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In this study, a convective heat and mass transfer phenomena in a time-dependent boundary layer flow of tangent 
hyperbolic nanofluid over a permeable stretching wedge has been examined with respect to some pertinent 
thermo-physical parameters. Convenient similarity transformation is used to reformulate the dimensional partial 
differential equations into dimensionless system of ordinary differential equations. The reduced set of equations is 
solved by the homotopy analysis method implemented in Mathematica environment. The effects of the relevant 
parameters on velocity, temperature and concentration profiles were examined in detail. The impacts of the 
parameters on the rates of momentum, heat and mass transfer are also analyzed quantitatively in terms of the 
wall friction coefficient, local Nusselt number and Sherwood number, respectively. Analysis of the results reveals 
that the increase in the buoyancy ratio parameter facilitates the flow velocity and the increase in the dissipation 
parameter maximizes the temperature distribution and nanoparticle concentration near the surface of the wedge. 
Moreover, the analytic approximations obtained by implementing the homotopy analysis method are found in 
excellent agreement with some previously published results.
1. Introduction

In manufacturing industries, the rate of heat transfer has significant 
effects on cost of production and quality of products. Also, effective 
heating and/or cooling are top technical challenges facing high-tech 
industries, automobile engines, transformers and many other technolog-

ical devices. In order to enhance the thermal conductivity of traditional 
fluids such as engine oils, water and air, Choi [1] introduced the con-

cept of nanofluids, which refers to innovative fluids comprising of base 
liquids with uniform and stable suspension of nano-sized particles. A 
comprehensive analysis for the reason behind the extraordinary ther-

mal conductivity of nanofluids was reported by Buongiorno [2]. With 
this understanding, a number of investigations have been conducted to 
outline the boundary layer flow of nanofluids with heat and mass trans-

fer phenomena. For instance, the recent studies of Haile and Awgichew 
[3] revealed that the increase in hydrodynamic slip reduces the velocity 
of the nanofluid; but it enhances the temperature and nanoparticle vol-

ume fraction. Some other studies on boundary layer flow of nanofluids 
are also indicated in the cited articles [4, 5, 6, 7, 8, 9, 10].

On the other hand, many of the fluids processed in manufacturing 
industries including paints, lubricants, detergents, polymeric liquids, 
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molten plastics and food staffs do not obey the Newton’s law of viscos-

ity. That is, the relation between the shear stress and the shear rate in 
such fluids is not linear and their viscosities vary differently in response 
to shear stress. These features of the fluids add more complexities in 
the resulting equations and the classical Newtonian models are not ap-

propriate to describe and predict many critical behaviors of such fluids. 
Consequently, several constitutive equations are used to describe the be-

havior of non-Newtonian fluids. The various constitutive models for the 
non-Newtonian fluids are available in [11]. Tangent hyperbolic model, 
first introduced by Pop and Ingham [12], is one of the non-Newtonian 
fluid models used to understand and predict diverse flow properties 
of industrial fluids like paints, nail polish, ketchup, whipped cream, 
etc. Owing to its remarkable applications in modern industries, several 
researchers have been considering tangent hyperbolic model to exam-

ine the flow characteristics of many industrial fluids under different 
thermo-physical conditions. For example, Prabhakar et al. [4], Ibrahim 
[5], Saidulu et al. [6], Mahdy and Hoshoudy [7] and Shahzad et al. [8]

reported their numerical studies on magnetohydrodynamic flow of tan-

gent hyperbolic nanofluid over stretching sheets subjected to different 
initial and boundary conditions.
https://doi.org/10.1016/j.heliyon.2020.e03776

Received 15 February 2020; Received in revised form 24 March 2020; Accepted 8 A

2405-8440/© 2020 The Authors. Published by Elsevier Ltd. This is an open access a
pril 2020

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2020.e03776
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2020.e03776&domain=pdf
mailto:tadelenyosy@gmail.com
https://doi.org/10.1016/j.heliyon.2020.e03776
http://creativecommons.org/licenses/by/4.0/


T. Kebede et al. Heliyon 6 (2020) e03776
Also, flows over wedge shaped surfaces are important area of re-

search as such flows encountered in several scientific and industrial 
investigations including hydrodynamics, aerodynamics, magnetohydro-

dynamics, analysis of geothermal systems, thermal insulation, crude oil 
exploration and extraction, heat exchangers, storage of nuclear wastes, 
etc. Falkner and Skan explored the flow over a static wedge in the be-

ginning of 1930’s. Later in 1937, Hartree [13] inspected the dependence 
of solutions on wedge angle parameter. A number of studies were de-

voted to analyze the impact of different parameters on the wedge flow 
and heat transfer characteristics of nanofluids. For instance, Ullah et al. 
[14], Hashim et al. [15] and Jyothi et al. [16] considered flow phenom-

ena and heat transfer properties of certain non-Newtonian fluids over 
wedge-shaped surfaces.

