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Abstract: In this study, modified activated fishbone charcoal (MAFC) was successfully prepared to
remove emulsified oil from oily wastewater. Various characteristic techniques, including SEM, XRD,
FTIR, and BET, were employed to investigate the morphology, texture, and surface properties of
as-prepared samples. BET results demonstrated that the specific surface area of fishbone charcoal
increased from 69.8 m2/g to 206.0 m2/g after treatment with K2CO3 as an activating agent, while the
total pore volume of MAFC increased from 0.003 cm3/g to 0.3 cm3/g, accompanied by the formation
of abundant pore structures. It was observed that 90.1% of emulsified oil (100 mg/L) was successfully
removed by MAFC under our experimental conditions. The results of a kinetic and isotherm model
analysis indicated that the adsorption experimental data were not only consistent with the Langmuir
adsorption isotherm but were also well-described by the pseudo-second-order adsorption model.
It is expected that this highly efficient and inexpensive MAFC can be a promising bio-adsorbent for
removing organic pollutants from industrial wastewater.

Keywords: fishbone charcoal; modification; adsorption capacity; removal efficiency

1. Introduction

Oily wastewater can impact on the environment in negative and harmful ways and may
result in serious environmental pollution. There are many sources of oily wastewater, including
accidental marine oil spill, wastewater from oil exploitation and oil tank cleaning, and ballast water.
The direct discharge of oily wastewater will severely threaten human health and lead to long-term
ecological environmental distress [1,2]. There are many technologies available for the treatment of
oily wastewater, which can be divided into three categories: mechanical, chemical, and biological
treatment methods [3–7]. Nevertheless, these techniques have several limitations, such as secondary
pollution to the environment, a complicated operation process, high costs, and high time consumption.
Traditionally, adsorption has been the preferred method for researchers due to its emulsification degree
and its size of oil droplets in oily wastewater [8,9].
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Porous biochar materials are a promising solution because of their large surface area, abundant pore
structure, the hydrophobic nature of their surface, and their mechanical and thermal stability [10–13].
In recent decades, it has been noted worldwide that biochar materials can be utilized as an adsorbent.
Jian and co-workers have studied the adsorption property of biochars derived from rice husk, which
has a high adsorption capacity for methylene blue, iodine, and copper ions from aqueous solution,
due to its ion-exchange and complexation properties [14]. Various biochars pyrolyzed at 700 ◦C were
obtained for the removal of organic contaminants. Correlations between the adsorption behavior and
the physicochemical properties of biochars were studied and analyzed, while the mechanism and
driving forces responsible for adsorption were also explored [15]. Research on adsorption kinetics,
isotherms, and thermodynamics, and the mechanism of adsorption of methylene blue (MB) has
been conducted on biochar prepared from the co-pyrolysis of municipal sewage sludge and tea
waste [16]. Results indicated that the interaction between MB and biochar involved electrostatic
interaction, ion exchange, surface complexation, and physical interaction. A novel biochar–AlOOH
nanocomposite with excellent adsorption capacities for various contaminants in aqueous solutions
has also been developed [17]. Moreover, compared with other processing methods, the biochar
adsorption method has many advantages, such as a small occupied area, high adsorption efficiency,
easy operation, and good effluent quality, which can be effectively used for the advanced treatment of
oily wastewater [18,19]. By adding biochar materials into emulsified oily wastewater, the experimental
system will successfully realize a change from liquid to semi-solid, leading to an easier removal of
emulsified oil from oily wastewater [20–23]. In particular, biomass wastes have become potential
raw materials for the production of carbon nanostructures due to their abundant availability and
environmental friendliness [13,19]. Waste fishbone is predominantly composed of inorganic compounds
with a small number of organic compounds [24]. It is well known that hydroxyapatite (Ca10(PO4)6(OH)2,
HAp) is the main component in inorganic porous substances and has outstanding adsorption properties
by complexing with phosphate and hydroxyl groups [25,26]. For instance, Wang et al. investigated the
adsorption performance of fishbone charcoal derived from grass carp fish on Pb (II) ion [27]. Ehab et
al. suggested that fishbone biochar extracted from Mullet fish has a high adsorption capacity for the
removal of hazardous heavy metals from wastewater [28]. Natural fishbone apatite has been prepared
and can achieve its highest Pb removal rate of 24.76% when the ratio of fishbone to fly ash is 20%,
after a 72 h leaching process [29]. These studies have demonstrated that fishbone material may be an
excellent and low-cost adsorbent for the removal of environmental pollutants. However, to our best
knowledge, the utilization of fishbone for the preparation of oily wastewater adsorbent has not been
reported elsewhere.

