranging over the active cues and Vjk being the equilibrium association strength for cue

Cj and outcome Ok. We add a small back-off constant (b, set to 0.01) to all activations. This

prevents division by zero during the generation of simulated naming latencies (see below).

NDRA: A single route model of reading aloud based on discriminative learning
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Visual input interpretation

Prior to linguistic processing a decoding of the visual input is necessary. Both the DRC and the

CDP models use feature detection mechanisms that are similar in nature to the features detec-

tion mechanism in McClelland and Rumelhart [20]. The visual input interpretation mecha-

nism in the NDRA is a quantitative implementation of a feature decoding mechanism that is

based on the idea that more complex visual patterns should take longer to decode.

We used a variant of the Manhattan city-block distance measure [31] to quantify the com-

plexity of a letter in English. First, we constructed vector representations of the bitmaps of all

26 letters as written in black Lucida typewriter font on a white background (font size: 16).

Each vector contains 400 elements representing the bit values for 20 horizontal and 20 vertical

pixels. Black pixels are encoded as 1, white pixels as 0. Given the vector B of bit values, the

complexity C of a given letter i is defined as the square root of the summed difference in pixels

between that letter and the other letters j1,. . .,26:

Ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X26

j¼1

X400

k¼1

jBik � Bjkj

v
u
u
t ð5Þ

where k1,2,. . .,400 are the indexes of the pixels.

Eq 5 quantifies the prototypicality of the visual features of a letter. Values of Ci are low for

letters that are similar to many other letters, such as o and c, and high for letters that are dis-

similar to most other letters, such as y or w. To obtain the complexity of the visual input for a

word w we summed over the complexities C of the letters i:

Complexityw ¼
Xn

i¼1

Ci ð6Þ

where n is the number of letters in the word.

The Complexity measure is an obvious simplification of the complex processes involved in

the uptake of visual information and merely serves as an approximation of the processing costs

associated with the decomposition of a visual word form into orthographic features. Given

that the uptake of visual information is not part of the linguistic core of the model this approxi-

mation suffices for the current purposes. In the discussion section we briefly discuss alternative

implementations of a visual input interpretation mechanism.

Orthography to lexemes

The first part of the linguistic core of the NDRA model consists of a Rescorla-Wagner network

that maps orthographic units onto lexical representations. The orthographic input cues in this

network are letters and letter bigrams. For instance, for the word bear the input units are the

letters b, e, a, r and the letter bigrams #b, be, ea, ar and r#. Richer encodings could be used, but

in the interest of parsimony we opted for the least rich encoding scheme that offered satisfac-

tory performance.

The outcomes of the orthography to lexeme learning network are lexical representations.

For the word bear, for instance, the outcome is the lexeme BEAR. In addition to the lexeme of

the target word, we allowed the orthographic input units to co-activate the lexemes corre-

sponding to other words. The orthographic word form bear, for instance, co-activates the lex-

emes YEAR and FEAR. The co-activation of orthographic neighbors predicts neighborhood

and consistency/regularity effects and allows for lexical route processing of non-words. The

number of co-activated words taken into consideration is a technical parameter of the model.

NDRA: A single route model of reading aloud based on discriminative learning
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In all simulations reported in this study this parameter was set to 20. Simulation accuracy is

highly similar across a wide range of parameter settings and asymptotes for higher values.

The activation of a word’s lexeme given its orthographic representation is defined as the

sum over the weights from the letters and letter bigram cues to the lexeme outcome (see Eq 4)

and will henceforth be referred to as ActLexeme. As noted above, we add a small back-off con-

stant (b, set to 0.01) to all activations to prevent division by zero when we generate simulated

naming latencies.

Lexemes to phonology

The mapping from lexical representations to phonology occurs through a similar Rescorla-

Wagner learning network. This network maps lexical representations onto phonological units.

As before, lexical representations are lexemes. The phonological units are demi-syllables [32].

Using the DISC notation from the CELEX lexical database [33]), for instance, the target word

bear, consists of two demi-syllables: b8 and 8R. Note that these representations are approxima-

tions of the demi-syllables used in the speech recognition literature. In our demi-syllables

vowels are repeated, whereas in acoustic applications they are split at maximum intensity. Fur-

thermore, it is again important to note that demi-syllables are merely a practically convenient

approximation of the acoustic gestures necessary for speech production. We return to this

issue in the discussion section.

While the activation flow in the NDRA is from lexemes to demi-syllables, we trained the

model with demi-syllables as input cues and lexemes as outcomes. This training regime opti-

mizes discriminative learning, because it uses a one-to-many rather than a many-to-one map-

ping [34]. Training a network with demi-syllables as cues and lexemes as outcomes is

necessary on independent grounds for speech perception. The training regime adopted here

reflects the temporal precedence of speech perception over speech production in language

acquisition.

The activation of a demi-syllable is obtained by summing over the weights on incoming

connections from the active lexemes. The majority of activation spreads from the target word

lexemes. We refer to this activation from the target lexeme as at. Additional activation a1,. . .,n

spreads to a target demi-syllable from the lexical representations of orthographic neighbors.

Given the orthographic input bear, for instance, the activations of lexemes of the orthographic

neighbors YEAR and FEAR are 0.036 and 0.004. We weighted the contribution of co-activated

lexemes to a demi-syllable for the amount of activation they received from the target word

orthography (wi). Thus, the activation of a demi-syllable k is given by:

ActPhonk ¼ wlex � at þ
Xn

i¼1

wi � ai ð7Þ

where n is the number of lexical neighbors taken into account (set to 20 in the current simula-

tions). As before, we add a small back-off constant (b = 0.01) to all activations to prevent divi-

sion by zero when generating simulated naming latencies.

The parameter wlex indicates the relative weight of the activation from the target lexeme as

compared to the activation from lexical neighbors and was set to 4.700 in the current simula-

tions. As such, the activation of a demi-syllable from the target lexeme has a greater weight

than the activation from the lexemes of co-activated orthographic neighbors. This is possible

only if the language processing system is able to verify that the target lexeme corresponds to

the orthographic input, whereas the lexemes of co-activated neighbors do not. Importantly,

this assumption is not unique to the NDRA. Instead, it is a general assumption of discrimination

learning that is necessary to evaluate if the outcome of a learning event is predicted correctly
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and, consequently, to update the association strengths between the cues that are present in the

input and all outcomes.

The fact that the NDRA performs optimally when the relative weight of the activation from

the target lexeme is greater than the relative weight of the activation from the lexical neighbors

suggests that while lexical neighbors spread activation to demi-syllables during initial bottom-

up processing, this activation is suppressed during subsequent processing stages due to top-

down verification of the activated lexemes vis-a-vis the current orthographic input. As such,

the architecture of the NDRA is consistent with the idea that successful processing may be char-

acterized by a bi-directional pass of information between higher and lower level cortical repre-

sentations [35]. As we demonstrate below, the bottom-up pass of information through the

principles of discrimination learning captures a wide range of effects observed in naming

latencies. The principles underlying the verification processes in the backward top-down

information pass, by contrast, are much less well-understood. We return to this issue when

discussing the pronunciation performance of the NDRA model.

Two demi-syllables need to be activated for the mono-syllabic words in this study. We refer

to the activation of these demi-syllables as ActPhon1 and ActPhon2. The activation of two

demi-syllables introduces a choice problem: one of the activated demi-syllables has to be artic-

ulated first. The more dissimilar the activations of the demi-syllables, the harder it may be to

produce the right demi-syllable at the right time. A relatively high activation of the second

demi-syllables, for instance, may interfere with the production of the first demi-syllable. We

model the difficulty of the selection of the appropriate demi-syllable by taking the Shannon

entropy [36] over the activations (transformed into probabilities p1 and p2) of the first and sec-

ond demi-syllable. We refer to this measure as H, which is defined as:

p1 ¼ ActPhon1=ðActPhon1 þ ActPhon2Þ;

p2 ¼ ActPhon2=ðActPhon1 þ ActPhon2Þ;

H ¼ �
X2

i¼1

ðpi � log 2ðpiÞÞ:

ð8Þ

Simulating naming latencies

Together, the measures Complexity, ActLexeme, ActPhon1, ActPhon2 and H describe the total

amount of bottom up support for the target pronunciation. Lexeme activations for non-words

are, by definition, not available. For non-words, ActLexeme was therefore set to 0.01 (0 plus

the back-off constant b that was added to all lexeme activations for words. Total activation

units in the NDRA are modeled through a multiplicative integration of these measures:

Act ¼
Complexityw1

ActLexemew2 � ActPhonw3

1
� ActPhonw4

2
�Hw5

ð9Þ

where w1,. . .,5 are weight parameters that establish the relative contribution of each source of

information.

Model parameters were chosen to optimize the quantitative and qualitative performance of

the model. For the current simulations, we use the following parameter settings: w1 = 1.270,

w2 = 0.200, w3 = 0.050, w4 = 0.098 and w5 = 0.152. Parameter settings are identical in all simu-

lations reported in this study.

We convert activation units to simulated reaction times through a simple linear transforma-

tion:

RT / w6 � Act þ w7: ð10Þ
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For all simulations reported below, we set w6 to 0.055 and w7 to 450. Including the two techni-

cal parameters described earlier (i.e., the back-off parameter that prevents division by zero

(0.01) and the number of co-activated neighbors taken into consideration (20)), as well as

the parameter for the relative importance of demi-syllable activations from the target word lex-

eme and the lexemes of lexical neighbors (4.700), the NDRA model thus has a total of 10 free

parameters.

Generating pronunciations

The processes by which responses are learned are relatively well understood and large-scale

linguistic corpora provide us with realistic input to these processes. As demonstrated

through the simulations reported in this paper, the discriminative learning algorithm

that underlies the NDRA provides a precise and powerful explanation of these bottom-up

processes and their behavioral manifestations in observed naming latencies. What the dis-

crimination learning core of the NDRA model does not do, however, is generate actual

pronunciations.

The selection of the appropriate target response is perhaps best thought of as a response

conflict resolution task. In the words of Ramscar et al. [37], “Response conflict will arise when-

ever the requirements in a specific task conflict with an equally or more strongly learned pat-

tern of responding that is prompted by the same context. To successfully resolve this conflict,

an individual must be able to effectively override the biased response in favor of a less well-

learned (or less well-primed) response that is more appropriate to the context” (see also [38,

39]). In the NDRA model a response conflict arises whenever a non-target demi-syllable receives

a higher activation than the target demi-syllables.

Response conflicts are typically resolved by a top-down verification mechanism that inte-

grates the activated responses with the context of the current task. Dell [40] and Levelt et al.

[41], for instance, proposed such top-down verification mechanisms in their models of lan-

guage production. In reading aloud, the task of a top-down checking mechanism is to find out

which of the activated phonological units should be pronounced given the visual presentation

of a word or non-word. What we suggest, therefore, is that there is a functional separation

between the bottom-up linguistic support for phonological units that arises in the discrimina-

tion learning networks that form the linguistic core of the NDRA model and the top-down verifi-

cation mechanism that evaluates the appropriateness of these phonological units given the task

of naming the presented word or non-word.

There is a wealth of evidence in both the neuroscience and reading literatures to support a

functional separation of this kind (see e.g. [38]). In particular, the anterior cingulate cortex

(ACC) and the pre-frontal cortex (PFC) seem to play an important role in resolving competition

between different potential responses (see e.g. [42]). Functionally, the ACC appears to serve as a

detector, monitoring conflict between candidate responses and activating areas in the PFC that

facilitate the selection of the appropriate target response when conflicts arise.

The Stroop task, in which subjects have to name the text color of an orthographic represen-

tation of a conflicting color word neatly illustrates the dynamics of this process in a reading

task. When the word “blue” is printed in red, the correct response is “red”. In literate adults,

however, the orthographic activation of “blue” interferes with the correct response. In the

Stroop task, activation in the PFC, and in particular the left inferior frontal gyrus has been

shown to reflect the effort required to produce the text color “red” rather than the strongly

activated competitor “blue” [43]. As noted by Novick et al. [39], the PFC plays a functionally

similar role when response conflict arises in a range of more straightforward lexical tasks,

including lexical decision (see e.g. [44]), verb generation [45], picture naming [46], and
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phonological and semantic judgment tasks [47], as well as when interpretative conflicts arise

during normal reading [39].

As noted above, the processes by which responses are learned are relatively well understood.

By contrast, a lot of uncertainty remains about how exactly the top-down verification processes

in the pre-frontal cortex that select the appropriate response from a set of activated potential

responses work. The objective of the present study is to demonstrate that the discrimination

learning networks in the NDRA model capture important aspects of the bottom-up learning pro-

cesses and their manifestations in observed naming latencies, much like the original NDR

model captures a wide range of reaction time effects in the lexical decision task. Given the

increased prominence of the actual response in the reading aloud task as compared to the

lexical decision task, however, it is useful to demonstrate that the architecture of the NDRA

model is compatible with a top-down checking mechanism that generates concrete and plausi-

ble pronunciations. At the end of the simulations section below, we therefore present a crude

implementation of a verification mechanism, as well as the word and non-word naming per-

formance of the NDRA model when such a checking mechanism is added on top of the discrimi-

nation learning networks of the model.

Simulations

Training and test data

For all simulations described below we trained the orthography-to-lexeme network of the NDRA

model on an input lexicon that consisted of all words with a frequency of at least 20, 000 in the

the Google 1T n-gram corpus [48]. The resulting orthography-to-lexeme network consists of

754 unique letters and letter bigrams and 217, 170 unique lexemes. The training data for the

lexeme-to-phonology network consisted of a set of 3, 198 mono-morphemic, mono-syllabic

words and their unigram frequencies in the Google 1T n-gram corpus [48]. The set of 3, 198

words was constructed in the following manner. Following the simulation of Baayen et al. [6]

for silent reading, we restricted the simulations for the word naming latencies to mono-mor-

phemic, mono-syllabic words that can be used as nouns. First, we therefore extracted all

mono-morphemic, mono-syllabic words that can be used as nouns from the CELEX lexical data-

base [33]. We excluded 1 and 2 letter words (1.64% of all monosyllabic word types in the CELEX

lexical database) from the training data to prevent biasing the results in favor of a coding

scheme that adopts bigram representations at the orthographic level, such as the one used

here. This resulted in a set of 3, 146 words. To this set of words we added 52 words that were

necessary for the correct pronunciation of words or non-words in our test data (i.e., words

that contained an orthography-to-phonology mapping that was present in the test data, but

not in the set of 3, 146 words extracted from CELEX). The trained phonology-to-lexeme network

consists of 1, 228 unique demi-syllables and 3, 198 unique lexemes.

For the word naming simulations, we used a data set consisting of the 2, 510 mono-mor-

phemic mono-syllabic words present in our training data that can be used as nouns and for

which naming latencies are available in the ELP [49]. Prior to analysis we inverse transformed

(−1000/RT) the observed naming latencies to remove a rightward skew from the naming

latency distribution. In addition, to allow for a comparison of effect sizes, we standardized

observed and simulated latencies by converting them to z-scores.

No large-scale database of naming latencies is available for non-words. We therefore

extracted a set of non-words from the ARC non-word database [50]. We restricted the range for

non-word length to that observed in our set of real words and extracted non-words with ortho-

graphically existing onsets and bodies only. Furthermore, we restricted the non-words to the

words for which both demi-syllables existed in our training lexicon. This resulted in a non-
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word data set that consisted of 1, 784 non-words: 876 standard non-words and 908 pseudo-

homophones.