However, to the best of the authors’ knowledge, only few studies 
on a time dependent magnetohydrodynamic flow of tangent hyperbolic 
nanofluid past a stretching wedge are reported in open literature. For in-

stance, Mahdy and Chamkha [9] utilized the Keller box method to give 
numerical approximations for the boundary layer flow of two-phase tan-

gent hyperbolic nanofluids over a stretched wedge moving in a porous 
medium. Also Atif et al. [10] employed the shooting technique to an-

alyze heat and mass transfer of tangent hyperbolic nanofluid past a 
wedge. However, both the studies did not examine the effects of certain 
relevant parameters such as permeability of the wall, buoyancy force, 
viscous dissipation, Joule heating and heat source. Thus, motivated by 
the aforementioned studies, we made an effort to examine the effects 
of the indicated parameters. On the other hand, a reliable semi-analytic 
and semi-numerical method, namely the homotopy analysis method, is 
used to give analytic approximations for the solution of the resulting 
nonlinear equations. Convergence of the method is ensured by plotting 
both the h-curves and graph of the average squared residual error. In 
order to further validate the accuracy of our results, comparisons are 
made between certain results of the present study and some previously 
published studies under common assumptions; and they are found in 
excellent agreement.

2. Model assumptions and mathematical formulations

Consider a two-dimensional laminar flow of an incompressible tan-

gent hyperbolic nanofluid past the surface of a permeable wedge em-

bedded in a porous medium. The Cartesian coordinate system (x,y) is 
chosen in such a way that the origin is fixed at the apex of the wedge, 
the x-axis is directed along the wedge surface and the y-axis is normal 
to the wedge surface as illustrated in Fig. 1. Assume that the flow is in-

duced by stretching of the wedge with wall velocity 𝑈𝑤(𝑥, 𝑡) =
𝑎𝑥𝑚

1−𝑐𝑡 and 
external flow of the fluid with stream velocity 𝑈𝑒(𝑥, 𝑡) =

𝑏𝑥𝑚

1−𝑐𝑡 subjected 
to a magnetic field B = (0, 𝐵0) acting normal to the wedge surface. Here, 
𝑡 is the time variable; 𝑎, 𝑏, 𝑚 and 𝑐 are constants such that 𝑎 > 0 and 𝑎 < 0
denote stretching and shrinking rates of the wedge, respectively; 𝑚 is 
the Falkner-Skan power-law constant defined as 𝑚 = 𝛽

2−𝛽 with 0 ≤𝑚 ≤ 1
and 𝛽 being the Hartree pressure gradient that can also be described in 
terms of the total wedge angle Ω by 𝛽 = Ω

𝜋
. Assume the surface tempera-

ture 𝑇𝑤 and concentration 𝐶𝑤 of the wedge vary in power-law forms as 
𝑇𝑤 = 𝑇∞ + 𝑏𝑥𝑚

1−𝑐𝑡 and 𝐶𝑤 = 𝐶∞ + 𝑏𝑥𝑚

1−𝑐𝑡 , where 𝑇∞ and 𝐶∞ are the constant 
values of the ambient temperature and concentration, respectively.

With all the above assumptions, the conservation laws governing the 
flow phenomena are expressed by the continuity equation, momentum 
equation, energy equation and concentration equation, given respec-

tively as follows:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0, (1)

𝜕𝑢
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+ 𝜐

[
(1 − 𝑛) +

√
2𝑛Γ 𝜕𝑢

𝜕𝑦

]
𝜕2𝑢

𝜕𝑦2

−

(
𝜎𝐵2

0
𝜌𝑓

+ 𝜇

𝐾1

)
(𝑢−𝑈𝑒) + 𝑔[𝛽𝑇 (𝑇 − 𝑇∞) − 𝛽𝑐(𝐶 −𝐶∞)]𝑠𝑖𝑛

(Ω
2

)
, (2)
2

Fig. 1. Flow configuration and coordinate system.
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(𝑇 − 𝑇∞), (3)

𝜕𝐶

𝜕𝑡
+ 𝑢 𝜕𝐶

𝜕𝑥
+ 𝑣 𝜕𝐶

𝜕𝑦
=𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+
𝐷𝑇
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𝜕2𝑇

𝜕𝑦2
, (4)

where (𝑢, 𝑣) are components of the fluid velocity along the x-axis and 
y-axis, respectively; 𝑇 and 𝐶 are the dimensional temperature and con-

centration of the nanofluid in the boundary layer region; 𝜌 and 𝜇 are 
the density and dynamic viscosity of the nanofluid, respectively; 𝜐 = 𝜇

𝜌

is kinematics viscosity; 𝑛 is the power law fluid viscosity index repre-

senting the flow behavior of the tangent hyperbolic fluid. The quantities 
Γ, 𝑔, 𝐾1, 𝛽𝑇 and 𝛽𝐶 denote time-dependent material constant, the magni-

tude of gravitational acceleration, permeability of the porous medium 
and the volumetric thermal and concentration expansion coefficients, 
respectively. The term 𝛼 = 𝑘𝑓

(𝜌𝐶𝑝)𝑓
is the effective thermal diffusivity, 

where 𝑘𝑓 is thermal conductivity of the nanofluid; 𝜏 = (𝜌𝐶𝑝)𝑝
(𝜌𝐶𝑝)𝑓

is the ra-

tio of effective heat capacities of nanoparticle and the base fluid with 
𝐶𝑝 as the specific heat at constant pressure; 𝐷𝐵 and 𝐷𝑇 are respectively 
the Brownian and thermophoresis diffusion coefficients; 𝑘∗ and 𝜎∗ are 
the mean absorption and the Stefan-Boltzmann constants, respectively; 
and the coefficient 𝑄0 represents the heat generation (when 𝑄0 > 0) or 
the heat absorption (when 𝑄0 < 0).