Chemical activation has been widely used as an effective method for producing excellent biochar
materials with high surface areas and abundant pore structures. In general, the mechanism of chemical
activation includes hydroxide reduction and carbon oxidation [30]. Other commonly used chemical
reagents, such as ZnCl2, KOH, and NaOH, are hazardous, corrosive, and environmentally unfriendly,
causing secondary pollution to the ecosystem [31–34]. Therefore, as a harmless, mild, and benign
chemical substance, K2CO3 has gained many application prospects.

The main objective of this paper was to develop a novel fishbone charcoal nanomaterial and to
assess its adsorption performance for removing emulsified oil from oily wastewater. In this study, we
demonstrated the facile preparation of modified activated fishbone charcoal (MAFC) via a combination
of pyrolysis and modification by K2CO3 impregnation. The effectiveness of this modified adsorbent
for removing emulsified oil was investigated under various environmental conditions, with different
adsorbent doses, contact times, contact temperatures, and initial oil concentrations. In addition, the
structure, morphology, and surface properties of the synthesized samples were characterized by XRD,
SEM, and FTIR. The unique features of MAFC indicated its great potential in the engineering field for
environmental remediation.
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2. Materials and Methods

2.1. Materials

Waste fishbones were collected from a local food market in Zhoushan, Zhejiang. We purchased
0# diesel oil from Zhoushan Petrochemical Co., Ltd., (Zhoushan, China). All the other inorganic and
organic chemicals were of analytical grade and were obtained from Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China. All reagents used in the study were of analytical grade.

2.2. Preparation of Fish Charcoal Material

The collected fishbones were thoroughly washed several times with 100 ◦C distilled water,
followed by drying at 120 ◦C for 12 h in an oven. Then, 10 g dried fishbone was pre-carbonized
at 750 ◦C for 2 h in nitrogen (99.995%) flow (100 cm3/min), with a temperature ramp of 10 ◦C/min.
The carbonized fishbone (FBC) was allowed to cool to room temperature under N2 gas flow.

During activation, the resulting char was stirred in K2CO3 solution (the ratio of carbon to K2CO3

was 1:3, wt/wt %) for 24 h and then activated in a vacuum tube furnace at 750 ◦C for 90 min. The same
temperature ramp and nitrogen flow were adopted for the pyrolysis process and activation experiment.
The K2CO3-modified fishbone (MAFC) was washed with de-ionized water until the pH was adjusted to
7.0–7.2 and was then dried at 110 ◦C in an oven for 3 h, before being used in the following experiments.

2.3. Characterization

The composition and morphology of the samples were investigated by scanning electron
microscopy (SEM, Hitachi S-4800, Tokyo, Japan) and X-ray diffraction (XRD, Ultima IV X-Ray
Diffractometer, Rigaku Corporation, Tokyo, Japan) in the range of 2θ = 10◦–80◦. The surface functional
groups before and after activation were analyzed by Fourier transform infrared spectra (FTIR, Nicolet
5700, Thermo Corp., Waltham, MA, USA). The specific surface areas of the samples were measured
with a Micromeritics ASAP 2010 instrument and analyzed by the BET method.

2.4. Adsorption Experiment

Sorption performance of MAFC was investigated by testing the removal efficiency of emulsified oil
from oily wastewater. The experimental system was synthesized by mixing 0# diesel oil and distillated
water for 30 min using ultrasound. Adsorption experiments were carried out in 100 mL Erlenmeyer
flasks containing the initial oil concentration (50 mL), which ranged from 30 mg/L to 300 mg/L (100 mg/L
for the adsorption kinetics study), then, 0.1 g MAFC was added into the flasks with an initial pH
of 7. The mixtures were continuously shaken at 120 rpm in a constant temperature oscillator for
30 min. The residual oil concentration in the supernatant was analyzed by measuring light absorbance
at a wavelength of 255 nm using an UV–Vis (UV-2250 Shimadzu, Tokyo, Japan) spectrometer [35].
Two possible key factors, adsorbent dose and reaction temperature, were investigated in several
batch experiments.

The adsorption property of the samples was determined by using the following equation:

Adsorption capacity (mg/g) = (C0 − Ce) × (V/m) (1)

where qe is the equilibrium adsorption capacity of samples, mg/g, C0 (mg/L) is the initial concentration
of the emulsified oil, Ce (mg/L) is the residual oil concentration in the supernatant, V is the volume of
the solution, L, and m is the mass of the adsorbent, g.