We looked at the effects of 16 linguistic predictors, related to the length, neighborhood

characteristics, orthography-to-phonology consistency, frequency, and semantics of a word or

non-word. Predictor values were extracted from the ELP and the english data set in the langua-
geR package for R [51]. Whenever necessary, a more detailed description of each predictor will

be provided prior to the description of the results for that predictor.

Model evaluation

Model evaluation in cognitive psychology typically involves comparing a model’s performance

to both observed naming latencies and alternative model architectures. The observed data

used in our simulations are the ELP naming latencies for the set of 2, 510 mono-morphemic

nouns described above. We compare the NDRA model not only to the observed naming laten-

cies, but also to the DRC [1], CDP+ [2], and CDP++ [5] models.

The NDRA model is implemented in the NDRA package for R [52]. We simulated naming

latencies for the 2, 510 words under investigation through this package. Simulated naming

latencies for the other models were obtained using version 1.2.3 of the DRC model and the

implementation of the CDP+ and CDP++ models available at http://ccnl.psy.unipd.it/CDP.html.

Simulation approach

The adequacy of a model can be investigated by comparing its predictions against observed

data. This comparison typically focuses on two levels of description. The first level is the overall

fit of the model to a set of observed data. Typically, this overall fit is gauged through the regres-
sion approach. In the regression approach item-level correlations between simulated and

observed naming latencies are compared for a large-scale database of words. Here, we follow

this approach by looking at the item-level correlations between the ELP naming latencies and

the latencies simulated by the NDRA, DRC, CDP+, and CDP++ models. To further probe the overall

performance of these models we furthermore conduct a regression analysis on the principal

components extracted from the multidimensional space described by all predictors in our sim-

ulations. This provides more insight into how well each model captures the overall structure in

the observed data.

The second level at which the performance of a model can be investigated concerns the

effects of individual predictors on observed naming latencies. The approach that is most typi-

cally used to do this is the factorial approach. In the factorial approach patterns of results

related to predictors are simulated on an experiment-by-experiment basis (for an application,

see, e.g. [1, 2]). As noted by Adelman and Brown [53], however, there are a number of prob-

lems with the factorial approach.

First, the data gathered in single experiments tend to provide an incomplete picture of the

effect of a predictor. The experimental data that models of reading aloud are assessed on are

often acquired in experiments with a limited number of carefully selected items and under dif-

ferent experimental conditions. As a result, optimizing the parameter set of a model on the

basis of individual experiments may lead to local over-fitting. The model then becomes overly

sensitive to the potentially idiosyncratic experimental conditions, item lists and predictor com-

binations in individual experiments, which comes with the cost of a suboptimal overall model

fit (see e.g., Seidenberg and Plaut [54]).

Second, modeling on an experiment-by-experiment basis makes it hard to compare the

relative effect sizes of different predictors. Due to variations in item lists, experimental condi-

tions and participant populations, the effect sizes for a given predictor can vary substantially
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between experiments. Given this variance in the effect sizes for a given predictor, it is hard to

compare effects sizes between predictors in the factorial approach.

Third, a large number of experiments are based on factorial contrasts. This leads to a poten-

tial distortion of non-linear patterns of results that can range from a simplification of a non-

linear effect to masking a predictor effect completely. Applying a median-split dichotomiza-

tion to a predictor that has a U-shaped effect on response latencies, for instance, would yield a

null effect.

To overcome these problems with the factorial approach we adopt a different simulation

philosophy. Instead of looking at predictor effects on an experiment-by-experiment basis we

will investigate the effects of all relevant predictors in the naming latencies for the set of 2, 510

words in the ELP. All of the ELP naming latencies were obtained in the same task, under very

similar experimental conditions and for a homogenous participant population. The presence

of an effect in the ELP is a clear indication that computational models should account for this

effect. In addition, using ELP naming latencies allows for a comparison of effect sizes between

predictors. Furthermore, it allows us to look at the effects of different predictors in a setting

where parameters should not be allowed to vary. Finally, because we have access to naming

latencies for individual items we can get away from the dichotomization of numeric predictors

and start investigating non-linear predictor effects.

Predictor simulations

We investigate a large number of effects that have been documented in the experimental read-

ing aloud literature. For each effect under investigation, we first verify whether an effect was

present in the ELP naming latencies. For a large majority of the effects documented in the litera-

ture this is indeed the case. Whenever an effect is not present in the ELP naming latencies we

explicitly mention its absence. For those effects that are present in the ELP naming latencies we

proceed with an analysis of the effect for the simulated latencies of the NDRA, DRC, CDP+, and

CDP++ models.

To investigate the effects of predictors we use the implementation of generalized additive

models (henceforth GAMs) [55] provided by the R package mgcv [56]. GAMs are an extension

of generalized linear models that allow for the modeling of non-linearities. For each predictor

effect we fitted both a linear and a non-linear GAM. The linear GAM is mathematically equivalent

to a simple linear regression model. This linear model provides a conventional assessment of

the presence or absence of predictor effects. In addition it provides an effect size measure that

allows for the comparison of the relative magnitude of effects of different predictors. To allow

for such a comparison, we scaled all predictors prior to analysis.

The non-linear GAMs allow us to capture non-linearities. The smooth functions in GAMs do

not presuppose particular non-linear structures and can therefore model a wide range of pre-

dictor-related non-linearities. Furthermore, tensor products allow us to model two-dimen-

sional non-linear interactions between numerical predictors. As a result, we do not have to

dichotomize predictors even when inspecting interaction effects. We allowed all predictor

smooths to describe up to 6th order non-linearities (k = 6) and did not impose any restrictions

on tensor products. We removed predictor values further than 3 standard deviations from the

predictor mean in all non-linear GAMs to prevent smooth estimates from being overly influ-

enced by extreme predictor values. To establish the significance of tensor product interactions,

we compared the AIC score [57] of a tensor product GAM to that of a GAM with additive non-lin-

ear effects of both predictors (i.e., separate predictor smooths). Unless explicitly stated other-

wise, we considered interactions only when the AIC score of the tensor product GAM was

significantly lower than that of a GAM with an additive non-linear effect of both predictors.
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Many of the predictors under investigation are strongly correlated. As a result introducing

a model term to or removing it from a model that contains all predictors could have a strong

effect on the effects of the other terms in the model. To side-step this problem of multicolli-

nearity we decided to fit separate models for each predictor. Fitting separate models for each

predictor comes at the cost of masking potential effects of covariates. We addressed this prob-

lem in two ways. First, we simulated only effects that have been documented in experimental

studies with carefully controlled item lists. Nonetheless, it is important to note that the

reported effect of individual predictors may be confounded the values of other predictors that

are not entered into the models for the individual predictors. Second, to ensure that our model

captures the joint effects of the predictors we conducted a principal components regression

analysis for both observed and simulated latencies on the multidimensional input space

described by all 16 predictors. The principal components analysis establishes to what extent

the model correctly captures the effects of a predictor once the effects of the other predictors

have been taken into account.

For word naming we fitted models to the observed naming latencies, as well as to the simu-

lated naming latencies for the NDRA and CDP+ models. As mentioned earlier, no large-scale

database of non-word naming latencies exists. To simulate the non-word effects documented

in the literature we therefore could not compare our model to observed naming latencies. We

did, however, have the possibility of comparing non-word naming performance in the NDRA

and CDP+ models. This allows us to establish whether or not the single-route architecture of

the NDRA model captures the experimental effects of non-word naming that are successfully

simulated by the DRC, CDP+, and CDP++ models. Furthermore, it allows us to identify whether

and where predictions for non-word naming differ between the NDRA and the other models.

These differences describe explicit test-cases for the performance of the models that can be

addressed in future non-word naming experiments.

Simulation results

Below, we present the results of five types of simulations. First, we investigate the effects of

individual predictors describing the length, neighborhood density, orthography-to-phonology

consistency, frequency, and semantic properties of words and non-words, as well as the rele-

vant interactions between these predictors. Second, we evaluate the overall performance of the

NDRA, the DRC, the CDP+, and the CDP++ through item-level correlations, as well as a principal

components analysis. Third, we investigate whether or not the addition of a sub-lexical route

improves the performance of the NDRA model. Fourth, we discuss a hitherto unobserved effect

of frequency in non-word naming. Fifth, we describe the pronunciation performance of the

NDRA when we add a crude implementation of a top-down verification mechanism on top the

discrimination learning core of the model.

Non-word naming disadvantage

Before we turn to the discussion of predictor-specific effects, there is an overall difference

between word and non-word naming that requires attention. Several studies have documented

that words are named faster than non-words [58–60]. All models correctly predict this effect

(NDRA: t = −60.999, β = −1.383; DRC: t = −225.820, β = −1.949; CDP+: t = −73.590, β = −1.515;

CDP++: t = −72.572, β = −1.505. There is, however, a large difference in the relative magnitude

of the predicted effects. The DRC model predicts the largest difference between naming laten-

cies for words and naming latencies for non-words. On average, non-words are named 85%

slower than words (138 vs 74 cycles). In the CDP+ and CDP++ models the non-word naming dis-

advantage is reduced to 57% (159 vs 101 cycles) and 64% (129 vs 79 cycles), respectively. The
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difference between word and non-word naming latencies is smallest in the NDRA. The mean

naming latency for non-words is 23% longer than the mean naming latency for words (781 vs

635 ms).

Although a direct comparison to the effect size in observed data is not possible due to the

absence of a large-scale database of non-word naming latencies, we compared the processing

disadvantage for non-words predicted by the models to that observed in the studies of

McCann and Besner [58] and Ziegler et al. [60]. The average naming latency for words in

McCann and Besner [58] was 454 ms, whereas that for non-words was 579 ms. The processing

disadvantage for non-words in this study was therefore 29%. In Ziegler et al. [60], average

naming latencies across eight conditions were 611 ms for non-words and 521 ms for words,

for a non-word processing disadvantage of only 17%. These data suggest that the DRC, CDP+,

and CDP++ models overestimate the processing costs for non-words, while the NDRA provides a

more reasonable estimate.

We should note, however, that the size of the non-word naming disadvantage in the NDRA

depends to a large extent on the settings of the parameters involved in the linear transforma-

tion from activation units to simulated reaction times (w6, w7). Parameter w7, in particular,

captures the processes the are present in response times, but that are outside of the scope of the

discrimination learning core of the model. Such processes may include, but are not limited to,

response selection, lack of sensitivity of the voice key to low acoustic energy during pronuncia-

tion onset [61], and participant fatigue (see [1], p. 221). The inclusion of a similar parameter in

the DRC, CDP+, and CDP++ models would results in more accurate estimates of size of the non-

word naming disadvantage in these models.

Length effects

Word length. The effect of word length on naming latencies has been documented in a

large number of studies, with longer naming latencies for words that consist of more letters

(see e.g. [59, 61–67]). This length effect is present in the ELP naming latencies (t = 20.076, β =

0.372, as well as in all models (NDRA: t = 51.917, β = 0.718; DRC: t = 8.015, β = 0.158; CDP+:

t = 20.099, β = 0.372; CDP++: t = 13.230, β = 0.255). The results of a non-linear model are pre-

sented in Fig 5 and indicate that this effect is linear or near-linear for the observed naming

latencies, as well as for the latencies simulated by the NDRA, CDP+ and CDP++ models. For the

naming latencies simulated by the DRC model there is some indication that the effect incor-

rectly levels off for long words, although the confidence interval for high predictor values is

large.

The effect size of the length effect is larger in the NDRA model than in the observed data. The

length effect in the NDRA model is primarily driven by the complexity of the visual input. In all

reported simulations, the visual complexity parameter is set to 1.270. The overall fit of the data,

however, is quite robust to changes in this parameter setting (e.g., overall data fit: r� 0.48 for

parameter values between 0.450 and 2.902). There are two reasons we decided to use the cur-

rent parameter setting. First, we believe that the overall fit of the model should be optimal.

This is the case for the current parameter settings. Second, because the model operates under

noise-free conditions, the effect sizes in the NDRA tend to be somewhat larger than those in the

observed data. As we will show in the overall model fit section, the effect size of length in the

current simulations is of the correct relative magnitude compared to the effect sizes of the

other predictors.

In addition to a length effect for words, a length effect for non-words has been observed as

well. Non-word naming latencies increase linearly for each additional letter [59, 60]. All mod-

els capture the effect of length in non-word naming (NDRA: t = 160.667, β = 0.968; DRC:

NDRA: A single route model of reading aloud based on discriminative learning
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t = 39.347, β = 0.683; CDP+: t = 21.342, β = 0.452; CDP++: t = 14.225, β = 0.320). The results of

non-linear models revealed that all models predict a linear or near-linear length effect for non-

words. Furthermore, consistent with the experimental findings of Weekes [59] and Ziegler

[60], all models predict a larger effect size for length in non-word naming than in word nam-

ing (NDRA: Δβ = 0.250; DRC: Δβ = 0.525; CDP+: Δβ = 0.080; CDP++: Δβ = 0.065). The relative mag-

nitude of the length effect for non-words as compared to that for words is much larger in the

DRC (
bnw
bw
¼ 4:323) than in the other models (NDRA:

bnw
bw
¼ 1:348; CDP+:

bnw
bw
¼ 1:215; CDP++:

bnw
bw
¼ 1:255).

In addition to the effects of word length reported above, Weekes [59] also reported an inter-

action of length with frequency, with a stronger length effect for low frequency words. In a

reanalysis of the Weekes [59] data, however, Perry et al. [2] demonstrated that this interaction

was not significant. For the current set of observed naming latencies the interaction was not

supported either: a model with additive non-linear terms of frequency and length resulted in a

lower AIC score than a GAM with a tensor product of frequency and length.

Neighborhood effects

Orthographic neighborhood size. Although the unique variance accounted for by neigh-

borhood measures is small [68], these effects have played a central role in the assessment of

models of reading aloud. The experimental naming literature has consistently documented

that words with many orthographic neighbors are processed faster than words with fewer

neighbors [69–73]. In interactive activation models, however, the inhibitory links between lex-

ical items lead to more competition for words with many orthographic neighbors. As a result,

the DRC model, which uses the interactive activation model of McClelland and Rumelhart [20]

as its lexical route, could only model the effect of orthographic neighborhood density with

altered parameter settings. Although the CDP+ and CDP++ models use the same interactive

activation architecture for its lexical route, these models capture the orthographic neighbor-

hood density effect, presumably through their sub-lexical route. Nonetheless, the authors

Fig 5. Length. The effect of length in word naming.

https://doi.org/10.1371/journal.pone.0218802.g005
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acknowledge that the interactive activation model in their lexical route may have inherent

problems with neighborhood density effects and that there may be better alternatives for the

lexical route of the CDP+ and CDP++ models (see [2], p. 303)).

The NDRA model predicts orthographic neighborhood density facilitation as a consequence

of the co-activation of orthographically similar words. Each co-activated orthographic neigh-

bor activates its lexeme, from which in turn activation spreads to the corresponding demi-syl-

lables. The target word band, for instance, co-activates the lexical representations of words like

bank, bang and ban, which spread activation to the target demi-syllable b{. In addition, band
co-activates land, hand and sand, which spread activation to the target demi-syllable {nd. The

more orthographic neighbors a word has, the more activation will spread from co-activated

lexemes to the target demi-syllables and the faster a word will be named.