The boundary conditions at the surface of the wedge and far from it 
are taken as follows

𝑢 =𝑈𝑤(𝑥, 𝑡), 𝑣 = 𝑉𝑤(𝑡), −𝑘𝑓
𝜕𝑇

𝜕𝑦
= ℎ𝑓 (𝑇𝑤 − 𝑇 ),

−𝐷𝐵
𝜕𝐶

𝜕𝑦
= ℎ𝑐 (𝐶𝑤 −𝐶) at 𝑦 = 0,

(5)

𝑢→𝑈𝑒(𝑥, 𝑡) =
𝑏𝑥𝑚

1 − 𝑐𝑡
, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ as 𝑦→∞ (6)

where 𝑉𝑤 = 𝑉0√
1−𝑐𝑡

is the transpiration velocity representing the mass 
transmission at the surface of the stretching wedge with 𝑉0 as the con-

stant value of velocity; ℎ𝑓 and ℎ𝑐 are respectively the convective heat 
and mass transfer coefficients.

In order to reformulate the system of partial differential equations 
into simple set of ordinary differential equations, the following similar-

ity transformations are used:
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𝜂 = 𝑦

√
(1 +𝑚)𝑈𝑒
2𝜐(1 − 𝑐𝑡)

, 𝜓(𝑥, 𝑦, 𝑡) =
√

2𝜐𝑥𝑈𝑒
1 +𝑚

𝑓 (𝜂), 𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

and

𝜑(𝜂) =
𝐶 −𝐶∞
𝐶𝑤 −𝐶∞

,

(7)

where 𝜂 stands for the dimensionless similarity variable; 𝜓 is the stream 
function having the properties 𝑢 = 𝜕𝜓

𝜕𝑦
and 𝑣 = − 𝜕𝜓

𝜕𝑥
; 𝑓 (𝜂), 𝜃(𝜂) and 𝜑(𝜂)

denote the dimensionless stream function, temperature and nanoparti-

cle volume fraction, respectively.

Up on computing the required quantities and their partial deriva-

tives and substituting the values into the governing equations, the 
continuity equation (1) is satisfied identically and the Eqs. (2)-(4) are 
reduced to the following dimensionless set of ordinary differential equa-

tions:

[
(1 − 𝑛) + 𝑛𝑊 𝑒

√
1 +𝑚𝑓 ′′

]
𝑓 ′′′ + 𝑓𝑓 ′′ + 2𝑚

1 +𝑚
(1 − 𝑓 ′ 2)

+ 𝐴

1 +𝑚
(2 − 2𝑓 ′ − 𝜂𝑓 ′′) + 2𝑚

1 +𝑚
(𝑀 +𝐷𝑎)(1 − 𝑓 ′)

+ (𝐺𝑟𝜃 +𝐺𝑐𝜑)𝑠𝑖𝑛
(Ω
2

)
= 0, (8)

1
𝑃𝑟

(
1 + 4

3
𝑅𝑑

)
𝜃′′ +𝑁𝑏𝜃′𝜑′ +𝑁𝑡𝜃′ 2 + 𝑓𝜃′ −

2𝑚
1 +𝑚

𝑓 ′𝜃 − 𝐴

1 +𝑚
(𝜂𝜃′ + 2𝜃)

+ 2𝑚
1 +𝑚

𝑀𝐸𝑐
(
𝑓 ′ 2 − 2𝑓 ′ + 1

)
+𝐸𝑐

[
(1 − 𝑛)𝑓 ′′ 2 + 𝑛𝑊 𝑒𝑓 ′′ 3]+ 2𝑚

1 +𝑚
𝑄 = 0,

(9)

𝜑′′ + 𝑃𝑟𝐿𝑒
(
𝑓𝜃′ − 2𝑚

1 +𝑚
𝑓 ′𝜑− 𝐴

1 +𝑚
(𝜂𝜑′ + 2𝜑)

)
+
𝑁𝑡

𝑁𝑏
𝜃′′ = 0, (10)

where the prime ′ indicates differentiation with respect to 𝜂; 𝐸𝑐 =
𝑈2
𝑤

(𝐶𝑝)𝑓 (𝑇𝑤−𝑇∞) is the Eckert number representing dissipation effects; 𝐷𝑎 =
𝜐𝑥

𝐾1𝑈𝑒
is the Darcy number for porosity of the medium; 𝐺𝑟 = 𝑔𝛽𝑇 (𝑇𝑤−𝑇∞)𝑥

𝑈2
∞

and 𝐺𝑐 = 𝑔𝛽𝑐 (𝐶𝑤−𝐶∞)𝑥
𝑈2
∞

are the thermal and mass buoyancy parameters, 

respectively. The quantities 𝑁𝑏 =
𝜏𝐷𝐵 (𝐶𝑤−𝐶∞)

𝜐
and 𝑁𝑡 =

𝜏𝐷𝑇 (𝑇𝑤−𝑇∞)
𝜐𝑇∞

cor-

respond to the Brownian motion and the thermophoresis parameters, 
respectively; 𝑄 = 𝑥𝑄0

(𝜌𝐶𝑝)𝑓 𝑈𝑤
stands for the heat generation (when 𝑄 > 0) 

or heat absorption (when 𝑄 < 0). In addition, the Weissenberg number 
𝑊 𝑒, unsteadiness parameter 𝐴, magnetic field parameter 𝑀 , Prandtl 
number 𝑃𝑟, thermal radiation parameter 𝑅𝑑 and Schmidt number 𝑆𝑐
are defined respectively as 𝑊 𝑒 = Γ𝑈3∕2

𝑒√
𝜐𝑥
, 𝐴 = 𝑐

𝑏𝑥𝑚−1
, 𝑀 =

𝜎𝐵2
0𝑥

𝜌𝑈𝑒
, 𝑃𝑟 =

𝜐

𝛼
, 𝑅𝑑 =

4𝜎∗𝑇 3∞
𝑘𝑓 𝑘

∗ and 𝐿𝑒 = 𝛼

𝐷𝐵
.