Adsorption = [(A0 − A1)/A0] × 100% (2)

where R is the removal percentage of emulsified oil, A0 is the initial absorbance of emulsified oil, and
A1 is the absorbance measured at a definite time.
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2.5. Recyclability Experiments

Recyclability experiments were implemented to evaluate the efficiency of an as-prepared adsorbent.
First, 0.1 g of MAFC was added to 50 mL of emulsified oil solution (100 mg/L) for 30 min of adsorption.
Following centrifugation the MAFC was placed in an Erlenmeyer flask, and 25 mL of n-hexane was
added. This was followed by the process of desorption, for 30 minutes. At the end, the sample was
dried in an oven at 60 ◦C for 12 h.

2.6. Main Kinetics Models

Main kinetics models were used to investigate the emulsified oil adsorption kinetics on the raw
fishbone (RFB), FBC, and MAFC.

The adsorption kinetics modes were denoted by the following equation:

a. Pseudo-first-order model
Ln(qe − qt) = lnqe − k1t (3)

where qe and qt are, respectively, the amounts of emulsified oil (mg/g) adsorbed at equilibrium
and at time t. K1 is the rate constant of the pseudo-first-order (min−1).

b. Pseudo-second-order model
t

qt
=

1
Ksq2

e
+

1
qe

t (4)

where qe and qt are the amounts of emulsified oil (mg/g) adsorbed at equilibrium and at time t,
respectively. Ks is the rate constant of the pseudo-second-order (min−1).

2.7. Adsorption Isotherms Models

Thewo isotherm models used were denoted by the following equation:

I. Langmuir model
C′e
q′e

=
1

qmaxb
+

1
qmax

C′e (5)

II. Freundlich model

lnq′e= lnKf+
1
n

lnC′e (6)

where Ce (mg/L) is the equilibrium concentration in the solution, qe (mg/g) is the emulsified
oil adsorbed at equilibrium, b (mg/g) is the maximum adsorption capacity, n is the Freundlich
constant related to adsorption intensity, and qmax (mg/g) and Kf ((mg/g) (L/mg)1/n) are the
adsorption constants for Langmuir and Freundlich models, respectively.

3. Results and Discussion

3.1. Characterization of Fishbone Nanomaterials

Nitrogen adsorption isotherms and the pore size distribution (PSD) of MAFC are shown in Figure 1.
It can be observed that the nitrogen adsorption isotherms of MAFC fit well with type IV isotherms,
indicating the existence of both micropores and mesopores. The adsorption capacity of nitrogen
increases rapidly with the increase of relative pressure after p/p0 > 0.4, which suggests the existence
of mesoporous structures. The pore size distribution of MAFC also exhibits a significant presence
of mesopores, with pores mainly in the range 2–20 nm. Specific surface area parameters of fishbone
materials before and after activation are listed in Table 1. PSD and BET results indicate that K2CO3

activation of fishbone can produce a well-developed and evenly distributed porous structure. The high
specific surface area and porous network of MAFC is conducive to increasing its adsorption capacity.
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Figure 1. Nitrogen adsorption isotherms of modified activated fishbone charcoal (MAFC) with
corresponding pore size distribution.

Table 1. Specific surface area parameters of fishbone charcoal.

Fishbone Materials BET
(m2/g)

Total Pore Volumes
(cm3/g)

Average Pore Diameter
(nm)

raw fishbone 0.7 0.003 5.5
FBC 69.8 0.192 10.8

MAFC 206.0 0.3 6.2

As shown in Table 1, the pore structure was significantly improved via pyrolysis and the
modification of K2CO3 impregnation. BET results of fishbone materials showed an increase from 0.7 to
206.0 m2/g, indicating abundant active sites, and an increase in the binding sites for organic molecules
or pollutants, i.e., a significant increase in the adsorption activity of adsorbent [36]. It is presumed that
the potassium compound could promote gasification to widen the existing pore structures and create
new pores during the activation process [37], according to the following reactions (7–9) [38,39]:

K2CO3 + 2C→ 2K + 3CO (7)

K2CO3→ K2O + CO2 (8)

K2O + 2C→ 2K + CO (9)

Figure 2 illustrates surface morphologies of RFB, FBC, and MAFC samples visualized using SEM.
It can be seen from Figure 2a that raw fishbone has a very smooth and clean surface without impurities
or debris attached. In Figure 2b, FBC exhibits an uneven structure, which confirms the presence
of heterogeneous porous structures, and a small amount of tiny crystal structures with an average
diameter of 20–400 nm appear on the surface of FBC. After further modification, the surface of MAFC
(Figure 2c,d) appeared to have a more porous structure and was much rougher than other as-prepared
samples. The results demonstrated that the internal structures of MAFC were further opened and
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exposed after impregnation with K2CO3, which increased the number of adsorption sites in MAFC,
and was beneficial to the adsorption performance of MAFC.
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with different magnifications (c,d).