A linear model on the ELP naming latencies shows the predicted facilitatory effect of ortho-

graphic neighborhood density (t = −19.131, β = −0.357). The NDRA captures this linear effect

of orthographic neighborhood density (t = −27.639, β = −0.483), as do the DRC (t = −9.452, β =

−0.185), the CDP+ (t = −19.229, β = −0.358), and the CDP++ (t = −12.530, β = −0.243). The non-

linear effect of orthographic neighborhood density is shown in Fig 6. The observed data show

a quadratic curve, with a more prominent facilitatory effect of orthographic neighborhood

density for low predictor values. All models correctly capture the quadratic effect of ortho-

graphic neighborhood density.

In addition to an effect of orthographic neighborhood density in word naming, an effect of

this measure in non-word naming has also been documented [71]. As for real words, the effect

is facilitatory in nature, with faster naming latencies for non-words with many orthographic

neighbors as compared to non-words with few orthographic neighbors. A linear model on

the simulated naming latencies shows that all models correctly simulate this effect (NDRA: t =

−30.188, β = −0.577; DRC: t = −14.633, β = −0.325; CDP+: t = −14.056, β = −0.314; CDP++: t =

−12.421, β = −0.280). Non-linear models revealed that the DRC predicts a near-linear of ortho-

graphic neighborhood density on non-word naming, whereas the NDRA, CDP+, and CDP++

Fig 6. Orthographic neighborhood density. The effect of orthographic neighborhood density in word naming.

https://doi.org/10.1371/journal.pone.0218802.g006
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predict a quadratic non-linearity that is similar to the observed effect of orthographic neigh-

borhood density in word naming.

Phonological and body neighborhood size. The effect of orthographic neighborhood

density is not the only neighborhood density effect that has been documented. As noted by

Perry et al. [2], several studies have argued that phonological neighborhood density [74] or

body neighborhood density [60, 75, 76] may be more adequate measures of neighborhood

density effects in reading aloud. The linear effect of phonological neighborhood density

(observed: t = −12.768, β = −0.247; NDRA: t = −18.761, β = −0.350; DRC: t = −5.327, β = −0.106;

CDP+: t = −15.304, β = −0.292; CDP++: t = −10.355, β = −0.202), as well as that of body neighbor-

hood density (observed: t = −5.897, β = −0.117; NDRA: t = −4.648, β = −0.092; DRC: t = −16.471,

β = −0.313; CDP+: t = −14.112, β = −0.271; CDP++: t = −10.700, β = −0.209) are captured by all

models. The NDRA model somewhat underestimates the magnitude of the body neighborhood

density effect relative to that of the orthographic and phonological neighborhood density

effects. By contrast, the DRC, the CDP+ and the CDP++ overestimate the effect of body neighbor-

hood density.

The non-linear effect of phonological neighborhood density is presented in Fig 7. The

observed naming latencies reveal a quadratic curve that levels off for high predictor values.

The NDRA, CDP+ and CDP++ correctly capture the overall nature of this effect, although the simu-

lated effect in the NDRA more closely resembles the observed effect as compared to the simulated

effects in the CDP+ and CDP++ models. The DRC fails to capture the non-linear nature of the

effect of phonological neighborhood density and instead predicts a wriggly effect that is more

uniform across the predictor range.

Fig 8 presents the effect of body neighborhood density. For the observed naming latencies,

the effect of body neighborhood density is u-shaped in nature, with particular difficulties for

words with few body neighbors. Although all models correctly predict that the effect should be

most prominent for low predictor values, none of the models captures the non-linear effect of

body neighborhood density to its full extent. The deviations of the simulated effect from the

observed effect, however, are greater for the NDRA than for the DRC, the CDP+, and the CDP++.

Fig 7. Phonological neighborhood density. The effect of phonological neighborhood density in word naming.

https://doi.org/10.1371/journal.pone.0218802.g007
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In addition to effects in word naming, all models predict effects of both phonological (NDRA:

t = −18.125, β = −0.395; DRC: t = −17.159, β = −0.377; CDP+: t = −9.268, β = −0.214; CDP++: t =

−7.523, β = −0.175) and body neighborhood density (NDRA: t = −9.021, β = −0.209; DRC: t =

−6.485, β = −0.152; CDP+: t = −9.057, β = −0.210; CDP++: t = −10.659, β = −0.245) in non-word

naming. As was the case for the effect of orthographic neighborhood density, the non-linear

estimates of these effects are qualitatively similar across models. All models predict a quadratic

facilitatory effect that levels off for high predictor values for phonological neighborhood den-

sity and a more linear facilitatory effect of body neighborhood density.

The interplay of neighborhood density measures. As noted above, the NDRA predicts that

the effect of neighborhood density is primarily an orthographic neighborhood density effect,

whereas several studies have argued that phonological or body neighborhood density charac-

teristics may underlie the effect of orthographic neighborhood density. To investigate which

neighborhood density measure drives the neighborhood effects, we entered all three predictors

into a single linear regression model. Table 1 shows t-values and β coefficients for the neigh-

borhood density measures in this model. When taking the effect of orthographic neighbor-

hood density into account, phonological neighborhood density no longer has a significant

Fig 8. Body neighborhood density. The effect of body neighborhood density in word naming.

https://doi.org/10.1371/journal.pone.0218802.g008

Table 1. The linear interplay of orthographic, phonological and body neighborhood density. Listed are t-values and β coefficients for each of the predictors in an addi-

tive linear model.

Orthographic N Phonological N Body N

t β t β t β

observed −13.733 −0.368 −0.929 −0.023 2.695 0.057

NDRA −21.132 −0.524 −2.177 −0.049 8.146 0.159

DRC −1.728 −0.047 −0.387 −0.010 −13.476 −0.289

CDP+ −8.060 −0.213 −5.025 −0.121 −7.015 −0.146

CDP++ −4.412 −0.122 −3.723 −0.094 −6.072 −0.132

https://doi.org/10.1371/journal.pone.0218802.t001

NDRA: A single route model of reading aloud based on discriminative learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0218802 July 31, 2019 22 / 63

https://doi.org/10.1371/journal.pone.0218802.g008
https://doi.org/10.1371/journal.pone.0218802.t001
https://doi.org/10.1371/journal.pone.0218802


effect on the observed naming latencies and body neighborhood density has a small inhibitory

effect, which may be due to suppression [77].

The NDRA model captures the general pattern of results: orthographic neighborhood density

remains highly significant, the effect of phonological neighborhood density has a small nega-

tive coefficient, and body neighborhood density becomes inhibitory. As in the individual mod-

els for the three predictors, however, the NDRA somewhat underestimates the effect of body

neighborhood density, which is reflected in an overly large positive t-value. The DRC, CDP+, and

CDP++ models have more significant problems with the interplay of the neighborhood density

measures. All three models underestimate the contribution of orthographic neighborhood

density and incorrectly predict strong inhibitory effects for body neighborhood density.

To further explore the interplay of the neighborhood density measures, we fitted two GAMs

to assess the potential non-linear interplay of orthographic neighborhood density with phono-

logical and body neighborhood density. The first GAM includes a tensor product of ortho-

graphic neighborhood density and phonological neighborhood density, the second a tensor

product of orthographic neighborhood density and body neighborhood density.

The results of the tensor product models for the interaction between orthographic neigh-

borhood density and phonological neighborhood density are shown in Fig 9. Predictor values

for orthographic neighborhood density are on the x-axis, whereas predictor values for phono-

logical neighborhood density are on the y-axis. The z-axis visualizes adjustments to the average

response time as a function of both predictors. Warmer colors (red) indicate shorter response

times, whereas colder colors (yellow) indicate longer response times.

The pattern of results for the observed naming latencies is dominated by a strong facilita-

tory effect of orthographic neighborhood density. An effect of phonological neighborhood

density is present for words with many orthographic neighbors only. For these words the effect

of phonological neighborhood density is inhibitory. The NDRA model captures the qualitative

nature of the numerical interaction between orthographic neighborhood density and phono-

logical neighborhood density and shows a pattern of results that is highly similar to that in the

Fig 9. Interplay of orthographic and phonological neighborhood density. The non-linear interplay of orthographic

neighborhood density and phonological neighborhood density in tensor product GAMs.

https://doi.org/10.1371/journal.pone.0218802.g009
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observed data. The CDP++ model captures the general nature of the interaction as well, albeit in

a less accurate manner as compared to the NDRA. The DRC and the CDP+ incorrectly predict a

facilitatory effect of phonological neighborhood density for words with many orthographic

neighbors.

Fig 10 presents the non-linear interplay between orthographic neighborhood density and

body neighborhood density in the observed data, as well as for each of the models under inves-

tigation. The observed naming latencies again show a strong facilitatory effect of orthographic

neighborhood density. As was the case for phonological neighborhood density, an effect of

body neighborhood density is present for words with many orthographic neighbors only.

Unlike the effect of phonological neighborhood density, however, the effect of body neighbor-

hood density is facilitatory in nature. The NDRA simulates this pattern of results with remark-

able accuracy. By contrast, the CDP+ and CDP++ underestimate the effect of orthographic

neighborhood density for words with few phonological neighbors. The DRC fails to capture the

effect of orthographic neighborhood density and incorrectly predicts a main effect of body

neighborhood density only.

Two conclusions can be drawn from the results of these simulations. First, the neighbor-

hood density effect seems to primarily be an effect of orthographic neighborhood density. This

argues against an interpretation of neighborhood effects as being driven by phonological or

body neighborhood density. Second, the tensor product GAMs on the observed data indicate

that the effect of orthographic neighborhood density is modulated by phonological and body

neighborhood density for words with many orthographic neighbors. This effect is facilitatory

for body neighborhood density and inhibitory for phonological neighborhood density. The

correct characterization of this pattern by the NDRA suggests that the model is sensitive to the

influence of the neighborhood similarity structure that characterizes the lexical-distributional

space in English on response patterns in the reading aloud task.

It is worth taking a moment to consider why the NDRA model captures the complex interplay

of the neighborhood density measures. Neighborhood effects in the NDRA arise due to bottom-

Fig 10. Interplay of orthographic and body neighborhood density. The non-linear interplay of orthographic

neighborhood density and body neighborhood density in tensor product GAMs.

https://doi.org/10.1371/journal.pone.0218802.g010
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up co-activation of orthographic neighbors of the target word. When the orthographic word

bear is presented, for instance, not only the corresponding lexeme BEAR is activated, but lex-

emes of orthographic neighbors such as PEAR, WEAR, HEAR and YEAR receive activation as

well. The more lexemes are co-activated, the more activation spreads from these co-activated

lexemes to the phonological level. The fact that the neighborhood density effects seem to pri-

marily be driven by orthographic neighborhood density therefore follows straightforwardly

from the architecture of the NDRA model.

Body neighbors are words that share the orthographic rhyme with the target word. The

more of the orthographic neighbors are body neighbors, the faster the second demi-syllable of

the target word is activated, and the faster that target word is named. The effect of phonological

neighborhood density is opposite to that of body neighborhood density. For words with many

orthographic neighbors the observed naming latencies show an inhibitory effect of phonologi-

cal neighborhood density: words with many phonological neighbors are named slower than

words with few phonological neighbors. As counter-intuitive as this inhibitory effect of phono-

logical neighborhood density might seem, it follows straightforwardly from the architecture of

the NDRA model.

In contrast to orthographic and body neighbors, the lexemes of phonological neighbors are

not necessarily co-activated by the orthographic presentation of the target word. The ortho-

graphic presentation of the word bear, for instance, does not co-activate the lexical representa-

tions HAIR and AIR. HAIR and AIR therefore do not help activate the target word phonology,

despite the fact that these lexemes share the second demi-syllable with BEAR. The model, how-

ever, has learned to associate HAIR and AIR with the word-final demi-syllable 8R. The higher

the number of lexemes that share a demi-syllable, the less well the association between each

lexeme and that demi-syllable will be learned. The existence of the phonological neighbors

HAIR and AIR therefore leads to a lower connection strength from the lexeme BEAR to the

demi-syllable 8R. This results in a longer naming latency for the word bear than would be the

case if its phonological neighbors hair and air did not exist.

Pseudo-homophones. As noted by Coltheart et al. [1], the neighborhood density effects

reported above are complemented by a pseudo-homophone effect in non-word naming [58,

78, 79]. Naming latencies for non-words that can be pronounced as real words (e.g., bloo)

are shorter as compared to naming latencies for normal non-words. All models correctly pre-

dict a pseudo-homophone advantage. The effect size of this effect, however, is much larger in

the DRC (t = −18.241, β = −0.793) than in the other models (NDRA: t = −5.269, β = −0.248; CDP+:

t = −2.686, β = −0.127; CDP++: t = −2.794, β = 0.132).

Additionally, there has been some debate as to whether or not there is a base word (e.g.,

blue) frequency effect for pseudo-homophones. In a review of the evidence, Reynolds and Bes-

ner [80] conclude that “the published data are most consistent with the conclusion that there

is no base word frequency effect on reading aloud when pseudohomophones are randomly

mixed with control nonwords”. In pure non-word blocks, however, an effect of base word fre-

quency has been observed [81, 82]. In our non-word simulations, the naming latencies simu-

lated by the DRC model reveal a relatively strong base word frequency effect (t = −9.454, β =

−0.280), whereas the NDRA (t = −4.763, β = −0.153) and CDP+ (t = −2.668, β = −0.092) predict

weaker base word frequency effects. A base word frequency effect is absent in the naming

latencies simulated by the CDP++ model (t = 0.050, β = 0.002). The results of the current simu-

lations suggest that further experimental work on base word frequency effects for pseudo-

homophones could help inform the architecture of reading aloud models.

Orthographic neighborhood size by frequency. A further important neighborhood den-

sity effect concerns the interaction of orthographic neighborhood density with frequency. Sev-

eral studies found that low frequency, but not high frequency words are read faster when they
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have many neighbors [69, 70, 83]. We fitted tensor product GAMs to look at the interaction of

frequency and neighborhood density in the observed and simulated naming latencies. The

results of this model are shown in Fig 11. The observed data show the expected pattern of

results: a facilitatory effect of neighborhood density that is most prominent for low frequency

words. All models capture the general nature of the frequency by orthographic neighborhood

density interaction and show the longest latencies for low frequency words with few ortho-

graphic neighbors. The simulated effects in the NDRA, the CDP+, and the CDP++, however, resem-

ble the orthographic neighborhood density by frequency interaction in the observed naming

latencies more closely than the simulated effect in the DRC.

Consistency/Regularity effects

Regularity. The relation between the orthography and phonology of a word has been a

hotly debated topic in the reading aloud literature. Coltheart et al. [1] focused on the concept

of regularity and defined a word as regular “if its pronunciation is correctly generated by a set

of grapheme to phoneme conversion rules” [1] (p. 231). The DRC model predicted that regular

words should be pronounced faster than irregular words. This was confirmed by a number of

experimental findings [84–87]. We therefore consider the effect of regularity a good starting

point for the investigation of the relation between orthography and phonology.

In our simulations we defined regularity as a two-level factor, based on the regularity of a

word given the grapheme to phoneme (henceforth GPC) rules underlying the sub-lexical route

of the DRC model. A linear model on the ELP naming latencies shows the predicted facilitation

for regular words (t = −9.121, β = −0.403). This effect is somewhat underestimated by the NDRA

(t = −6.637, β = −0.295) and somewhat overestimated by the CDP+ (t = −14.807, β = −0.637)

and the CDP++ (t = −12.015, β = −0.524). The DRC model dramatically overestimates the effect

of regularity (t = −41.810, β = −1.440).