It is important to note that the mathematical model will reduce to 
the Newtonian viscous flow model as 𝑛 → 1 and 𝑊 𝑒 → 0. Also employ-

ing the similarity transformation in Eq. (7), the boundary conditions in 
Eqs. (5) and (6) are simplified as

𝑓 (0) = 𝑆, 𝑓 ′(0) = 𝛿, 𝜃′(0) +𝐵𝑖1[1 − 𝜃(0)] = 0,

𝜑′(0) +𝐵𝑖2[1 −𝜑(0)] = 0,
(11)

𝑓 ′(𝜂)→ 1, 𝜃(𝜂)→ 0, 𝜑(𝜂)→ 0 as 𝜂→∞, (12)

where the parameter 𝑆 = 𝑉0√
𝑎𝜐

represents suction (when 𝑆 < 0) and in-

jection (when 𝑆 > 0); 𝛿 = 𝑈𝑒

𝑈𝑤
denotes the velocity ratio parameter; the 

parameters 𝐵𝑖1 =
ℎ𝑓

𝑘𝑓

√
2𝜐

𝑈𝑒(𝑚+1)
and 𝐵𝑖2 =

ℎ𝑠

𝐷𝑎

√
2𝜐

𝑈𝑒(𝑚+1)
are the Biot num-

bers for heat and mass diffusion, respectively.

From the practical point of view, it is worth predicting the behavior 
of the three most useful physical quantities, namely the wall friction 
𝐶𝑓 , the local Nusselt number 𝑁𝑢𝑥 and Sherwood number 𝑆ℎ𝑥 which 
are given by:

𝐶𝑓 =
𝜏𝑤

𝜌 𝑈2 , 𝑁𝑢𝑥 =
𝑥𝑞𝑤
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3

ere 𝜏𝑤 = 𝜇
[
(1 − 𝑛) 𝜕𝑢

𝜕𝑦
+ 𝑛Γ√

2

(
𝜕𝑢

𝜕𝑦

)2
]
𝑦=0

, 𝑞𝑤 = − 
[(
𝛼 + 16𝜎∗𝑇 3∞

3(𝜌𝐶𝑝)𝑓 𝑘∗

)
𝜕𝑇

𝜕𝑦

]
𝑦=0

 𝑞𝑚 = −𝐷𝐵
(
𝜕𝐶

𝜕𝑦

)
𝑦=0

are respectively the surface shear stress, surface 
t flux and mass flux. By substitution and using the similarity trans-

mations, we obtain the following relations

𝑒𝐶𝑓 =
[√

1 +𝑚(1 − 𝑛) + 1 +𝑚
2
𝑛𝑊 𝑒𝑓 ′′(0)

]
𝑓 ′′(0),

𝑢𝑥

𝑒
= −

√
1 +𝑚

(
1 + 4

3
𝑅𝑑

)
𝜃′(0)

 𝑆ℎ𝑥√
𝑅𝑒

= −
√
1 +𝑚𝜑′(0), where 𝑅𝑒 = 𝑈𝑒𝑥

𝜐
is the local Reynold’s num-

.

Method of solution

In this study, a powerful method called the homotopy analysis 
thod (HAM), first developed in 1992 by Liao, has been implemented 
obtain analytic approximations for the solution of the coupled non-

ear differential equations in Eqs. (8)-(10) together with the boundary 
ditions in Eqs. (11)-(12). Details of the method are available in 
]. Due to its efficiency, a number of authors employed the homo-

y analysis method to solve nonlinear equations in their study works. 
 instance, the recent studies of Hayat et al. [18], Qayyum et al. [19]

 Waqas et al. [20] show the successful application of the method to 
e convergent analytic approximations for the flow analysis of certain 
-Newtonian fluid models.

In order to implement the homotopy analysis method in the study, 
 choose a set of basis functions in the form

𝑚,𝑛𝜂
𝑛𝑒−𝑚𝜂 ∶𝑚 ≥ 0, 𝑛 ≥ 0

}
, (13)

ere 𝐶𝑚,𝑛 are constant coefficients to be determined.

Then the auxiliary linear operators, denoted by 𝐿𝑓 , 𝐿𝜃 and 𝐿𝜑, are 
ected in such a way that each solution of the homogeneous equations

[𝑓 (𝜂)] = 0, 𝐿𝜃[𝜃(𝜂)] = 0, 𝐿𝜑[𝜑(𝜂)] = 0 (14)

 be expressed as a linear combination of the base functions given in 
. (13). More systematically, we construct each auxiliary linear opera-

 by collecting high order linear terms of the corresponding operator 
ose detail is available in [21]. So, the following auxiliary linear op-

tors are selected as:

= 𝑑
3𝑓

𝑑𝜂3
+ 𝑑

2𝑓

𝑑𝜂2
, 𝐿𝜃 =

𝑑2𝜃

𝑑𝜂2
+ 𝑑𝜃
𝑑𝜂
, 𝐿𝜑 =

𝑑2𝜑

𝑑𝜂2
+ 𝑑𝜑
𝑑𝜂
, (15)

isfying the conditions 𝐿𝑓 [𝐶1 +𝐶2𝜂 +𝐶3𝑒
−𝜂] = 0, 𝐿𝜃[𝐶4 +𝐶5𝑒

−𝜂] = 0, 
 𝐿𝜑[𝐶6 + 𝐶7𝑒

−𝜂] = 0, where 𝐶𝑖(𝑖 = 1 − 7) are constants to be deter-

ned from the boundary conditions.

