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The surface molecule gp82 of metacyclic trypomastigote (MT) forms of Trypanosoma
cruzi, the protozoan parasite that causes Chagas disease, mediates the host cell invasion,
a process critical for the establishment of infection. Gp82 is known to bind to the target cell
in a receptor-dependent manner, triggering Ca2+ signal, actin cytoskeleton rearrangement
and lysosome spreading. The host cell receptor for gp82 was recently identified as
LAMP2, the major lysosome membrane-associated protein. To further clarify the
mechanisms of MT invasion, we aimed in this study at identifying the LAMP2 domain
that interacts with gp82 and investigated whether target cell PKC and ERK1/2, previously
suggested to be implicated in MT invasion, are activated by gp82. Interaction of MT, or the
recombinant gp82 (r-gp82), with human epithelial HeLa cells induced the activation of
Ca2+-dependent PKC and ERK1/2. The LAMP2 sequence predicted to bind gp82 was
mapped and the synthetic peptide based on that sequence inhibited MT invasion,
impaired the binding of r-gp82 to HeLa cells, and blocked the PKC and ERK1/2
activation induced by r-gp82. Treatment of HeLa cells with specific inhibitor of focal
adhesion kinase resulted in inhibition of r-gp82-induced PKC and ERK1/2 activation, as
well as in alteration of the actin cytoskeleton architecture. PKC activation by r-gp82 was
also impaired by treatment of HeLa cells with inhibitor of phospholipase C, which mediates
the production of diacylglycerol, which activates PKC, and inositol 1,4,5-triphosphate that
releases Ca2+ from intracellular stores. Taken together, our results indicate that
recognition of MT gp82 by LAMP2 induces in the host cell the activation of
phosholipase C, with generation of products that contribute for PKC activation and the
downstream ERK1/2. This chain of events leads to the actin cytoskeleton disruption and
lysosome spreading, promoting MT internalization.
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INTRODUCTION

The major lysosome-associated membrane glycoproteins LAMP1
and LAMP2 are heavily glycosylated proteins, contain a single
membrane-spanning segment, a major portion that resides in the
luminal side of lysosomes and a short cytosolic tail (Fukuda et al.,
1988; Howe et al., 1988; Granger et al., 1990) Their extensive
glycosylation is apparently not necessary for normal targeting,
stability, or lysosome function (Kornfeld and Mellman, 1989).
Despite the strong homology, LAMP1 and LAMP2 are distinct
molecules, encoded by separate genes on different chromosomes
(Mattei et al., 1990). Comparison of known lamp sequences
among different species has shown that human LAMP1 has
more similarity to LAMP1 from other species than to human
LAMP2, and this also applies to LAMP2 (Fukuda et al., 1988).
LAMP proteins have been detected on the plasma membrane of
human cell lines and their expression was shown to increase after
exposure to a lysosomotropic reagent (Mane et al., 1989). LAMP1
and LAMP2 may have different functions. It has been shown, for
instance, that surface LAMP1, but not LAMP2, protects natural
killer cells from degranulation-associated damage (Cohnen et al.,
2013) and that LAMP2, but not LAMP1, plays a critical role in
endosomal cholesterol transport (Schneede et al., 2011).

Lysosomes play an important role in host cell invasion by
Trypanosoma cruzi, the protozoan parasite that causes Chagas
disease. Interaction of T. cruzi with mammalian cell induces the
exocytosis of lysosomes, which contributes for the parasitophorous
vacuole formation (Tardieux et al., 1992; Rodrıǵuez et al., 1995;
Martins et al., 2011). Using different infective forms, namely
metacyclic trypomastigote (MT) and tissue culture-derived
trypomastigote (TCT), which correspond respectively to the
insect-borne and mammalian host bloodstream parasites, the
involvement of LAMP proteins in T. cruzi invasion has been
investigated. Studies with TCT have implicated either LAMP1 or
LAMP2. Cells with increased expression of LAMP1 at the surface
were found to be more susceptible to invasion by TCT, the LAMP1
cytoplasmic tail motif, and not the surface-exposed luminal
domain, playing the role of modulating the parasite entry (Kima
et al., 2000). More recently, it was reported that LAMP2 plays a
major role in TCT invasion, by influencing the distribution of
caveolin-1 at the cell plasma membrane, which is crucial for plasma
membrane repair (Couto et al., 2017). TCT is internalized in a
vacuole expressing plasma membrane markers (Woolsey et al.,
2003) and the internalization mimics a process of plasma
membrane injury and repair that involves exocytosis of lysosomes
(Fernandes et al., 2011). MT is internalized in a vacuole expressing
lysosome markers (Martins et al., 2011; Cortez et al., 2016), requires
LAMP2, but not LAMP1, and does not rely on the plasma
membrane repair mechanism (Rodrigues et al., 2019).