Position of irregularity. The size of the regularity effect depends on the position at which

the irregularity occurs. A number of studies found larger irregularity effects for words with

Fig 11. Frequency by neighborhood density interaction. The interaction of frequency with orthographic

neighborhood density and phonological neighborhood density in tensor product GAMs.

https://doi.org/10.1371/journal.pone.0218802.g011
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early-position irregularities as compared to words with late-position irregularities [18, 88, 89].

A similar effect of position of irregularity is present in the ELP naming latencies (t = −4.934, β =

−0.732) and the naming latencies simulated by the DRC (t = −6.058, β = −1.099), the CDP+ (t =

−2.954, β = −0.533), and the CDP++ (t = −3.755, β = −0.736). The NDRA model, however, fails to

capture this effect (t = 1.424, β = 0.200). The inability of the NDRA to model the position of irreg-

ularity effect is not surprising given the fact that the model is insensitive to the sequential

nature of the orthographic input and the phonological output. We return to this issue in the

discussion section.

Consistency. A number of studies have investigated non-binary measures of the relation-

ship between the orthography and the phonology of a word. Following Glushko [90], these

studies adopted measures of consistency, rather than regularity. Originally, Glushko [90]

defined consistency as a two-level factor, for which words were defined as inconsistent if their

orthographic body mapped onto more than one phonemic sequence. For instance, while the

pronunciation of the word wave is correctly predicted by the GPC rules of the DRC model it is

inconsistent, because its word body is pronounced differently in the word have.
Further research indicated that consistency is better conceptualized as a continuous vari-

able [8, 18, 76, 91]. We tested a number of consistency measures and found the proportion of

consistent word tokens to explain most variance in the ELP naming latencies (t = −8.281, β =

−0.171). This linear effect of consistency was captured by all models (NDRA: t = −5.553, β =

−0.117; DRC: t = −8.850, β = −0.190; CDP+: t = −9.671, β = −0.188; CDP++: t = −7.809, β =

−0.127). Fig 12 shows the non-linear effect of consistency. The consistency effect is more

prominent for low predictor values in the observed naming latencies. The DRC, CDP+, and

CDP++ capture the general nature of this non-linearity, although the CDP+ overestimates its

strength and the CDP++ underestimates its strength. The NDRA fails to capture the non-linear

effect of consistency effect and, instead, predicts a linear effect. Given the width of the confi-

dence intervals for the observed effect of consistency, however, it is unclear how pronounced

the non-linearity of the consistency effect in the observed data is.

Fig 12. Consistency. The effect of consistency of the orthography to phonology mapping in word naming.

https://doi.org/10.1371/journal.pone.0218802.g012
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In addition to the effect of consistency in word naming, a consistency effect has also been

observed in non-word naming [90, 92]. For our set of non-words, all models predict a facilita-

tory effect of consistency (NDRA: t = −9.276, β = −0.215; DRC: t = −7.074, β = −0.166; CDP+: t =

−12.941, β = −0.294; CDP++: t = −10.309, β = −0.238). Non-linear models revealed that the NDRA

predicts a non-linear effect of consistency for nonwords that is similar in nature to the effect of

consistency for words in the observed naming latencies, as does the DRC. By contrast, the CDP+

and CDP++ predict that the effect of consistency for nonwords is more prominent for high

rather than low predictor values. As was the case for words, however, the confidence intervals

of the predicted effects were relatively large.

The NDRA (
bnw
bw
¼ 1:834), the CDP+ ((

bnw
bw
¼ 1:560), and the CDP++ (

bnw
bw
¼ 1:875) all predict a

larger magnitude of the consistency effect in non-word naming than in word naming. By con-

trast, the DRC model predicts similar effect sizes in word and non-word naming (
bnw
bw
¼ 0:871).

The prediction of the DRC model fits well with the findings of Glushko [90], who found a 29 ms

facilitatory effect of consistency in both word and non-word naming. In the absence of a large-

scale database of non-word naming latencies or further experimental findings, however, any

conclusions regarding the simulation of the relative effect sizes of the effects of consistency in

word and non-word naming in the NDRA and CDP+ models are tentative.

Consistency by regularity. Now that we established the presence of both a consistency

and regularity effect in the observed naming latencies, we return to the question of which mea-

sure best characterizes the effect of the orthography to phonology mapping on naming laten-

cies. It is problematic for the DRC model if an independent graded consistency effect is present

on top of the regularity effect, because its sub-lexical route is based on hard-coded rules that

operate in an all-or-none fashion [92, 93]. In contrast, the CDP+ and CDP++ models are sensitive

to the probabilistic characteristics of orthography to phonology mappings [9, 94]. These mod-

els therefore allow for the possibility of a graded consistency effect over and above the effect of

regularity.

In the NDRA model, regularity and consistency effects originate from the co-activation of lex-

ical items with similar orthographies. The word band co-activates the lexical representations of

phonologically consistent words like hand, sand and land. These words provide additional

support for the target demi-syllable {nd and hence speed up naming latencies. In contrast,

bough co-activates the lexemes of phonologically inconsistent neighbors, such as tough, rough
and cough. The lexemes corresponding to these inconsistent neighbors activate the non-target

demi-syllable Vf and therefore do not facilitate the pronunciation of the target word bough.

The amount of support for the target demi-syllables directly depends on the number of co-

activated lexemes of orthographically consistent and inconsistent words. The NDRA therefore

predicts that graded consistency should be a better measure of orthography to phonology map-

ping effects than regularity.

An inspection of the naming latencies in the ELP revealed not only an independent contribu-

tion of both regularity and consistency, but also a significant interaction between both mea-

sures. Table 2 shows the results of a linear model that includes regularity, consistency and a

regularity by consistency interaction term. For the observed naming latencies, the strongest

effect is that of consistency. The effect of regularity becomes weaker in a model that includes

consistency, but remains significant. Furthermore, there is a significant interaction of regular-

ity with consistency. The NDRA captures the general pattern of results, with a stronger main

effect of consistency, a weaker main effect of regularity, and a positive estimate for the interac-

tion between consistency and regularity. The interaction between consistency and regularity,

however, fails to reach significance (t = 1.574, p = 0.116).
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The DRC dramatically overestimates the effect of regularity and fails to predict the main

effect of consistency. The grapheme to phoneme conversion rules in the DRC model thus fail to

capture the independent contribution of graded orthography-to-phonology consistency. The

CDP+ and CDP++ models capture the main effects of both consistency and regularity. Both mod-

els, however, incorrectly predict a larger effect size of regularity as compared to consistency.

The CDP+ model captures the interaction between consistency and regularity, whereas the

CDP++ model does not.

Fig 13 shows the non-linear interaction between consistency with regularity, which sheds

further light on the issue. Regular words (top two rows) show a subtle linear effect in the

observed data, as well as in the simulations of the all models. For irregular words, however, a

non-linear curve characterizes the ELP naming latencies, with particularly long reaction times

for inconsistent irregulars. The general shape of this curve is captured by all models, although

the DRC yields a more complex non-linear effect that is not present in the observed data.

Consistency by friends-enemies. Consistency has also been shown to interact with

another measure of the consistency of the orthography-to-phonology mapping: the number of

friends (words with the same body and rime pronunciation) and enemies (words with a differ-

ent body and rime pronunciation) a word has. Jared [91, 95], for instance, found an effect of

consistency that was limited to words with more enemies than friends. Different friend-enemy

measures have been proposed. Here, we use the measure that explained most of the variance in

the ELP naming latencies, which is the number of friends minus the number of enemies (t =

−6.357, β = −0.132). All models revealed a significant main effect of this friend-enemy measure

on the simulated naming latencies (NDRA: t = −2.754, β = −0.059; DRC: t = −16.222, β = 0.335;

CDP+: t = −8.900, β = −0.174; CDP++: t = −5.393, β = −0.088). The NDRA somewhat underesti-

mates its effect size, whereas the DRC overestimates its effect size.

More interestingly, the observed data support a tensor product GAM with an interaction

between consistency and our friend-enemy measure. This interaction is displayed in Fig 14.

The non-linear interaction between consistency and the friend-enemy measures is highly com-

plex in nature, with the consistency effect being most prominent for medium values of the

friend-enemy measure. The NDRA, CDP+, and CDP++ succeed in simulating the general nature of

this interaction. By contrast, the DRC incorrectly predicts a null effect of consistency for most

values of the friend-enemy measure.

Consistency by frequency. A final effect of consistency/regularity that warrants some dis-

cussion is the interaction of frequency with these measures. Jared [91, 95] did not find evi-

dence for an interaction of either regularity or consistency with frequency. As noted by Perry

et al. [2], these null results stand in contrast to previous studies [84–87] that reported longer

naming latencies for irregular or inconsistent low-frequency words, but not for high-frequency

words. The ELP naming latencies revealed similar AIC scores for a model with a tensor product

interaction of consistency and frequency (AIC: 4989.23) and a model with separate smooths for

Table 2. The interplay of regularity and consistency. Listed are t-values and β coefficients for each of the predictors in an additive linear model.

Consistency Regularity Interaction

t β t β t β

observed −6.182 −0.255 −3.226 −0.167 3.040 0.146

NDRA −3.727 −0.158 −2.350 −0.125 1.574 0.079

DRC −0.038 −0.001 −36.731 −1.521 −0.797 −0.031

CDP+ −5.747 −0.221 −7.371 −0.357 2.292 0.103

CDP++ −2.232 −0.072 −8.493 −0.343 −0.661 0.025

https://doi.org/10.1371/journal.pone.0218802.t002
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consistency and frequency (AIC: 4988.50). The evidence for a consistency by frequency interac-

tion in the ELP naming latencies, therefore, is subtle at best.

For completeness, we nonetheless show the results of the tensor product GAM in Fig 15. The

panel for the observed data shows a subtle interaction in the expected direction, with a consis-

tency effect that is more prominent for low frequency than for high frequency words. The

NDRA, the CDP+, and the CDP++ simulations predict a qualitatively similar subtle interaction.

The current simulations therefore suggest that these models are capable of explaining the sub-

tle interplay between consistency and frequency. The DRC, by contrast, predicts a somewhat

Fig 13. Interplay of consistency and regularity. The interplay of consistency and regularity in word naming. Top two

rows shows results for regular words, bottom two rows for irregular words.

https://doi.org/10.1371/journal.pone.0218802.g013
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different pattern of results, with similar effect sizes of orthographic neighborhood density

across the word frequency range.

Frequency effects

Frequency. The lexical predictor with the highest correlations with observed naming

latencies is word frequency. The effect of frequency is well-established (see e.g. [59, 65, 95, 96])

Fig 14. Interplay of consistency and friends minus enemies. The interaction of consistency with friends minus

enemies in tensor product GAMs.

https://doi.org/10.1371/journal.pone.0218802.g014

Fig 15. Interplay of frequency and consistency. The interaction of frequency with consistency in tensor product

GAMs.

https://doi.org/10.1371/journal.pone.0218802.g015
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and is highly significant in the observed naming latencies (t = −25.333, β = −0.454). As

expected, all models capture the frequency effect (NDRA: t = −44.748, β = −0.670; DRC: t = −8.790,

β = −0.174; CDP+: t = −40.441, β = −0.631; CDP++: t = −20.654, β = −0.383). As can be seen

in Fig 16 the effect is linear or near-linear in the observed data, as well as in all model

simulations.

Familiarity. In addition to the frequency effect, we also investigated the effect of familiar-

ity on the ELP naming latencies. As can be seen in Fig 17, the effect of familiarity in the observed

Fig 16. Frequency. The effect of frequency in word naming.

https://doi.org/10.1371/journal.pone.0218802.g016

Fig 17. Familiarity. The effect of familiarity in word naming.

https://doi.org/10.1371/journal.pone.0218802.g017
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data is linear and highly similar to that of frequency (t = −17.760, β = −0.348). This is unsur-

prising, given the high correlation between both measures (r = 0.770). For completeness, we

nonetheless include a description of the effect of familiarity here. All models capture the gen-

eral linear trend of this effect (NDRA: t = −25.464, β = −0.474; DRC: t = −7.063, β = −0.154; CDP+:

t = −28.939, β = −0.487; CDP++: t = −22.267, β = −0.330). While the observed data and the nam-

ing latencies simulated by the DRC model reveal an effect that slightly levels off for high predic-

tor values, however, the naming latencies simulated by the NDRA, CDP+, and CDP++ models are

characterized by a linear effect of familiarity.

Bigram frequency. All models accurately capture the frequency effect at the word level.

Frequency effects, however, also exists at a finer grain size. Baayen et al. [68], for instance,

found an effect of bigram frequency on word naming latencies. In the NDRA, bigrams have

explicit representations at the orthographic level, and many of the demi-syllable representa-

tions at the phonological level are diphones. In the CDP+ and CDP++ models, no explicit bigram

representations exist. We therefore hypothesized that there might be an advantage for the NDRA

over these models with respect to bigram frequency effects.

Here, we explore the effect of two measures of orthographic bigram frequency: summed

bigram frequency and mean bigram frequency. Both of these measures were predictive for the

ELP naming latencies (summed bigram frequency: t = 7.517, β = 0.148; mean bigram frequency:

t = 11.392, β = 0.231). The NDRA simulates the linear effect of both summed (t = 17.823, β =

0.335) and mean bigram frequency (t = 28.996, β = 0.517). Consistent with the effect of word

frequency, the effect sizes in the NDRA are larger than those in the observed data. As we clarify

in the section on the overall fit of the model below, however, the effects of the bigram fre-

quency measures in the NDRA have the correct relative magnitude as compared to the effects of

other lexical predictors.

The CDP+ and CDP++ also capture the effects of summed bigram frequency (CDP+: t = 3.091,

β = 0.062; CDP++: t = 3.018, β = 0.060) and mean bigram frequency (CDP+: t = 9.777, β = 0.190;

CDP++: t = 10.361, β = 0.166), although both models underestimate the effect size of the

summed bigram frequency effect. The DRC captures the effect of mean bigram frequency

(t = 5.998, β = 0.130), but does not predict a significant effect of summed bigram frequency

(t = 1.198, β = 0.024, p = 0.231).

Fig 18 shows the results of a non-linear model for mean (top two rows) and summed (bot-

tom two rows) bigram frequency. In the observed naming latencies, there is a facilitatory effect

of mean bigram frequency that increases in size for larger values of bigram frequency. The

NDRA captures this pattern of results, as does the DRC. The CDP++ model fails to capture the non-

linear effect of mean bigram frequency, and instead predicts a linear effect. The CDP+, by con-

trast, overestimates the quadratic component of the effect for low predictor values, although

the confidence intervals for this part of the predictor range are wide. The effect of summed

bigram frequency is linear in the observed naming latencies. All models correctly predict facili-

tation for the lowest values of summed bigam frequency. The models, in particular the DRC and

the CDP+, however, incorrectly predict that the effect would level off for higher summed bigram

frequencies.

In addition to the effect of orthographic bigram frequency, we also investigated the effect of

phonological bigram frequency. The observed naming latencies showed a facilitatory linear

effect of the frequency of the initial diphone (t = −6.700, β = −0.139). The NDRA (t = −5.382, β =

−0.114) captures this linear effect, as do the CDP+ (t = −6.670, β = −0.131) and the CDP++ (t =

−4.558, β = −0.075). The DRC, however, does not (t = −0.975, β = −0.019). As can be seen in Fig

19, the non-linear effect is u-shaped in nature, with greater naming latencies for words with

low-frequency initial diphones and—to a lesser extent—for words with high frequency initial

diphones. All models successfully capture the nature of this non-linear effect. The NDRA,
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however, overestimates the difficulty for words with high frequency initial diphones. Given the

sparsity of data points at the high end of the predictor range and the resulting increased width

of the confidence intervals, however, strong conclusions about the performance of the models

for words with high frequency initial diphones would be premature.