The corresponding initial approximations 𝑓0(𝜂), 𝜃0(𝜂) and 𝜑0(𝜂) are 
sen in such a way that they agree with the solutions of the equations 

Eq. (15). So, we choose the initial approximations in the form

𝜂) = 𝐶1 +𝐶2𝜂 +𝐶3𝑒
−𝜂 , 𝜃0(𝜂) = 𝐶4 +𝐶5𝑒

−𝜂 , 𝜑0(𝜂) = 𝐶6 +𝐶7𝑒
−𝜂 . (16)

forcing the initial approximations to satisfy the given conditions Eqs. 
1)-(12)), the coefficients are determined and give

𝜂) = 𝛿−1+𝑆+𝜂+(1−𝛿)𝑒−𝜂 , 𝜃0(𝜂) =
𝐵𝑖1

1 +𝐵𝑖1
𝑒−𝜂 , 𝜑0(𝜂) =

𝐵𝑖2
1 +𝐵𝑖2

𝑒−𝜂 .

(17)

ally, the auxiliary functions can also be selected as

(𝜂) =𝐻𝜃(𝜂) =𝐻𝜑(𝜂) = 𝑒−𝜂 .

 carry out the computation, we adopt the HAM-based Mathemat-

 package, namely the BVPh 2.0 which was developed by Zhao and 
o [22]. The parameter values, 𝑛 = 𝐴 = 𝐷𝑎 = 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝑊 𝑒 =
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Table 1

Convergence of HAM solutions.

Order of HAM Squared residual errors

Approximation 𝑓 ′′(0) −𝜃′(0) −𝜑′(0) 𝜀𝑓 𝜀𝜃 𝜀𝜑

2 1.0798 0.2791 0.3478 3.5 × 10−5 6.9 × 10−5 2.2 × 10−5

6 1.0705 0.2804 0.3591 1.7 × 10−6 1.3 × 10−5 3.0 × 10−6

10 1.0698 0.2820 0.3587 3.2 × 10−7 3.7 × 10−6 1.7 × 10−6

14 1.0695 0.2828 0.3586 6.8 × 10−8 9.6 × 10−7 1.1 × 10−6

18 1.0693 0.2832 0.3586 1.6 × 10−8 3.2 × 10−7 6.2 × 10−7

22 1.0692 0.2834 0.3586 4.9 × 10−9 1.2 × 10−7 2.9 × 10−7

26 1.0691 0.2835 0.3586 2.1 × 10−9 6.1 × 10−8 1.4 × 10−7

30 1.0691 0.2835 0.3586 1.3 × 10−9 3.7 × 10−8 6.5 × 10−8
Fig. 2. h-curves.

0.2, 𝑚 = 1∕3, 𝐺𝑟 = 0.5, 𝐺𝑐 = 0.4, 𝑀 = 0.1, 𝑃𝑟 = 1.0, 𝛿 = 0.3, 𝐿𝑒 =
2, 𝑄 = 𝑅𝑑 = 0.3, 𝐵𝑖1 = 𝐵𝑖2 = 0.5, 𝑆 = 0.3, Ω = 𝜋∕6 and 𝐸𝑐 = 0.03, 
with 20th-order HAM approximations are considered throughout the 
manuscript unless otherwise stated.

Despite the appropriate initial guesses, linear operators and auxil-

iary functions are selected, we still have a great freedom to take differ-

ent values for the convergence-control parameters, ℏ𝑓 , ℏ𝜃 and ℏ𝜑. Thus, 
proper selection of these parameters is required to get a convergent and 
accurate series solution. To do this, we plot the so-called ℏ-curves as 
shown in Fig. 2. It is shown in Fig. 2 that the ℏ-curves are nearly hori-

zontal in the ranges

−1.7 < ℏ𝑓 < −0.3, −1.6 < ℏ𝜃 < −0.1 and − 1.5 < ℏ𝜑 < −0.2.

According to Liao [17], these intervals are the valid regions in which 
taking any value of the parameters in the respective intervals can give 
us convergent solutions.

More systematically, the optimal value of each parameter can be 
determined by minimizing the average squared residual error

𝜀𝑘(ℏ) ≈
1

1 +𝑁

𝑁∑
𝑗=0

{
ℵ

[
𝑘∑
𝑛=0
𝑢𝑛(𝜂𝑗 )

]}2

.

Now, using the built functions of the BVPh 2.0 package, the optimal 
values for the convergence control parameters are:

ℏ𝑓 ≈ −1.23, ℏ𝜃 ≈ −0.87 and ℏ𝜑 ≈ −0.52.

Using these optimal values, we iterate the method to see the conver-

gence of certain values of interest.

Table 1 displays that the values of the selected quantities of interest 
are convergent before the 30th order HAM and as the order of HAM 
increases, the squared residual errors are getting smaller.
4

Fig. 3. Total squared residual error.