The crystalline structure and the purity of as-prepared samples were assessed using X-ray
diffraction (XRD). RFB showed a crystalline structure with peaks at angles (2θ) of 25.9◦, 32.2◦, 39.8◦,
and 46.7◦, which could be indexed as (002), (112), (310), and (222) (PDF# 09-0432). After carbonization,
the data of FBC charcoal also displayed a consistent crystalline structure, with peaks of the fishbone
charcoal located at angles (2θ) of 25.9◦, 31.8◦, 32.2◦, 39.8◦, and 46.7◦, which could be perfectly indexed
as (002), (211), (112), (310) and (222). There may have been a small amount of graphite, however, it
may have been in the amorphous phase, as observed at approximately 30◦ for the sample FBC. After
further activation, we observed that MAFC peaks located at 25.9◦, 31.8◦, 32.2◦, 39.8◦, and 46.7◦ could
be indexed as (002), (211), (112), (310), and (222) (PDF# 09-0432). XRD analysis of hydroxyapatite [40]
presents peaks at angles 2θ = 25.9◦, 31.9◦, 39.8◦, and 46.4◦. These data indicate that the main component
in fishbone and fishbone charcoal was hydroxyapatite. As shown in Figure 3, the intensity of the
diffraction peaks at around 2θ = 32.2◦ increased significantly after K2CO3 activation [23,41], suggesting
that a well-developed calcium hydroxyphosphate skeleton structure had been fully constructed
in MAFC. This may be confer MAFC excellent adsorption performance and the ability to restrain
emulsified oil molecules.
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The FTIR spectra of RFB, FBC, and MAFC are illustrated in Figure 4. A broad peak at around
3450 cm−1 is observed in RFB, FBC, and MAFC, which was assigned to O–H stretching vibration [27].
However, compared with RFB, this peak intensity was obviously reducing in both FBC and MAFC,
possibly due to the loss of water and some small molecular substances. New functional groups,
such as –C≡C– (2201 cm−1) and –C=N– (2003 cm−1), generated after pyrolysis and K2CO3 activation,
indicating the reduction of non-polar aliphatic functional groups in fishbone biochar and the increase
of the aromatization degree. Furthermore, the bands at 1450 cm−1 could be assigned to –CO3–
groups. In particular, the typical characteristic peaks of MAFC at 560 cm−1, 599 cm−1, and 1025 cm−1

were attributed to –PO43− groups [42], consistently with data previously reported for apatite-based
samples [26,43–45]. Therefore, MAFC was proven to have abundant unsaturated groups. The formation
of π–π interactions between unsaturated groups on the surface of MAFC and aromatic rings of organic
compounds, suggests a strong affinity for interaction with organic species or substances, which renders
MAFC a prospect in the removal of aromatic hydrocarbons from oily wastewater.
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3.2. Adsorption Kinetics

The adsorption capacity of MAFC to emulsified oil over time is shown in Figure 5. The results
demonstrated that emulsified oil adsorption initially increased rapidly, and the curve tended to plateau
after 30 min. Therefore, it can be inferred that the adsorption equilibrium was reached after 60 min.
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Two main adsorption kinetics models were employed to study the adsorption mechanism of
MAFC to emulsified oil. The kinetic fitting plots of the pseudo-first-order equation for the adsorption
of MAFC and the kinetic fitting plots of the pseudo-second-order equation for the adsorption of
MAFC are displayed in Figure 6, and some parameters used in theoretical calculation are listed in
Table 2. As shown in Table 2, the correlation coefficient of the pseudo-second-order kinetics model (R2

= 0.99996) was larger than that of the first-order model ((R2 = 0.70651), and the qe value calculated
from the plot (46.08 mg/g) was closer to the actual experimental value (45.5 mg/g). Therefore, all data
indicated that the second-order kinetic model was suitable for describing the real adsorption process,
suggesting that the sharing or exchange of electrons between the adsorbent and the adsorbate played a
dominant role in the adsorption process.
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Table 2. Constants and correlation coefficients of the isotherm and kinetics models.