Semantic predictors

A final class of effects we investigated are the effects of semantic predictors. In particular, we

report the simulation results for two types of semantic measures: synonym sets and morpho-

logical family size.

Fig 18. Mean bigram frequency and summed bigram frequency. The effects of mean bigram frequency (top two

rows) and summed bigram frequency (bottom two rows) in word naming.

https://doi.org/10.1371/journal.pone.0218802.g018
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Synonym sets. We investigated the effects of two predictors that are based on the number

of synonym sets that a word appears in (as listed in WordNet [97]). The more different mean-

ings a word has, the more synsets it appears in and the faster it is named [68]. Following

Baayen et al. [68], we consider two related measures: the number of simplex synsets and the

number of complex synsets. The number of simple synsets simply refers to the number of syn-

sets a word occurs in. The number of complex synsets is defined as the number of synsets in

which a word is part of a compound or phrasal unit.

Both measures have an inhibitory effect on the observed naming latencies, which is slightly

larger for the number of complex synsets (t = −13.272, β = −0.267) than for the number of sim-

plex synsets (t = −11.118, β = −0.228). The NDRA correctly simulates this pattern of results,

although it overestimates the difference between the effect sizes for both predictors (number of

simplex synsets: t = −13.962, β = −0.286; number of complex synsets: t = −22.475, β = −0.428).

By contrast, the DRC predicts a larger effect of the number of simplex synsets (t = −5.797, β =

−0.127) than for the number of complex synsets (t = −4.797, β = −0.105). Consistent with the

observed naming latencies, the naming latencies simulated by the CDP+ and CDP++ reveal

somewhat larger effect sizes for the number of complex synsets (CDP+: t = −20.583, β = −0.373;

CDP++: t = −15.886, β = −0.247) than for the number of simplex synsets (CDP+: t = −20.227, β =

−0.371; CDP++: t = −14.410, β = −0.228). The difference between the effect sizes for the effects

for both predictors in the CDP+, however, is marginal.

Fig 20 presents the effect of both predictors, which are linear or near-linear in the ELP nam-

ing latencies, as well as in the simulated naming latencies in all models. The effects of both pre-

dictors in the observed naming latencies as well as the naming latencies simulated by the NDRA

and DRC models show some non-linearity for high predictor values. Again, however, given the

sparsity of data points at both ends of the predictor range and the resulting wide confidence

intervals, the statistical robustness of this non-linearity is questionable.

Morphological family size. A second type of semantic predictor we looked at is morpho-

logical family size. Morphological family size is defined as the number of morphologically

complex words in which a word occurs as a constituent (see, e.g. [98]). Words that occur in

Fig 19. Initial diphone frequency. The effect of the frequency of the initial diphone in word naming.

https://doi.org/10.1371/journal.pone.0218802.g019
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many complex words (such as work) are named faster than words that occur in fewer complex

words [68]. This facilitatory effect of family size was confirmed in the ELP naming latencies

(t = 15.381, β = −0.305). All models correctly simulate this effect of family size (NDRA: t =

−21.503, β = −0.413; DRC: t = −5.209, β = −0.114; CDP+: t = −24.365, β = 0.427; CDP++: t =

−18.371, β = −0.280). The DRC model, however, substantially underestimates the magnitude of

the effect. As can be seen in Fig 21, the effect of family size in a non-linear GAM is similar in the

observed naming latencies and in the naming latencies simulated by the models.

A related measure is derivational entropy [99]. Derivational entropy is the entropy [36]

over the probabilities of a word’s morphological family members. As such, it provides an

Fig 20. Number of synsets. The effects of the number of simplex (top two rows) and complex (bottom two rows)

synsets in word naming.

https://doi.org/10.1371/journal.pone.0218802.g020
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alternative to the family size measure, with family members weighted for their token fre-

quency. Similar to the effect of family size, derivational entropy showed a facilitatory effect in

the observed naming latencies (t = 8.984, β = −0.185) that was correctly simulated by all mod-

els (NDRA: t = −10.180, β = −0.211; DRC: t = −2.201, β = 0.048; CDP+: t = −9.552, β = −0.186;

CDP++: t = −6.743, β = −0.110). As was the case for the effect of family size, however, the DRC

underestimates the effect size of the effect of derivational entropy. A non-linear model of deri-

vational entropy on the observed naming latencies revealed a fairly complex non-linear pattern

of results. As can be seen in Fig 22, the NDRA, CDP+, and—to a lesser extent—the CDP++ models

Fig 21. Family size. The effect of family size in word naming.

https://doi.org/10.1371/journal.pone.0218802.g021

Fig 22. Derivational entropy. The effect of derivational entropy in word naming.

https://doi.org/10.1371/journal.pone.0218802.g022
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capture this non-linear pattern with remarkable accuracy. The DRC replicates the facilitatory

nature of the effect, but fails to capture its non-linear subtleties.

Predictor effect sizes

Above, we evaluated whether or not the NDRA, DRC, CDP+, and CDP++ models capture the effects

of lexical predictors. We now take a closer look at the relative effects these lexical predictors in

the model simulations. Fig 23 plots the modeled predictor coefficients (βs) in the linear regres-

sion models for each predictor in the observed data against the coefficients in the naming

latencies simulated by the NDRA (top left panel), DRC (top right panel), CDP+ (bottom left panel),

Fig 23. Predictor effect sizes. Comparison of predictor coefficients for the observed data and the simulations of the NDRA (top left panel), DRC

(top right panel), CDP+ (bottom left panel), and CDP++ (bottom right panel) models. Predictors from bottom to top: Freq (frequency), Orth

(orthographic neighborhood density), FAM (familiarity), FS (family size), NCS (number of complex synsets), Phon (phonological

neighborhood density), NSS (number of simplex synsets), DE (derivational entropy), REG (regularity), Cons (consistency), FID (frequency

initial diphone), FE (friends-enemies measure), Body (body neighborhood density), BG (summed bigram frequency), BGM (mean bigram

frequency), L (length).

https://doi.org/10.1371/journal.pone.0218802.g023
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and CDP++ (bottom right panel). Ideally, the points in these graphs are on a straight line. This

would indicate that the relative effect sizes in the simulated data are identical to those in the

observed data. The plot for the NDRA deviates very little from this ideal pattern of results. The

accuracy of the predictor effect size in the NDRA is confirmed by a correlation of r = 0.995

between the coefficients for the observed data and the coefficients in the NDRA simulations.

The effect sizes for the NDRA are larger than those for the observed data. Importantly, this

does not imply that the models are overfitting predictor effects. As noted by Adelman and

Brown [53], the standard deviation for modeled naming latencies is smaller than that for

observed latencies. The reason for this is that models operate under perfect noise-free condi-

tions. This stands in sharp contrast to the observed naming latencies, even when those

observed latencies are averaged over participants. We normalized the observed and simulated

latencies prior to our simulations. As a consequence, the smaller standard deviation in the sim-

ulated data results in larger estimated effect sizes. The increased effect sizes in the NDRA as com-

pared to the observed data, therefore, are a result of the noise-free conditions in the model

simulations.

The coefficients in the CDP+ (r = 0.972) and CDP++ (r = 0.966) simulations are highly corre-

lated with the coefficients for the observed data as well. Nonetheless, the relative effect sizes

deviate more from those in the observed data for the CDP+ and CDP++ models than for the

NDRA. The coefficients for the CDP+ and CDP++ reveal two particular problems with the relative

effect sizes for these models. First, the effect sizes of the neighborhood density measures are

too similar. Both models overestimate the effect of body neighborhood density and underesti-

mate the effect of orthographic neighborhood density. Second, the effect of regularity is sub-

stantially larger than that of consistency. This stands in contrast to the observed data, where

both effects are similar in size. These observations indicate that the CDP+ model puts too much

importance on processes underlying the effects of body neighborhood density and regularity.

Finally, the correlation between the coefficients in the observed data and the coefficients

simulated by the DRC model is r = 0.506. The DRC thus has substantial problems capturing the

relative effect sizes for the effects of the lexical-distributional variables. Due to its reliance on

explicit grapheme-to-phoneme conversion rules in its sub-lexical route, the DRC drastically

overestimates the effect size of the effect of regularity. Furthermore, as was the case for the

CDP+ and CDP++ models, the simulated effect of body neighborhood density is much stronger

than the effect of this predictor in the observed data.

Overall model fit

Item-level performance. Now that we discussed the effects of individual predictors it is

time to consider the overall fit of the NDRA model to word naming data. A first issue to address

is the item-level performance of the models (see e.g. [61]). The correlation between the

observed naming latencies from the ELP and the naming latencies simulated by the NDRA for the

2, 510 mono-syllabic mono-morphemic nouns under investigation is r = 0.515. For the dual-

route models under investigation, the correlation between simulated and observed naming

latencies is highest for the CDP+ model: r = 0.491. The item-level correlations for the CDP++

(r = 0.307) and the DRC (r = 0.224) are substantially less high.

To further investigate the overall performance of the models, we extracted average response

times for all mono-morphemic, mono-syllabic words that can be used as nouns and that are

present in the CELEX lexical database from four more data sets: Balota and Spieler (1998) [100]

(averaged over young and old participants), Seidenberg and Waters (1989) [101], Treiman

(1995) [102], and Kessler and Treiman (2002) [103]. Next, we calculated item-level correla-

tions for all models for each data set. These item-level correlations are presented in Table 3.
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Table 3 furthermore presents the results of a meta-analysis, in which we calculated the correla-

tion of the simulated naming latencies with the averaged (normalized) naming latencies for

each word across the five studies.

Consistent with the item-level performance for the ELP data, the NDRA outperforms the other

models for three of the four additional data sets: the Balota and Spieler (1998), Seidenberg and

Waters (1989), and Kessler and Treiman (2002) data. For the fourth data set, Treiman (1995),

the item-level correlation between simulated and observed naming latencies is somewhat

higher for the CDP+ than for the NDRA. The meta-analysis confirms the excellent performance of

the NDRA. The correlation of the naming latencies simulated by the NDRA and the averaged (nor-

malized) response times across the five studies is 0.534.

William’s tests [104] on the correlations in the meta-analysis revealed that the item-level

correlation for the NDRA is significantly higher than the item-level correlation for the DRC

(r = 0.224, t = 14.361, p< 0.001), the CDP+ (r = 0.480, t = 3.6384, p< 0.001), and the CDP++

(r = 0.326, t = 11.299, p< 0.001). Despite its parsimonious single-route architecture, the item-

level performance of the NDRA thus exceeds that of state-of-the-art dual-route models.

The distributions of the observed and simulated naming latencies provide additional

insight into the item-level performance of the models. Fig 24 presents quantile-quantile plots

of the (non-transformed) observed naming latencies and the naming latencies simulated by

the NDRA, DRC, CDP+, and CDP++. The observed naming latencies and the latencies simulated by

the NDRA show a near-normal distribution with a somewhat longer right tail. The distributions

of the latencies simulated by the DRC, CDP+, and CDP++, however, are far from normal and have

very pronounced right tails. This problem is not resolved by applying an inverse or logarithmic

transform to the naming latencies simulated by these models.

Principal components regression analysis. A second issue regarding the overall model fit

is how well the model characterizes the multidimensional structure described by the predictors

under investigation. Above, we established the effect of each predictor in isolation. To some

extent, this allowed us to get away from the multicollinearity issue. The effects of predictors in

isolation, however, may be confounded with the effects of other predictors. It could be argued,

for instance, that the NDRA, DRC, CDP+, and CDP++ models should not be sensitive to the effects

of the semantic predictors related to the number of synsets in WordNet. The number of of

simplex synsets (r = 0.534) and the number of complex synsets (r = 0.572) have medium

strength correlations with word frequency. The possibility exists, therefore, that the reported

effects of these semantic predictors are artefacts of their statistical relation with word frequency

and/or other predictors. Indeed, both measures fail to reach significance in a linear regression

model that includes all 16 predictors (number of simplex synsets: t = −1.556, p = 0.120; num-

ber of complex synsets: t = −1.269, p = 0.204).

Table 3. Item-level correlations. Item-level correlations for the English Lexicon Project, Balota and Spieler (1998), Sei-

denberg and Waters (1989), Treiman (1995), and Kessler and Treiman (2002) data sets, as well as for a meta-analysis of

these data sets.

NDRA DRC CDP+ CDP++

English Lexicon Project 0.515 0.224 0.491 0.307

Balota and Spieler (1998) 0.492 0.196 0.461 0.390

Seidenberg and Waters (1989) 0.384 0.175 0.318 0.274

Treiman (1995) 0.372 0.211 0.414 0.335

Kessler and Treiman (2002) 0.413 0.161 0.365 0.233

meta-analysis 0.534 0.224 0.480 0.326

https://doi.org/10.1371/journal.pone.0218802.t003
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We therefore sought to verify that the overall characterization of the multidimensional pre-

dictor space by the NDRA is correct. To ascertain that the effects of predictors are accurately cap-

ture not only in isolation, but also when the values of other the predictors are taken into

account, we carried out a principal components analysis on the 16-dimensional space

described by the predictors length, orthographic neighborhood density, phonological neigh-

borhood density, body neighborhood density, regularity, consistency, friends-enemies, fre-

quency, familiarity, mean bigram frequency, summed bigram frequency, frequency initial

diphone, number of simplex synsets, number of complex synsets, morphological family size,

and derivational entropy. This principal components analysis serves as a litmus test for the

extent to which the models capture the influence of the overall organisation of lexical-distribu-

tion space on the word naming latencies. Table 4 presents the loading of the predictors on the

first 8 principal components. Together, these eight principal components explained 86% of the

variance in the input space. PC1 has high loadings for predictors that describe the frequency of

a word (family size: 0.40, frequency: 0.39, familiarity: 0.36), whereas PC2 contrasts word length

(-0.43) with neighborhood density (orthographic neighborhood density: 0.34).

The results of a linear regression model fit to the first eight principal components are

shown in Table 5. The NDRA predicts the right sign for all principal components. Consistent

with the effect sizes for the predictors themselves, the effect sizes of the principal components

are larger for naming latencies simulated by the NDRA than for the observed data. Again, how-

ever, the relative magnitude of the effect sizes (βs) is highly similar for the simulated and

observed data (r = 0.942). This demonstrates that the NDRA simulations capture the overall

input space quite well.

The CDP+ and CDP++ do not capture the input space as well as the NDRA. This is reflected in a

somewhat lower correlation with observed principal components coefficients (r = 0.86 for

both models). Both models incorrectly predict an inhibitory effects of PC3, which has strong

negative loadings for consistency, friends minus enemies, and body neighborhood density.

The effect sizes in both models, as well as in the observed data, however, are limited. The

Fig 24. Naming latency distributions. Quantile-quantile plots of the observed naming latencies and the naming

latencies simulated by the NDRA and CDP+ models.

https://doi.org/10.1371/journal.pone.0218802.g024
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correlation between the coefficients simulated by the DRC and the observed coefficients is weak

(r = 0.274). The DRC incorrectly predicts a large inhibitory effect of PC3 that is much stronger

than the effects of PC3 in the CDP+ and CDP++ models. Furthermore, the model incorrectly pre-

dicts a large inhibitory effect of PC7, which has a high positive loading for regularity. The

shortcomings of the DRC, CDP+, and CDP++ models that emerged in our analysis of the relative

predictor effect sizes thus re-surface in the principal components analysis of the data.