It is also possible to analyze the total error from the relation:

𝜀𝑡
𝑘
= 𝜀𝑓

𝑘
+ 𝜀𝜃

𝑘
+ 𝜀𝜑

𝑘
(18)

The plot in Fig. 3 demonstrates the total squared residual error against 
some orders of HAM. The plot demonstrates that as the order of HAM 
approximation increases the total average squared residual error de-

clines.

To further ensure the validity of our results, we make the following 
comparison of the present study with some of published results in the 
absence of the extended physical effects as depicted in Table 2.

Table 2 presents the comparisons of the values of 𝑓 ′′(0) against se-

lected values of the wedge angle parameter 𝑚. It is observed that the 
values of 𝑓 ′′(0) obtained in the present study are in excellent agreement 
with the aforementioned published results. In Table 2, the coefficients 
of Nusselt number and Sherwood number of the present study are also 
presented.

4. Results and discussions

In this section, we present the outcomes of the study. Analysis is 
made to examine effects of the pertinent parameters on the dimen-

sionless velocity 𝑓 ′(𝜂), temperature 𝜃(𝜂) and nanoparticle concentration 
𝜑(𝜂) profiles as well as on the coefficients of surface friction 𝑓 ′′(0), Nus-

selt number 𝜃′(0) and Sherwood number 𝜑′(0) keeping other parameters 
fixed. The BVPh 2.0 is used to generate solutions graphically and nu-

merically.

The behavior of the non-Newtonian nanofluid has considerable im-

pacts on fluid velocity, temperature distribution and nanoparticles vol-

ume fraction in the boundary layer region. These effects can be ex-

pressed in terms of the power law fluid viscosity index 𝑛 and its impacts 
on the flow field profiles are depicted in Fig. 4. It can be seen from 
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Table 2

Comparison on values of 𝑓 ′′(0) with the results of Khan and Pop [12] and Ullah and Zaman 
[23] (when 𝑃 𝑟 = 0.73, 𝑁𝑏 = 0.0001, 𝐿𝑒 = 0.1, 𝐵𝑖1 →∞, 𝐵𝑖2 →∞, 𝑛 = 𝛿 = 𝐴 = 𝐷𝑎 =𝑀 = 𝑅𝑑 =
𝐺𝑟 =𝐺𝑐 = 𝑆 =Ω =𝑄 =𝐸𝑐 = 0) against some values of 𝑚.

m Khan & Pop (2013) Ullah & Zaman(2017) Present study

𝑓 ′′(0) 𝑓 ′′(0) 𝑓 ′′(0) −𝜃′(0) −𝜑′(0)

0 0.4696 0.4696 0.4688 0.4228 0.2326

1/23 - 0.5690 0.5693 0.4598 0.2348

1/11 0.6550 0.6550 0.6554 0.4818 0.2453

1/7 - 0.7320 0.7322 0.5090 0.2516

1/5 0.8021 0.8021 0.8023 0.5402 0.2669

1/3 0.9277 0.9277 0.9277 0.5904 0.2699

1/2 1.0389 - 1.0389 0.6369 0.2822

1 1.2326 1.2326 1.2326 0.7202 0.3063

5 - 1.5504 1.5503 0.8648 0.3517

100 - 1.6794 1.6794 0.9252 0.3726

∞ - 1.6872 1.6872 0.9289 0.3734
Fig. 4. Impacts of the power law index 𝑛 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 5. Impacts of the wedge angle parameter 𝑚 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 4 that the effect of 𝑛 is more pronounced in upgrading the temper-

ature profile. The increase in 𝑛 also gives a gradual increment of the 
nanoparticle concentration in the boundary layer region. The velocity 
profile shows a decreasing behavior with the increase in the values of 
𝑛. This holds because as the values of 𝑛 increases, the nature of the fluid 
changes from shear thinning to shear thickening.

In order to examine the influences of wedge angle on the dimen-

sionless velocity, temperature and concentration profiles, it is worth 
5

Fig. 6. Impacts of Darcy number 𝐷𝑎 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

mentioning that the Falkner-Skan power-law constant 𝑚 defined as 
𝑚 = 𝛽

2−𝛽 with 𝛽 being the Hartree pressure gradient that can also be 
described in terms of the total wedge angle Ω by 𝛽 = Ω

𝜋
. Moreover, 

the value 𝑚 = 0 corresponds to 𝛽 = 0 or Ω = 0 which implies that the 
wedge surface is horizontal. Similarly, 𝑚 = 1∕3 corresponds to 𝛽 = 1∕2
or Ω = 𝜋

2 . Further, 𝑚 = 1 corresponds to 𝛽 = 1 or Ω = 𝜋 which implies 
that the wedge surface is vertical and the flow becomes a stagnation 
point flow. Thus, it is reasonable to examine the influence of the wedge 
angle in terms of the 𝑚 as illustrated in Fig. 5. Fig. 5 illustrates that as 
the wedge angle increases, the fluid velocity is enhanced but the tem-

perature and the nanoparticle volume fraction are declined. Physically, 
the increase in the wedge angle parameter corresponds to the increase 
in the applied pressure on the fluid. Further, the change in the values 
of 𝑚 affect the temperature profile more significantly near the surface 
of the wedge.