Adsorption Isotherm

Langmuir Model Freundlich Model

qmax b R2 1/n Kf R2

100 0.0926 0.98793 0.386 15.55 0.93373

Kinetics Model

Pseudo-First-Order Kinetics Model Pseudo-Second-Order Kinetics Model

qe K1 R2 qe K2 R2

11.19 0.04 0.70651 46.08 0.02 0.99996

The utilization of carbon material as an adsorbent has been well addressed. Ngarmkam and
coworkers [46] carried out research on the removal and recovery of residual oil onto palm shell-based
carbon; the equilibrium adsorption capacity of samples reached 30–90 mg/g. Cai et al. [47] explored
the adsorption properties of diesel oil on modified crab shell-activated biochar carbon; the adsorption
capacity was 93.9 mg/g. Although the oil sorption capacity of MAFC obtained in this experiment was
45.5 mg/g, which is relatively low compared with other adsorbents, waste fish bone materials have
potential to be applied for the removal of oil, at no cost.

3.3. Adsorption Isotherms

To estimate the adsorption capacities of as-prepared samples, two main isotherm models, Langmuir
and Freundlich, were employed to study the adsorption isotherm process of MAFC to emulsified
oil, as illustrated in Figure 7. As shown in Table 2, Langmuir isotherm (correlation coefficients
R2 = 0.98793) correlates better with the actual adsorption process than Freundlich isotherm (correlation
coefficients R2 = 0.93373). The non-dimensional separation factor RL was 0.0975, in the range of
0 < RL < 1, indicating that the adsorption of MAFC to emulsified oil in the studied concentration range
was consistent with the Langmuir adsorption isotherm. In addition, the Freundlich isotherm model
constant n was in the range of 1–10, indicating that MAFC was effective in the adsorption of emulsified
oil, and the adsorption process was dominated by physical adsorption [35]. Meanwhile, the value of
1/n was 0.386 (1/n < 1), indicating that 38.6% of the active sites had the same energy level, and the
adsorption process could be described by the standard Freundlich isotherm. However, the adsorption
process might have a multi-layer adsorption mechanism with a small linear correlation coefficient.
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3.4. Effect of Adsorbent Dose

The effect of the adsorbent dose on the adsorption of MAFC to emulsified oil is seen in Figure 8.
The adsorption capacity gradually decreased with the increase of adsorbent dosage, while the adsorption
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rate gradually increased and then tended to be stable. This is because more surface active functional
groups were available with a greater dose of adsorbent, which could result in a higher adsorption rate.
However, the adsorption efficiency was limited by the constant initial emulsified oil concentration.
As shown in Figure 8, the adsorption rate of around 90.1% tended to be stable with 0.1 g adsorbent
added in 100 mg/L oily wastewater, and the adsorption capacity reduced to 45.05 mg/g. Therefore, we
could choose 0.1 g as an optimum dose for MAFC.
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3.5. Effect of Reaction Temperature

The effect of reaction temperature on the adsorption of MAFC to emulsified oil (100 mg/L) is
illustrated in Figure 9. The maximum adsorption capacity and adsorption rate of MAFC were obtained
at 25 ◦C (45 mg/g). The test data showed that the adsorption efficiency decreased with the increase of
the reaction temperature. The increase in the desorption rate of emulsified oil was due to the increase
of intramolecular thermal movement speed. In addition, adsorption is an exothermic process, and the
increase of the reaction temperature will inhibit the adsorption process. Therefore, it is advisable to
choose 25 ◦C as the optimum adsorption temperature.
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3.6. Recyclability Studies

For the practical application of MAFC, its recycling performance and its efficiency were estimated.
As shown in Figure 10, the adsorption capacity of MAFC to emulsified oil was measured for six testing
cycles (each cycle for 60 min). In the first cycle, 45.15 mg/g of emulsified oil was adsorbed, and after all
cycles, this adsorption capacity of MAFC still reached 20 mg/g, indicating that MAFC has the stability
and efficiency to be used as a good adsorbent.
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4. Conclusions 
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4. Conclusions

A promising charcoal nanomaterial was successfully prepared from fishbone waste. In this work,
MAFC exhibited an excellent performance for removing emulsified oil under various experimental
conditions. Although the specific surface area of MAFC was relatively small, i.e., 206.0 m2/g, compared
with other adsorbent materials, its removal rate of emulsified oil could reach 90.1%, which was
attributed to the presence of abundant active sites, which were fully exposed after modification by
K2CO3 activation. In addition, excellent HAp crosslinked structures with well-developed porous
structures could also increase the adsorption efficiency of MAFC. Therefore, this low-cost, effective,
and recyclable charcoal nanomaterial could be a promising bio-adsorbent of organic pollutants in
oily wastewater.
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