Comparison to a dual-route architecture

The single route architecture of the NDRA model provides a good fit to observed reading aloud

data. It could be the case, however, that adding a sub-lexical route would improve the model’s

performance. This issue is particularly relevant given the fact that the sub-lexical route of the

CDP+ model has a significant contribution in terms of explained variance, both in word and

non-word naming [2]. To resolve this issue we implemented a sub-lexical route by means of a

Rescorla-Wagner network that learned to associate orthographic input cues (letters and letter

bigrams) with phonological outcomes (demi-syllables). We trained this sub-lexical Rescorla-

Table 4. Results of a principal components analysis on the 16 dimensional space described by the predictors. Listed are predictor loadings for the first 8 principal

components.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Length -0.23 -0.43 -0.17 -0.05 -0.02 0.11 0.21 0.05

Orthographic N 0.27 0.34 0.00 0.35 0.04 0.21 0.01 -0.10

Phonological N 0.21 0.23 0.20 0.48 -0.04 0.11 0.30 -0.01

Body N 0.18 0.23 -0.40 0.13 -0.03 0.33 0.22 0.09

Regularity 0.07 0.17 -0.29 -0.05 -0.14 -0.74 0.53 -0.02

Consistency 0.14 0.07 -0.49 -0.12 0.08 -0.03 -0.38 -0.07

Friends-Enemies 0.11 0.14 -0.56 -0.09 0.06 0.06 -0.17 -0.01

Frequency 0.39 -0.18 0.08 -0.03 -0.31 -0.03 -0.13 -0.32

Familiarity 0.36 -0.20 0.05 -0.09 -0.36 -0.05 -0.10 -0.43

Mean Bigram Frequency -0.06 -0.35 -0.25 0.37 0.00 0.12 0.21 -0.30

Summed Bigram Frequency -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

Frequency initial diphone 0.10 -0.13 0.00 0.56 0.10 -0.45 -0.48 0.30

Simplex synsets 0.32 -0.19 -0.06 -0.11 -0.23 0.18 0.13 0.65

Complex synsets 0.35 -0.18 0.09 -0.09 -0.04 -0.05 0.05 0.26

Family Size 0.40 -0.21 0.06 -0.12 0.30 0.00 0.09 0.01

Derivational Entropy 0.26 -0.11 0.06 -0.11 0.76 -0.06 0.15 -0.16

https://doi.org/10.1371/journal.pone.0218802.t004

Table 5. Results of a principal components analysis on the 16 dimensional space described by the predictors. Listed are β coefficients for the first 8 principal

components.

observed NDRA DRC CDP+ CDP++

PC1 −0.235 −0.342 −0.134 −0.304 −0.205

PC2 −0.070 −0.152 −0.105 −0.026 −0.039

PC3 −0.021 −0.158 0.212 0.028 0.006

PC4 0.001 0.072 0.026 0.000 0.012

PC5 0.051 0.147 0.128 0.165 0.125

PC6 0.141 0.158 0.430 0.117 0.109

PC7 0.139 0.260 −0.336 0.021 0.003

PC8 0.077 0.147 0.044 0.095 0.074

https://doi.org/10.1371/journal.pone.0218802.t005
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Wagner network on the same set of training data as the NDRA. This resulted in three additional

model components, describing the activation of the first (ActPhonSub1) and second (ActPhon-
Sub2) demi-syllable in the sub-lexical route and the entropy over these activations (HSub). We

then fitted two linear regression models to the (inverse transformed) observed naming laten-

cies. The first linear model included as predictors the (log-transformed) components of the

original NDRA model. The coefficients of this linear model were highly similar to the parameter

settings used in the simulations throughout this paper (r = 0.996). The second linear model

included as predictors not only the components of the NDRA model, but also the 3 additional

measures derived from the sub-lexical discrimination learning network.

Table 6 presents the t-values associated with each component in the linear model contain-

ing the lexical components of the NDRA and the linear model containing both lexical and sub-

lexical components. This dual-route model will henceforth be referred to as the NDR2
A. Table 6

shows that the relative contributions of the lexical components are similar in the NDRA and

NDR2
A. Adding a sub-lexical route to the model architecture does not affect the contribution of

the lexical model components much. Neither the activation of the demi-syllables from the

orthography, nor the entropy over these activations reaches significance in the linear model

for the NDR2
A. Furthermore, the predicted values of the NDRA and NDR2

A linear models are highly

similar (r = 0.998), and both models show similar correlations with the observed naming laten-

cies (NDRA: r = 0.500; NDR2
A: r = 0.501).

The results for the linear models presented here demonstrate that the addition of a sub-lexi-

cal route does not improve the performance of the NDRA in word naming. In addition, the sim-

ulations for the individual predictors demonstrated that the effects documented in the non-

word naming literature are adequately captured by the single lexical route architecture of the

NDRA. The current simulations therefore suggest that a single-route architecture is sufficient to

capture the patterns of results observed in the response times in both word and non-word

naming experiments.

Non-word frequency effect

A reanalysis of the McCann and Besner [58] naming latencies for non-words sheds interesting

new light on the use of a lexical architecture for non-word naming. For each of the 154 non-

words in the study, both standard non-words and pseudo-homophones, we obtained unigram

frequencies from the Google 1T n-gram corpus [48]. The unigram frequency list from the

Google 1T n-gram corpus includes words with a frequency of 200 or greater only. It is striking

Table 6. Results of a linear model predicting observed reaction times from model components. Listed values are

component t-values.

NDRA NDR2
A

lexical route

ActLexeme 5.256 3.425

ActPhon1 4.123 4.015

ActPhon2 11.019 10.580

H 7.666 7.371

Complexity 16.607 15.703

sub-lexical route

ActPhonSub1 NA 1.458

ActPhonSub2 NA 0.203

HSub NA 1.113

https://doi.org/10.1371/journal.pone.0218802.t006
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therefore, that only 15 of the 154 non-words did not appear in the Google unigram corpus. A

Google web search for these 15 words showed that even the least frequent of these words still

appeared on 7, 700 web pages. Furthermore, the average Google unigram frequency of non-

words (184, 396) is comparable to that of low frequency English words like matriculation (fre-

quency: 183, 617) or mannequin (frequency: 184, 551). This suggests that from a distributional

perspective, the distinction between words and non-words is not as absolute as is commonly

believed. As for real words, any given non-word therefore may or may not have a representa-

tion in the mental lexicon of an individual language user. The probability of such a representa-

tion existing is a function of the frequency of the word or non-word.

Given these observations we investigated whether there was a frequency effect of non-

words in the naming latencies for Experiment 1 in McCann and Besner [58]. We found a

highly significant effect of non-word frequency (t = −5.838, β = −0.428). This effect of non-

word frequency existed over and above the effects of word length, orthographic neighborhood

density, base word frequency and non-word type (regular or pseudo-homophone). Non-word

frequency was the most powerful predictor of non-word naming latencies and showed a corre-

lation to observed naming latencies (r = −0.428) similar to that of the word frequency measure

in the ELP naming latencies for real words (r = 0.451).

To verify that the architecture of the NDRA supports non-word frequency effects, we

retrained the model on input data that, in addition to the original input data the NDRA was

trained on, contained the non-words from the McCann and Besner [58] study with their

Google unigram frequency. With parameter settings identical to those in all previously

reported simulations, this model correctly simulates the non-word frequency effect (t =

−8.056, β = −0.547). As expected, the CDP+ (t = −1.323, β = −0.107) and CDP++ (t = −0.852, β =

−0.069) model do not capture this effect. We do expect the CDP+ and CDP++ models to capture

the non-word frequency effect if the training data for these models were enriched in a similar

fashion as the training data for the NDRA model. Surprisingly, the DRC does predict a significant

effect of non-word frequency (t = −3.459, β = −0.270) without adjustments to its input data,

presumably due to the strong correlation between non-word length and non-word frequency

(r = −0.429).

The results of a non-linear model for non-word frequency are presented in Fig 25. The

observed naming latencies show a facilitatory effect that levels off for the highest frequency

non-words. The NDRA captures the facilitatory trend, but predicts that the effect levels off for

the 15 non-words that did not appear in the Google unigram corpus, rather than for the high-

est frequency non-words. Given the limited size of the current set of non-words, we are hesi-

tant to draw strong conclusions on the basis of this discrepancy. If future research were to

indicate that the observed effect is robust and that the NDRA systematically underestimates its

non-linearity, we hypothesize that revised, more carefully selected training data might lead to

better simulation results. The latencies simulated by the DRC reveal a linear effect of non-word

frequency, while the CDP+ and CDP++ show a non-significant trend towards facilitation.

The non-word frequency effect suggests that the dichotomous distinction between words

and non-words is perhaps better thought of as a difference on a gradient scale, with high fre-

quency words on one end of the scale and low frequency words on the other. Conceptually,

such a gradient scale fits well with the architecture of the NDRA, in which the difference between

word and non-word processing is quantitative rather than qualitative in nature: words and

non-words are processed by the same cognitive architecture, with differences only in the

amount of activation flowing through the system.

We conclude this section on a note about the quantitative performance of the NDRA and

CDP+ models for the McCann and Besner [58] naming latencies. The predicted naming laten-

cies from the reading aloud models correlate poorly with the observed naming latencies (NDRA:
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r = 0.131; DRC: r = 0.107; CDP+: r = 0.078; CDP++: r = 0.087). One potential explanation for the

poor quantitative performance of the models may be the fact that the stimulus list of Experi-

ment 1 of McCann and Besner [58] consisted of non-words only. Task strategies, therefore,

may substantially differ from experiments in which mixed stimulus lists are used. Alterna-

tively, the visual input interpretation mechanism used in the current implementation of the

NDRA may be too simplistic. The predicted values of a simple linear model including a fre-

quency-weighted version of the visual complexity measure (Complexity/(LogFrequency +

back-off constant)) rather than the original complexity measure boosted the correlation with

the observed non-word naming latencies to r = 0.461, a correlation close to the correlation

between the word naming latencies in the ELP and the word naming latencies simulated by the

NDRA. We return to the issue of familiarity with the visual input in the discussion section below.

Pronunciation performance

The discrimination learning core of the NDRA models response times in the reading aloud task,

and does not generate actual pronunciations of words or non-words. The reason for this is

that we believe that there is a functional separation between the processes by which responses

are learned and response conflict resolution. The core of the NDRA models the processes by

which responses are learned. To be able to generate correct pronunciations for words and

non-words, however, language users must resolve conflicts that arise during the selection of a

response. As noted by Novick et al. [39], the pre-frontal cortex (PFC) plays a crucial role in

response conflict resolution. The processes by which responses are learned are relatively well

understood. By comparison, our understanding of the functional architecture of the PFC is lim-

ited. As a consequence, considerable uncertainty remains with respect to the optimal imple-

mentation of a verification mechanism. Here, we adopt a crude approximation of what we

think the architecture of a checking mechanism might look like. We evaluate the pronuncia-

tion performance of the NDRA when this checking mechanism is added to the discrimination

learning core of the NDRA.

Fig 25. Frequency: Non-words. The effect of frequency in non-word naming.

https://doi.org/10.1371/journal.pone.0218802.g025
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Response conflict resolution in the NDRA. The basic rationale behind the checking

mechanisms adopted here is that the PFC filters the set of lexical representations that activate

demi-syllables to only include the subset of lexemes that share orthographic features with the

target word or non-word. As such, the checking mechanism used here limits response conflict

monitoring to the lexical level: the pre-frontal cortex monitors the set of activated lexemes and

removes from this set of activated lexemes those lexical representations that are inappropriate

given the orthographic input. No further response monitoring takes place at the phonological

level.

Our implementation of the checking mechanism builds on the idea that a lexeme points to

letters and letter order information (which is required, for instance, for writing). This informa-

tion is then compared on-line against the orthographic features in the input. As pointed out

earlier, the assumption that language users are able to compare the orthographic features asso-

ciated with a lexeme to the orthographic features in the input is not unique to the verification

mechanism proposed here. Instead, it is a general assumption of discrimination learning that

is necessary to evaluate whether or not the outcome of a learning event is predicted correctly,

and that is consistent with theories of cortical processing that propose a bi-directional pass of

information between higher and lower levels of information [35].

How exactly does the checking mechanism work? Consider the example word bear. When

the orthographic string bear is presented on the screen, activation spreads to a large number of

lexical representations. The set of activated lexemes includes orthographic neighbors of BEAR
such as PEAR, HEAR and FEAR as well as the target lexeme BEAR itself. For a correct pronun-

ciation of the word bear, however, it is sufficient to consider only those demi-syllables that are

activated by the target lexeme BEAR. The checking mechanism therefore limits activation of

demi-syllables to those units that are activated by this target word lexeme. In the case of bear,
the initial demi-syllable that receives most activation from the lexeme BEAR is b8, whereas the

most active second demi-syllable is 8R. The model therefore correctly pronounces the word

bear as b8R.

For a vast majority of all words, the most active word-initial and word-final demi-syllables

are compatible in the sense that the vowel in the initial and final demi-syllables is identical. For

10 out of the 2, 510 monosyllabic words in our data set, however, the vowel in the most active

first and second demi-syllable are different. In these cases the checking mechanism gives pref-

erence to the vowel in the second demi-syllable. This implementational decision corresponds

to the fact that the activation of the second demi-syllable has a somewhat higher weight in the

NDRA as compared to the activation of the first demi-syllable (weight ActPhon1: 0.050, weight

ActPhon2: 0.098) and to the increased perceptual prominence of rhymes as compared to onset

plus vowel sequences.

For a non-word such as bap no lexical representation exists. Limiting the phonological

units that influence pronunciation to those activated by the target word lexeme therefore does

not work for non-words. Instead, the checking mechanism needs to identify which lexical rep-

resentations share relevant orthographic features with the non-word bap. Only the phonologi-

cal activation generated by these lexemes should influence non-word pronunciation. The

question then becomes how to define the term “relevant orthographic features”. One option is

to include all lexemes whose orthographic representations share at least n orthographic

bigrams with the non-word presented on the screen. The problem with such a definition is

that the checking mechanism would be relatively insensitive to the serial nature of the non-

word naming task.

We propose an alternative definition that takes into account the left-to-right nature of read-

ing and speech production by varying the set of lexemes that influence pronunciation in a

serial manner. For the first demi-syllable, the checking mechanism proposed here ensures that
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the initial demi-syllables considered for pronunciation are restricted to the set of initial demi-

syllables that receive activation from lexemes that share the orthographic onset and vowel with

the presented non-word. For the non-word bap, for instance, only those initial demi-syllables

that are activated by one of the 28 lexemes that share the orthographic onset and vowel ba with

the lexeme BAP are considered for pronunciation (e.g., BACK, BALM, BALL, . . .).

For the second demi-syllable, the checking mechanism considers the combination of the

orthographic vowel and coda when selecting the appropriate second demi-syllable (i.e., it lim-

its the set of word-final demi-syllables considered for pronunciation to the set of word-final

demi-syllables that receives activation from lexemes that share the orthographic rhyme with

the presented non-word). For the non-word bap, for instance, only those word-final demi-syl-

lables that are activated by one of the 21 lexemes that share the orthographic rhyme ap with

the lexeme BAP are considered for pronunciation (e.g., CHAP, LAP, SWAP, . . .). The checking

mechanism proposed here assumes that the system is sensitive to the distinction between vow-

els and consonants. A similar assumption is made in the sub-lexical route of the CDP+ model,

which parses the visual input into consonant and vowel slots in a grapheme buffer.