The porosity of the medium is measured in terms of the Darcy num-

ber 𝐷𝑎whose impact is more significant on the velocity profile as shown 
in Fig. 6. It is clearly observed in Fig. 6 that as the Darcy number 𝐷𝑎
increases, the velocity and nanoparticle concentration increase while 
the temperature declines slowly. This result is physically meaningful; 
because as the value of the Darcy number increases, permeability of 
the medium also increases which in turn minimizes the barriers placed 
along the flow path. This allows free flow of the nanofluid with en-

hanced velocity and concentration profiles in the boundary layer region. 
Fig. 7 displays that the increase in the unsteadiness parameter results 
the rise in the velocity profile but the decline in the temperature and 
concentration profiles.
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Fig. 7. Impacts of the unsteadiness parameter on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 8. Impacts of thermal buoyancy parameter 𝐺𝑟 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 9. Impacts of concentration buoyancy parameter 𝐺𝑐 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

The results given in Figs. 8 and 9 display the influences of thermal 
and concentration buoyancy parameters on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂) profiles. 
It can be observed that the buoyancy parameters influence the velocity 
profile more significantly but no substantial variation is shown for the 
6

Fig. 10. Impacts of buoyancy ratio parameter 𝑁 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 11. Impacts of Weissenberg number 𝑊 𝑒 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

concentration profile with the changes in both parameters. The buoy-

ancy force effect can also be expressed in terms of the buoyancy ratio 
parameter 𝑁 = 𝐺𝑐

𝐺𝑟
which is given in Fig. 10. Here, positive buoyancy 

force corresponds to assistive pressure gradient and negative buoyancy 
force acts like a resistive pressure gradient. It can be deduced from 
Fig. 10 that for assisting flow 𝑁 > 0, the velocity is increasing while the 
temperature and concentration are decreasing with the increase in the 
values of 𝑁 . Opposite effects are shown for resistive flow 𝑁 < 0.

The Weissenberg number 𝑊 𝑒 is defined as the ratio of fluid relax-

ation time to viscous forces. The impacts of 𝑊 𝑒 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂)
are presented in Fig. 11. It can be noticed in Fig. 11 that as the values 
of 𝑊 𝑒 increases, the fluid velocity decreases while the temperature and 
concentration profiles gradually increase. This is true because the in-

crease in 𝑊 𝑒 implies the increase in the relaxation time of the nanofluid 
or the thicker is the nanofluid which causes more resistance in the flow 
field.

The magnetic field effect expressed in the form 𝜎𝐵
2
0
𝜌

(𝑢 − 𝑈𝑒) can be 

viewed as the combination of the Lorentz force 𝜎𝐵
2
0
𝜌
𝑢 and the imposed 

pressure − 𝜎𝐵
2
0
𝜌
𝑈𝑒. It is clearly indicated in Fig. 12 that the increase in 

magnetic field strength leads to enhancement of the fluid velocity and 
concentration of the nanoparticles. However, the temperature profile 
decreases with the increase in magnetic field. The reason behind this 
observation is that for a forced convection, the external flow velocity 𝑈𝑒
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Fig. 12. Impacts of magnetic field parameter 𝑀 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 13. Impacts of injection parameter 𝑆 > 0 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

is higher than the boundary layer fluid velocity 𝑢; that is, the imposed 
pressure dominates the Lorentz force. This effect plays the role of assist-

ing force to facilitate the motion of the fluid and the removal of heat in 
the boundary layer region. Injection or suction of fluids through perme-

able walls play significant roles in many engineering and manufacturing 
activities such as in addition or removal of coolants or reactants in oil 
recovery, film cooling or coating of wires and fibers. Figs. 13 and 14

present the impacts of injection and suction parameters on the dimen-

sionless velocity, temperature and concentration profiles. It is shown in 
Fig. 13 that as the injection parameter 𝑆 increases, the fluid velocity 
rises where as the temperature and concentration profiles get declined. 
This is true because the warm fluid with the nanoparticles is taken away 
from the wedge surface. Opposite behavior is observed in the case of 
suction parameter as displayed in Fig. 14. Since the boundary layer 
flow is induced by the movement of both the wedge and the free stream 
flow of the nanofluid, the velocity ratio 𝛿 = 𝑈𝑒

𝑈𝑤
is used to measure the 

effects of such movements. The movement of the wedge occurs in the 
form of stretching (𝑈𝑤 > 0) or shrinking (𝑈𝑤 < 0) of its surface. Here, 
it is important to mansion that the value 𝛿 = 0 defines the absence of 
free stream velocity (𝑈𝑒 = 0) which can be described by the Sakiadis 
flat plate flow scenario; the value 𝛿 = 1 corresponds to the Blasius flow 
situation in which the fluid and the wedge are moving with the same 
velocities. When the wedge is stretching (𝛿 > 0), the free stream and the 
wedge are moving in the same directions. In Fig. 15, one notices that 
as the velocity ratio for stretching wedge increases, the fluid velocity 
7