Consistent with the architecture of the NDRA, we weighted the contribution of lexical repre-

sentations to demi-syllable activations for the amount of activation they received from the

orthographic features of the non-word (see Eq 7). For the non-word bap the initial demi-sylla-

ble that received the highest activation from the co-activated lexical representations was b{,

whereas the highest activated second demi-syllable was {p. Together, these demi-syllables yield

the correct pronunciation of the non-word bap, which is b{p. The same procedure was used to

resolve ties for existing words for which the activation of a demi-syllable from the target word

lexeme was equally high for two or more demi-syllables (i.e., for 99 word-initial demi-syllables

(3.94%) and 184 word-final demi-syllables (9.12%)).

For a vast majority of the 2, 510 words and 1, 784 non-words under consideration, the algo-

rithm described above yields a single most highly activated first and second demi-syllable. For

101 words (4.02%) and 81 non-words (4.54%), however, two or more potential word-initial or

word-final demi-syllables still receive equal activation. For these non-words the checking

mechanism resorts to the phonological activations generated by the set of lexical representa-

tions that share the orthographic onset (rather than onset plus vowel) or the orthographic

coda (rather than rhyme) with the word or non-word to resolve the tie, considering only those

word-initial or word-final demi-syllables that share the phonological coda with one of the

demi-syllables involved in the tie.

Simulation results. The NDRA model generates correct pronunciations for 2, 493 of the 2,

510 monosyllabic words in our database, resulting in a word pronunciation performance of

99.32%. A majority of the pronunciation errors (10 out of 17) concerns words that have more

than one pronunciation in the CELEX lexical database, such as tear or wind. For these words the

model chooses the more frequent pronunciations t8R and wInd over the less frequent pronun-

ciations t7R and w2nd, as would participants in a reading aloud task. Of the remaining 7 erro-

neous pronunciations in the NDRA, 3 were based on position-specific grapheme-to-phoneme

conversions that exist in other English words: blouse is pronounced as bl6s rather than bl6z
(analogous to house (h6s)), draught as dr#t rather than dr#ft (analogous to fraught (fr$t)), and

vase is pronounced as v#s rather than v#z (analogous to case (k1s)). The remaining erroneous

pronunciations contain grapheme-to-phoneme conversions that are not attested in English:

the NDRA pronounces year as j7d rather than j7R, font as bQnt rather than fQnt, beige as kw1Z
rather than b1Z, and sky as sk2b rather than sk2.

Comparing the pronunciation performance of the NDRA model to that of the other models is

not entirely straightforward. Consider, for instance, the CDP+ model. While the sub-lexical

route of the CDP+ model was trained on the British pronunciations in the CELEX lexical database,
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the training data for the interactive activation model in the lexical route are not explicitly spec-

ified in Perry et al. [2]. The pronunciations of the CDP+ model, however, suggest that the lexical

route was trained on a variety of American English, rather than British English. Consequently,

the CDP+ model typically pronounces the vowel $ as 9. Provided that these types of pronuncia-

tions are likely to reflect differences in training data rather than differences in model perfor-

mance, we decided to not consider such pronunciations erroneous.

After correcting for differences in the training data, the DRC generates correct pronuncia-

tions for 2, 493 of the 2, 510 words under investigation, for a naming performance of 99.28 (11

words with multiple pronunciations, 6 grapheme-to-phoneme conversions that exist in

English, 1 grapheme-to-phoneme conversion that does not exist in English). Both the CDP+ (2,

472 correct pronunciations (98.49%); 11 words with multiple pronunciations, 18 grapheme-

to-phoneme conversions that exist in English, 9 grapheme-to-phoneme conversions that do

not exist in English) and the CDP++ (2, 491 correct pronunciations (99.24%); 9 words with

multiple pronunciations; 4 grapheme-to-phoneme conversions that exist in English; 6 graph-

eme-to-phoneme conversions that do not exist in English) show excellent pronunciation per-

formance as well.

All models thus accurately pronounce real words. Word pronunciations, however, are gen-

erated by lexical architectures both in the single-route NDRA model and in the dual-route DRC,

CDP+, and CDP++ models. By contrast, for non-words, the dual-route models directly map

orthographic units onto phonological units in their sub-lexical routes, whereas the NDRA relies

on co-activation of orthographic neighbors in a lexical architecture. Much more than word

pronunciation, therefore, non-word pronunciation provides a litmus test for the combination

of the single-route lexical architecture of the discrimination learning core of the NDRA model

with a top-down checking mechanism.

We report two analyses of non-word pronunciation performance. First, we establish the

pronunciation performance of the models for the set of 1, 784 non-words discussed through-

out this paper. Next, we compare the pronunciations of the models to the pronunciations of

participants in the non-word reading study by Pritchard (2012) [105]. The performance of the

models for both data sets after correcting for differences in the training data is presented in Fig

26.

Following Perry et al. [2] we adopt a lenient error scoring criterion for the pronunciation

performance on the non-words from the ARC non-word database. This lenient scoring crite-

rion is similar to the scoring criterion proposed by Seidenberg et al. [84], according to which a

non-word pronunciation is correct if it is based on grapheme-to-phoneme conversions that

exist in real English words. The lenient scoring criterion used here, however, is a bit stricter

Fig 26. Pronunciation performance: Non-words. Non-word pronunciation performance for the nonwords from the

ARC non-word database (left panel) and for the Pritchard et al. (2012) data (right panel). Lighter shaded green areas in

both panels indicate additional pronunciation accuracy in the CDP+ model when the naming activation criterion

parameter is changed from 0.67 to 0.50.

https://doi.org/10.1371/journal.pone.0218802.g026
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than that proposed by Seidenberg et al. [84], in the sense that we considered non-word pro-

nunciations as correct if and only if the orthography-to-phonology mapping for the onset,

vowel and coda existed for a monosyllabic word in CELEX.

Using the lenient scoring criterion, the NDRA mispronounces 27 non-words, for a non-word

pronunciation performance of 98.49%. Out of these 27 erroneous responses, 18 concern mis-

pronunciations of the onset (e.g., rhewn pronounced as wun rather than run), 6 concern mis-

pronunciations of the vowel (e.g., phelte pronounced as fQlt rather than fElt), and 3 concern

mispronunciations of the coda (e.g., dred pronounced as drEv rather than drEd). Despite this

excellent performance, the NDRA is outperformed by the DRC, which mispronounces a single

non-word only (rhewn pronounced as rjun rather than run). The DRC thus reaches a pronunci-

ation performance of 99.94% for the non-words in the ARC database.

The pronunciation performance of the CDP+ and CDP++ models is 88.51% (205 mispronun-

ciations) and 92.04% (142 mispronunciations), respectively. Consistent with the observations

of Perry et al. [2], a large percentage of the pronunciation errors of the CDP+ model displayed

the pattern that a phoneme was missing from the pronunciation. Perry et al. [2] state that

reducing the naming activation criterion (i.e., the threshold activation for pronouncing a pho-

neme) from 0.67 to 0.50 substantially reduces the number of erroneous pronunciations in the

model. Indeed, changing the naming activation criterion parameter from 0.67 to 0.50 results

in correct pronunciations for 65 out of the 205 mispronounced non-words. This boosts the

pronunciation performance of the CDP+ model to 92.15% (light shaded area in the left panel of

Fig 26).

The Pritchard et al. data contain pronunciations of 412 non-words by 45 participants. We

evaluated the pronunciation performance of the models for these data in two ways. First, we

established the most common pronunciation for each non-word across participants. We

henceforth refer to this pronunciation as the main pronunciation of a non-word. We then

encoded whether or not a model pronunciation was identical to the main pronunciation. Sec-

ond, we verified whether or not a model pronunciation coincided with the pronunciation of

any participant. Fig 26 shows the results of this two-step evaluation. The darker shaded bars

indicate the proportion of model pronunciations that were identical to the main pronuncia-

tion. The medium shaded bars represent the proportion of model pronunciations that were

identical to the pronunciation of at least one participant.

As was the case for the non-words from the ARC database, the DRC model shows the best pro-

nunciation performance. For 302 of the 412 non-words in the Pritchard et al. data (73.30%)

the pronunciation of the DRC is the main pronunciation. A further 105 (25.48%) pronuncia-

tions of the DRC were produced by at least one participant. No more than 5 (1.21%) pronuncia-

tions generated by the DRC model were not produced by any participant. The pronunciation

performance of the DRC for the Pritchard et al. data hence is 98.79%. The performance of the

NDRA is not much worse than that of the DRC. The pronunciations of the NDRA coincide with the

main pronunciation for 295 words (71.60%), and a further 107 (25.97%) pronunciations gen-

erated by the NDRA were produced by at least one participant. This leaves 10 (2.43%) pronuncia-

tions that were not produced by a participant, for a pronunciation performance of 97.57%.

The CDP+ model produces the main pronunciation for 102 non-words (24.76%), and a pro-

nunciation that was produced by at least one participant for another 168 (40.78%) non-words.

Adjusting the naming activation criterion parameter from 0.67 to 0.50 yields pronunciations

that were produced by at least one participant for another 46 non-words (11.17%). Nonethe-

less, 96 (23.30%) pronunciations generated by the CDP+ model were not pronounced by a

participant. The performance of the CDP+ model therefore is 76.70%. The pronunciation per-

formance of the CDP++ model is somewhat better than that of its predecessor: 192 (46.60%) of

its pronunciations are the main pronunciation, and a further 141 (34.22%) are produced by at
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least one participant. With 79 (19.17%) pronunciations that were not produced by a partici-

pant, the pronunciation performance of the CDP++ model for the Pritchard et al. (2012) data

therefore is 80.83%.

In summary, the pronunciation performance for words is excellent for all models. For non-

words, the NDRA performs slightly worse than the DRC, but substantially better than the CDP+

and CDP++. We expect that the pronunciation of the CDP model would improve with richer

training data that contain all orthography-to-phonology mappings that are relevant for the

correct pronunciation of the non-words under investigation. The evaluation of the pronuncia-

tion performance of the NDRA for words and non-words reveals that the single-route architec-

ture of the NDRA allows for competitive pronunciation performance for both words and non-

words when a checking mechanism is added onto the discrimination learning core of the

model.

Discussion

Single-route architecture

The use of a single, rather than a dual-route architecture is a key aspect of the work reported

here. The DRC [1], CDP [2, 5, 9] and triangle models [4, 7, 8] all are dual-route models of reading

aloud. Here, we presented a new single-route model of response times in the reading aloud

task that is based on the equilibrium equations [30] for the learning algorithm of Rescorla and

Wagner [28]. We demonstrated that this single route model replicates a wide range of predic-

tor effects that have been documented in the experimental literature, both in isolation and in a

principal components analysis that captures the joint effects of predictors on observed naming

latencies. Furthermore, the model achieves an overall fit to the data comparable to or better

than that of state-of-the-art dual-route models. Furthermore, we showed that adding a sub-lex-

ical route to the model did not improve its performance.

While the single versus dual route debate remains as open in the neuroscience literature as

it is in the functional level linguistics and cognitive science literature, the single-route architec-

ture of the NDRA is consistent with the results of a large number of studies in the neuroscience

literature. These studies found activation of the same brain regions in word and non-word

reading, with no unique brain regions that are active in non-word reading only (see [106–

109]; cf. [110] for examples of conflicting evidence; see also [111]). Instead, differences in the

timing [107, 112, 113] and intensity [107] of the activation of the same brain regions were

observed between word and non-word reading. As noted by Wilson et al., [107] (p. 1), for

instance, “relative to words, pseudo-words elicit more robust activation in the left inferior tem-

poral gyrus (ITG, see e.g. [114–117]) and the left inferior frontal gyrus (IFG, see e.g. [109, 115–

121])”. As pointed out by an anonymous reviewer, however, it is important to note that a lack

of brain regions that are active in non-word reading only does not constitute evidence against

a dual-route architecture. The brain has no a priori information about the nature of a stimulus

(i.e., word or non-word). Hence, the default strategy in a dual-route approach may well be to

activate both routes in parallel.

Despite these successes, there are some outstanding issues that warrant further discussion.

First, the NDRA assumes that processing is strictly parallel, while a number of experimental find-

ings suggest that at least some serial processing occurs when preparing to read aloud words

and non-words. Second, we made decisions regarding the grain size of representations at both

the orthographic (letters and letter bigrams) and the phonological (demi-syllables) level that

proved adequate for the current purposes but that are likely to be an oversimplification of

more complex neural structures. Third, the NDRA assumes that consistency and regularity

effects arise in a single-route lexical architecture. This stands in contrast to traditional theories
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that assume the necessity of a sub-lexical route to simulate these effects. Fourth, the leading

dual-route model uses an interactive activation network in its lexical route, whereas the lexical

architecture of the NDRA operates on the basis of discriminative learning principles. In what fol-

lows, we discuss each of these topics in more detail.

Serial versus parallel processing

The serial or non-serial nature of processing has been a central debate in the reading aloud lit-

erature (see [1]). Two types of experimental results are typically interpreted as evidence for

serial processing. First, Weekes [59] found a length by lexicality interaction, with a stronger

effect of length in non-word reading than in word reading. Second, a number of studies [18,

88, 89] found a position of irregularity effect with larger processing costs when grapheme-to-

phoneme irregularities occurred in early positions (e.g., chef) than when irregularities occurred

in later positions (e.g., blind). These results have been taken as evidence for a dual-route archi-

tecture. In the dual route architectures of the CDP and DRC models the sub-lexical route operates

in a serial manner: the uptake of orthographic information occurs in a letter-by-letter fashion.

The serial nature of the sub-lexical route is conceptually linked to a left-to-right moving win-

dow of spatial attention [2, 122]. By contrast, the lexical route of the CDP models processes the

entire orthographic input at once and is therefore parallel in nature. In this framework, the

interaction of length with lexicality results from the fact that non-word naming exclusively

involves the serial sub-lexical route, whereas word naming also involves the parallel lexical

route. In non-word naming additional letters lead to additional stages of information uptake

and therefore longer naming latencies. This effect is diminished in word naming, because the

parallel lexical route is insensitive to differences in word length [2].

Alternatively, length effects may be peripheral to the task of reading aloud and arise from

extra-linguistic sources, such as processes related to articulation [2, 123] or visual input decod-

ing. In its current implementation, length effects in the NDRA arise primarily as a result of visual

input interpretation, which is consistent with an extra-linguistic interpretation of these effects.

Nonetheless, the NDRA correctly predicts that the length effect should be larger for words as

compared to non-words. As noted by Perry et al. [2], a potential source for the length by lex-

icality interaction in parallel models is dispersion. Non-words tend to have less common

orthographic and phonological bigrams than real words. The larger length effect for non-

words may therefore be a product of the increased likelihood of encountering a low frequency

orthographic or phonological bigram in longer non-words. When a low frequency ortho-

graphic bigram occurs in a word, less activation is spread to orthographic neighbors, whereas

when it contains a low frequency phonological bigram the activated neighbors will send less

activation to the target demi-syllables. As such, low frequency orthographic and phonological

bigrams both result in longer naming latencies.