Fig. 14. Impacts of suction parameter 𝑆 < 0 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 15. Impacts of velocity ratio 𝛿 (𝛿 > 0) on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

also increases; however, the temperature and concentration profiles are 
minimized. This holds as stretching of the wedge contributes as flow 
assistive role. Consequently, the velocity is enhanced while the temper-

ature and concentration are declined with the increase in the velocity 
ratio parameter for the stretching wedge. Opposite behaviors can be 
seen in Fig. 16 when the wedge is shrinking (𝛿 < 0). As depicted in 
Fig. 17, a considerable effect of the Eckert number is seen on 𝜃(𝜂). The 
increase in the dissipation parameter 𝐸𝑐 produces a frictional heating 
to be stored in the fluid. This enhances the temperature profile in the 
boundary layer. On the other hand, the concentration profile is mini-

mized with the increase in 𝐸𝑐 near the surface of the wedge. However, 
as we move far from the boundary layer region (𝜂 > 1), the effect of 
imposed pressure dominates the effect of the dissipation parameter to 
slightly increase the nanoparticle concentration. No appreciable varia-

tion is observed for the velocity profile with respect to 𝐸𝑐. It is shown 
in Fig. 18 that the increase in 𝑅𝑑 inspires significant enhancement of 
temperature in boundary layer region. This is as we expect in reality 
since the larger the thermal radiation corresponds to higher kinetic en-

ergy of the fluid particles. It is indicated in Fig. 19 that temperature 
and concentration profiles are found to be increasing functions of the 
heat source parameter; however, the profiles show opposite behaviors 
with the heat sink parameter. No considerable change is shown on ve-

locity profile with the changes in both the heat source and heat sink 
parameters.
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Table 3

Impacts of Parameters on Coefficients of surface-friction, Nusselt number and Sherwood number.

n A Da We m M 𝛿 Q Rd Ec 𝑓 ′′(0) −𝜃′(0) −𝜑′(0)

0.1 1.0828 0.2835 0.3587

0.2 1.1437 0.2848 0.3590

0.3 0.1 1.2135 0.2862 0.3594

0.3 1.2655 0.3017 0.3652

0.5 0.1 1.3170 0.3145 0.3706

0.2 1.3557 0.3147 0.3708

0.3 0.2 1.3931 0.3149 0.3709

0.4 1.3378 0.3145 0.3708

0.6 1/3 1.2914 0.3141 0.3707

1/6 1.2636 0.3057 0.3701

1/9 0.1 1.2517 0.3018 0.3699

0.5 1.4053 0.3019 0.3708

0.9 0.3 1.5386 0.3019 0.3714

0.5 1.5386 0.3019 0.3714

0.8 0.3 1.1571 0.3091 0.3728

0.6 0.5267 0.2724 0.3859

0.9 0.3 0.5463 0.1253 0.4158

0.5 0.5473 0.1237 0.4140

0.8 0.03 0.5478 0.1253 0.4116

0.30 0.5485 0.1193 0.4131

3.00 0.5548 0.0622 0.4264
Fig. 16. Impacts of shrinking velocity ratio 𝛿 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 17. Impacts of the Eckert number 𝐸𝑐 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

The Biot number for heat diffusion is the ratio of convective heat 
transfer at the surface to conductive heat transfer within the flow re-
8

Fig. 18. Impacts of thermal radiation 𝑅𝑑 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 19. Impacts of heat source and sink 𝑄 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

gion. The results on the variation of 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂) with respect to 
the Biot numbers for heat and mass diffusion are illustrated in Figs. 20
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Fig. 20. Impacts of Biot number for heat diffusion 𝐵𝑖1 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

Fig. 21. Impacts of Biot number for mass diffusion 𝐵𝑖2 on 𝑓 ′(𝜂), 𝜃(𝜂) and 𝜑(𝜂).

and 21. It is clear from Fig. 20 that there is a significant enhancement of 
temperature profile with the increase in the values of 𝐵𝑖1. This is phys-

ically acceptable due to the fact that increasing Biot number provides 
stronger convection to produce higher temperature on the wedge sur-

face. It is also shown in Fig. 21 that increasing the value of 𝐵𝑖2 causes 
a considerable improvement in the concentration profile near the sur-

face of the wedge and a relatively stable concentration distribution is 
observed after some point away from the wedge surface. Finally, we 
present some significant influences of the relevant parameters on the 
rates of momentum, heat and mass transfer processes in Table 3. It can 
be observed from Table 2 that the increases in the values of 𝑛, 𝐴 and 
𝐷𝑎 cause the enlargement in the coefficients of surface friction, Nusselt 
number and Sherwood number. On the other hand, the increase in the 
values of 𝑊 𝑒 and 𝑚 leads to the reduction in the coefficients of skin 
friction, Nusselt number and Sherwood number.

5. Conclusions

In this study, a time-dependent, two-dimensional flow of tangent hy-

perbolic nanofluid towards a moving wedge is considered. Efforts have 
been made to examine the effects of various thermophysical effects by 
employing the homotopy analysis method, which is a relatively recent 
and powerful semi-analytic and semi-numerical method. The validity of 
the method as well as the BVPh2.0 package has been ensured by dis-
9

playing the convergence of the solutions and accuracy of the findings 
as compared to previously published study results.

• Velocity is found to be facilitated by increasing the values of wedge 
angle parameter, porosity of the medium, assistive buoyancy force, 
magnetic field, injection and surface stretching parameters.

• The temperature distribution can be enhanced by increasing the 
power law index, suction, surface shrinking, Eckert number, ther-

mal radiation, heat source and the Biot number for thermal diffu-

sion.

• Concentration of nanoparticle can be maximized by increasing the 
values of Darcy number, magnetic field, suction, surface shrinking, 
heat sink and the Biot number for mass diffusion.

• The momentum, heat and mass transfer rates are found to be fa-

cilitated by the increase in the values of the power law index, 
unsteadiness parameter and permeability of the porous medium; 
and these rates can be slowed down by the increase in the values of 
Weissenberg number and wedge angle parameter. It is also shown 
that the increase in magnetic field, thermal radiation and dissipa-

tion parameters cause enhancements in momentum, heat and mass 
transfer rates, respectively.
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