While we believe that the length effect in word naming is at least partially driven by extra-

linguistic processes, the non-serial nature of the NDRA in its current form does not reflect a con-

ceptual preference in the serial versus parallel processing debate. Indeed, the inability of the

current implementation of the NDRA to simulate the position of irregularity effect suggests that

a serial uptake of information may be beneficial to the performance of the NDRA model. In a

serial implementation, the position of irregularity effect would follow naturally from the

increased availability of earlier orthographic input and phonological output units. Further-

more, Perry et al. [2] demonstrated that the serialization of their sub-lexical route boosted

item-level correlations significantly. Sensitivity to the serial nature of the reading process also

proved pivotal in the implementation of a verification mechanism for the pronunciation per-

formance simulations.
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Visual input interpretation

In the NDRA, estimations of the time it takes to interpret the visual input are based on a rudi-

mentary measure of the complexity of the visual input. When we developed the model we con-

sidered visual input interpretation peripheral to the linguistic core of the model and primarily

implemented it as a convenient analogy to the feature detection systems in the DRC and CDP

models. In our simulations, however, it became clear that the correct simulation of the length

effect in the NDRA depends on the interpretation of the visual input. Given the importance of

the length effect in the reading aloud literature, some further thought about the issue is

warranted.

In its current form the visual input interpretation mechanism is insensitive to differences

between words and non-words. Words and non-words alike are decomposed into letters and

letter bigrams, which in turn activate lexical representations. Evidence from the neuroscience

literature, however, suggests that the early visual processing in occipital brain regions varies

not only as a function of word length [106, 124, 125], but also as a function of lexicality (e.g.

[117, 119], cf. [106, 126] for studies that did not find lexicality-related differences of visual

occipital region activations). Importantly, the visual occipital system is insensitive to linguistic

properties of the input, which suggests that the observed effects of lexicality in this region

reflect a difference in familiarity with the visual input between words and non-words.

A post-hoc analysis of the observed ELP naming latencies revealed that a refinement of the

visual input interpretation mechanism in the NDRA that takes into account the familiarity of the

visual input at the word level leads to a substantial improvement in item-level correlations.

The predicted values of a simple linear model using as predictors the components of the NDRA

model, but replacing the complexity measure with a frequency-weighted alternative (i.e., Com-
plexity divided by (log) Frequency + backoff constant) showed a correlation of r = 0.544 to the

observed naming latencies. Simply adding this frequency-weighted alternative to the NDRA

model, however, led to a poor qualitative performance of the model. Nonetheless, a visual

input interpretation mechanism that takes into account the familiarity of the visual input in a

more subtle manner may well lead to further improvements in the performance of the NDRA

model. Such a visual complexity measure would fit well with the results of familiarization stud-

ies with objects and faces, in which greater occipital activation was found for unfamiliar objects

and faces [127, 128].

Orthographic input units

In the current implementation, orthographic representations in the NDRA model are limited to

letters and letter bigrams. Evidence from the neuroscience literature, however, suggests that

this simple encoding scheme might be an oversimplification of the neurobiological reality of

language processing. Vinckier et al. [129] and Dehaene et al. [130], for instance, found that

visual word recognition is sensitive to a hierarchy of increasingly complex neuronal detectors,

ranging from letters to quadrigrams.

From a discrimination learning perspective the richness of the encoding scheme is an

empirical issue. Language users extract those pieces of information from the input that provide

valuable cues to the outcome. The current simulation results suggest that an encoding scheme

based on letters and letter bigrams is sufficiently rich to capture a wide range of experimental

findings in the reading aloud literature. If future experimental work indicates that higher

order n-grams provide valuable additional information, however, we have no a priori objec-

tions against enriching the orthographic encoding scheme of the NDRA. One possibility would

be to include high frequency, but not low frequency letter n-grams as cues. Such a frequency-
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dependent coding scheme would help address the familiarity of the input issue raised above as

well.

Phonological output representations

As was the case for the orthographic input level, we also made a decision regarding the grain

size of representations at the phonological output level of the NDRA. At this level we decided to

use demi-syllables [32]. The use of demi-syllables, however, is not free of problems. A verifica-

tion mechanism added on top of the discrimination learning core of the NDRA in its current

form, for instance, does not have access to the information required to correctly pronounce

non-words that contain non-existent demi-syllables. As an example, the predominant pronun-

ciation of the non-word filced is [fIlst], which includes the non-existent demi-syllable [Ilst].
Without a corresponding representation in the NDRA, a checking mechanism cannot simulate

the pronunciation of this demi-syllable.

Demi-syllables offered an easy-to-implement approximation of acoustic gestures that

proved adequate for the current purposes. While this approximation worked well in the simu-

lations reported here and shows that phoneme representations are superfluous for modeling

reading aloud, we believe that an implementation of acoustic gestures at a finer grain size that

more accurately reflects the biological reality of speech production would further improve the

performance of the NDRA and help develop an extension of the model to auditory language pro-

cessing. One option worth exploring in future research is the use of time-sensitive gestural

scores as used in articulatory phonology (see, e.g. [131–134]).

Consistency effects in a lexical architecture

The effects of consistency and regularity have been important benchmark effects for models of

reading aloud. The DRC model [1] successfully simulates the factorial effect of regularity (see,

e.g. [84–87]) through the grapheme-to-phoneme conversion rules in its sub-lexical route.

These rules, however, operate in an all-or-none fashion. As a result, the DRC model does not

capture graded consistency effects [8, 18, 76, 91], which require the activation of not only the

most common grapheme to phoneme mappings, but also that of other, less common

mappings.

To overcome the difficulties of the DRC model, the CDP model uses the TLA sub-lexical net-

work [24, 94] in its sub-lexical route. As noted by Perry et al. [2], the TLA sub-lexical network is

a simple two-layer learning network that operates on the basis of the delta rule [25]. One

advantage of learning models over rule-based models is that they allow non-target words to

influence the naming process [102]. Consequently, the TLA network allows for the successful

simulation of graded consistency effects. In the CDP model the successful simulation of consis-

tency effects, therefore, is a result of the associative learning in the sub-lexical route [2].

By contrast, Coltheart et al. [1] suggest that consistency effects might arise in the lexical

route as a result of neighborhood characteristics. Perry et al. [2] (p. 276) contest this claim,

stating that “such influences are too weak to account for the majority of the consistency effects

reported in the literature”. They support this claim by showing that consistency effects are still

captured by a purely feedforward version of the CDP+ in which the activation of orthographic

neighbors is completely disabled. The fact that a sub-lexical network can generate consistency

effects, however, does not provide conclusive evidence for the claim that a lexical network

cannot.

To demonstrate this point we implemented a purely sub-lexical version of the NDRA, in

which orthographic units are mapped directly onto phonological outcomes. This sub-lexical

version of the NDRA captures the linear effects of consistency (t = −3.661, β = −0.080), regularity
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(t = −9.078, β = −0.401) and friends minus enemies (t = −2.789, β = −0.061). The simulations

with the original NDRA model, however, showed that all these effects can be captured in a lexical

architecture as well. The fact that a sub-lexical network can capture the effects of consistency

therefore does not imply that such a sub-lexical network is a necessary component of a model

of reading aloud. The necessity for a sub-lexical route in the CDP+ model may not reflect the

psychological reality of such a route, but instead display the shortcomings of the interaction

activation model [20] that underlies the lexical route of the CDP model. We return to this issue

in the next section.

In the lexical architecture of the NDRA, regularity and consistency effects arise due to the co-

activation of lexical items with similar orthographies. The co-activated lexical representations

of consistent/regular words help co-activate the target word phonology, whereas the co-acti-

vated lexical representations of inconsistent/irregular words activate non-target phonological

features. As a result, co-activated words help target word naming if and only if their orthogra-

phy to phonology mapping is consistent with the orthography to phonology mapping for the

target word. In line with the suggestions of Coltheart et al. [1], consistency effects in the NDRA

therefore arise through neighborhood characteristics. These neighborhood characteristics did

not only prove sufficient to simulate the observed effects of regularity and consistency in isola-

tion, but also captured the complex interplay of these predictors as well as the interaction of

consistency with friend-enemy measures [91, 95] and frequency [84–87]. Furthermore, the

NDRA captures the graded consistency effect for non-words [90, 92]. As such, the NDRA correctly

simulates the complex and challenging pattern of results for various orthography-to-phonol-

ogy consistency measures through a purely lexical architecture.

Learning

The CDP model is a hybrid model that was built from a nested modeling perspective. The idea

behind nested modeling is that a new model should be based on its predecessors [135]. Perry

et al. [2] therefore evaluated the strengths and weaknesses of the different components of the

DRC and the CDP models. They found the rule-based sub-lexical route of the DRC model to be

suboptimal and replaced it with the learning network of the CDP model [9]. On the other hand,

the lexical route of the CDP model was not fully implemented and based on a simple frequency-

weighted activation of a lexical phonology [94]. The lexical route of the CDP model was there-

fore replaced with the interactive activation network of the DRC model [1, 20].

While we see the merit of a nested modeling approach, we are less convinced about the

hybrid nature of the CDP model that resulted from it. Even if a dual-route model were concep-

tually correct one would expect that the lexical and sub-lexical route operate on the basis of

similar neuro-computational mechanisms. The implementation of the lexical route of the CDP

model seems particularly implausible given the fact that interactive activation models avoid

the issue of learning (see, e.g. [6]). Perry et al. [2] (p. 303-304) acknowledge this problem and

consider the lack of learning in the lexical route one of the limitations of the CDP+ model. In

addition, Perry et al. [2] state, the interactive activation model has been shown to fail to

account for a number of findings in the lexical decision literature (see, e.g. [22, 23]). We there-

fore believe that a learning network implementation of the lexical route of the CDP model

would be an option worth exploring.

A learning implementation of the lexical route would help establish the necessity for a dual-

route architecture in the CDP model. In the current implementation of the CDP model the sub-

lexical route has a substantial independent contribution [2]. This independent contribution,

however, could have two sources. First, it could reflect the correctness of a dual-route architec-

ture in which both routes reflect different parts of the language processing that occurs in the
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reading aloud task. Alternatively, however, the independent contribution of the sub-lexical

route of the CDP model could be a result of the suboptimal performance of the interactive acti-

vation model in its lexical route. In this case, the variance that is currently explained by the

sub-lexical route of the CDP could also be explained by a better optimized lexical route. The

finding that the addition of a sub-lexical learning network did not improve the performance of

the NDRA is consistent with such an interpretation.

Conclusions

We presented the NDRA, a single-route model of response times in the reading aloud task based

on the fundamental principles of discriminative learning. The NDRA is an extension of the NDR

model by Baayen et al. [6] for silent reading. We showed that the NDRA provides a good overall

fit to observed naming latencies. Through the use of generalized additive models we also

demonstrated that the NDRA successfully simulates not only the linear, but also the non-linear

characteristics of a wide range of predictor effects and interactions documented in the experi-

mental literature. A principal components analysis of the data furthermore indicated that the

NDRA captures the overall influence of the structure of lexical-distributional space. As such, the

NDRA provides an alternative to leading models of reading aloud, such as the DRC [1], CDP+ [2],

and CDP++ [5] models.

The NDRA model is a major advancement over existing models of reading aloud in two ways.

First, the computational engine of the NDRA is based on the well-established learning algorithm

provided by the Rescorla-Wagner [28] equations. Given that the Rescorla-Wagner equations

have been characterized as a general probabilistic learning mechanism [136, 137], the compu-

tational core of the model has increased biological plausibility over models that assume lan-

guage-specific processing mechanisms (see [6, 138]).

The learning architecture of the NDRA stands in contrast to the lexical route of the DRC, CDP+,

and CDP++ models, which is based on the interactive activation model of McClelland and

Rumelhart [20]. In the current implementation of the CDP+ model, for instance, the contribu-

tion of the lexical route is “limited to the provision of frequency-weighted lexical phonology”

[2] (p. 303). Perry et al. (2007) [2] (p. 303-304) acknowledge the problems associated with the

interactive activation model in their lexical route and name the lack of learning in the lexical

route of the CDP+ as one of its shortcomings.

The discriminative learning mechanism underlying the NDRA also differs substantially from

the connectionist networks that form the computational basis of the different versions of the

triangle model (see, e.g. [4, 7, 139, 140]). As noted by Baayen et al. [138], the computational

engine of the NDRA is much simpler than that of connectionist models. The NDRA learning net-

works directly map input units onto outcomes, without the intervention of one or more layers

of hidden units (Note, however, that the latest version of the triangle model does not contain

hidden layer units, but, instead, operates on the basis of a direct mapping between input units

and outcomes [4]). The NDRA is therefore more transparent than connectionist models, with

activations of output units representing simple posterior probability estimates of outcomes

given input units. In addition, in contrast to connectionist models the NDRA does not rely on

the neurobiologically implausible process of back-propagation learning.

The second major advancement of the NDRA is that it uses a single lexical route architecture

for both word and non-word naming. We showed that a single lexical route based on discrimi-

native learning not only provided a good overall fit to observed naming latencies, but also cap-

tured a number of experimental results that are typically attributed to processes in the sub-

lexical route. The non-linear main effects and interactions of consistency and regularity mea-

sures, for instance, are accurately captured by the NDRA. In addition, we showed that the NDRA
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makes predictions for non-word naming that are highly similar to those of state-of-the-art

dual-route models. Furthermore, we documented the existence of a non-word frequency effect

in the classic [58] non-word reading latencies, which provides evidence for the involvement of

a lexical route architecture in non-word naming.

The single-route architecture stands in contrast to the dual-route architectures of leading

models of reading aloud, including both traditional dual-route models such as the DRC [1, 20],

CDP [9], CDP+ [2] and CDP++ [5] and the most recent versions of the triangle model (see, e.g.

[4]). These models contain both a direct orthography to phonology mapping and an orthogra-

phy to phonology route that is mediated by semantics. While the sub-lexical route of the CDP

models has a significant contribution to the model performance (see [2]), we demonstrated

that the addition of a sub-lexical discriminative learning network does not improve the perfor-

mance of the NDRA model.

The current implementation of the NDRA, however, provides a highly simplified window on

reading aloud. At both the orthographic and the phonological level we make use of discrete

representations at a highly restricted subset of possible grain sizes. Findings from the neurosci-

ence literature (see, e.g. [129, 130] suggest that a more flexible system operating over multiple

grain sizes may further improve the performance of the model.

In addition, the simulations reported here focused on the unimpaired language processing

system. A substantial amount of work has been carried out on impaired language processing

in both surface and deep dyslexia patients (see, e.g. [141, 142]). It will be interesting to see to

what extent selective lesioning of the discriminative learning networks could capture the pat-

terns of results seen in these patients. One possibility is that the pre-frontal structures and con-

flict resolution skills that underlie target pronunciation selection in the NDRA may not be as

easily accessible when the system is lesioned, possibly due to capacity limitations. Such an

interpretation would fit well with the findings of Hendriks and Kolk [143], who demonstrated

that the behavioral symptoms used to classify dyslexic patients into deep and surface dyslexia

arise not only as a result of deficiencies in the language processing system, but also due to stra-

tegic choices in the context of the task at hand.

Furthermore, similar to the CDP+ model, the current implementation of the NDRA processes

mono-syllabic words only. Perry et al. [5] extended the CDP+ to allow for the processing of

both mono- and bi-syllabic words, which resulted in the CDP++ model. The extension of the

NDRA to reading beyond the single syllable level is a further topic to explore in future research.

In its current state, however, the NDRA provides a single-route alternative to state-of-the-art

dual route models of response times in the reading aloud task that is based on a simple general

learning algorithm and that—with a parsimonious architecture—accurately captures many of

the linear and non-linear patterns in experimental word and non-word reading data.
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