Host cell invasion by MT is mediated by the stage-specific
surface molecule gp82 (Yoshida, 2006). Gp82 binds to target cells
in a receptor-mediated manner and induces the lysosome
mobilization to the cell periphery that culminates in exocytosis
(Martins et al., 2011; Cortez et al., 2016). There are indications
that gp82-mediated MT binding triggers the target cell signaling
cascade involving protein kinase C (PKC) and the extracellular
signal-regulated protein kinases (ERK1/2) (Martins et al., 2011;
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Onofre et al., 2019). Recently, LAMP2 was identified as the host
cell receptor for gp82 (Rodrigues et al., 2019). In this study we
aimed at identifying the LAMP2 domain that interacts with gp82
and investigated whether target cell PKC and ERK1/2 are
activated by gp82.
MATERIALS AND METHODS

Modeling of Gp82 and LAMP2 for Protein–
Protein Interaction Analysis
The amino acid sequences of gp82 (GenBank accession number
L14824) and LAMP2 (UniProtKB P13473) were used to predict
the protein models. Residues 1-29 (N-terminal signal peptide)
and 500-516 (a nonpolar region at the extreme C-terminus) of
gp82 were excluded after its identification, using PSORT II
Prediction (https://psort.hgc.jp/) and PrediSI (http://www.
predisi.de/) for signal peptide and TMHMM Server v.2.0
(https://services.healthtech.dtu.dk/service.php?TMHMM-2.0)
for C-terminus region. As regards LAMP2, amino acids 1-28 (N-
terminal signal peptide) and 378-410 (transmembrane and
cytoplasmic regions) were excluded, as described on the page
where the sequence was obtained and confirmed by the same on-
line tools used for gp82. 3D model of gp82 was generated in on-
line server Phyre² (Protein Homology/analogY Recognition
Engine V 2.0) (Kelley et al., 2015), using intensive modelling
mode, and that of LAMP2 was generated in SWISS-MODEL
Interactive Workspace (Waterhouse et al., 2018), without
template. Both models were submitted in YASARA Energy
Minimization Server (Krieger et al., 2009) and were checked
using: RAMPAGE (Ramachandran Plot Assessment) (Lovell
et al., 2003), ProSA-web (Protein Structure Analysis) (Sippl,
1993; Wiederstein and Sippl, 2007), PROCHECK (Laskowski
et al., 1993; Laskowski et al., 1996), ERRAT (Colovos and Yeates,
1993) and Verify 3D (Bowie et al., 1991; Lüthy et al., 1992).
Afterwards, the analysis of protein-protein docking was made in
on-line server ClusPro (https://cluspro.org), which provides a
simple home page for basic use, requiring only two files in
Protein Data Bank format (Kozakov et al., 2013; Kozakov et al.,
2017; Vajda et al., 2017). All models and protein-protein docking
were visualized in PyMOL Molecular Graphics System, Version
2.1.1 Schrödinger, LLC.

Parasites, Mammalian Cells, and Cell
Invasion Assay
T. cruzi strain CL was used throughout this study. The parasites
were maintained alternately in mice and in liver infusion tryptose
medium containing 5% fetal bovine serum. To stimulate
differentiation of epimastigotes into metacyclic forms, the
parasites were cultivated for one passage in Grace’s medium
(Life Technologies/Thermo Fisher Scientific). Metacyclic forms
were purified in a DEAE-cellulose column as described (Teixeira
and Yoshida, 1986). Human epithelial HeLa cells were
maintained in RPMI medium supplemented with 10% bovine
fetal serum and invasion assays were performed according to the
procedure described elsewhere (Rodrigues et al., 2017), by
March 2021 | Volume 11 | Article 627888
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incubating the cells with MT at MOI = 10. A total of 250 Giemsa-
stained cells was counted to quantify internalized MT.
Membrane Fractionation
HeLa cells grown in 150 mm2 dishes (1x107 cells per dish) were
washed with PBS, and once with a buffer solution containing 250
mM glucose, 50 mM Tris, 5 mM MgCl2, pH 7.0. After scraping,
the cells were sonicated, at power of 40% (Active Motif’s
EpiShearTM sonication systems – Probe 3.2 mm), for three
cycles of 5 sec and rest of 30 sec. The supernatant, obtained by
centrifugation of 250 x g for 30 min, was further centrifuged at
100,000 x g for 1 h. The supernatant containing cytosolic fraction
was collected and the pellet, containing membrane fraction, was
washed and resuspended in buffer solution containing 1x
protease cocktail inhibitor (Roche), 2 mM Na3VO4, 1 mM NaF
and 1% Triton x-100.
Detection of Phosphorylated Protein
Kinase C and ERK1/2 by Western Blotting
HeLa cells were washed with PBS and lysed with a solution
containing 10 mM Tris pH 7.5, 1 mM EDTA, 100 mMNaCl, 1%
Igepal, 10% glycerol, protease cocktail inhibitor, 2 mM Na3VO4

and 1 mMNaF. Equal amounts of detergent soluble supernatant
or cytosolic/membrane fractions were subjected to 10%
acrylamide gel. After transfer onto nitrocellulose or PVDF
membrane, they were subjected to immunoblot analysis with
the first antibody diluted in TBS-T (50 mM Tris-HCl, pH 7.5,
150 mM NaCl and 0.1% Tween 20) plus 5% BSA, followed by
washings in the same solution without BSA and incubation with
the appropriate HRP-conjugated secondary antibody. In some
experiments, the membranes were stripped from antibodies,
using the following protocol. The membranes were soaked in
20 ml stripping buffer (0.2% SDS, 62 mM Tris-HCl pH 6.8, 160
μl b-mercaptoethanol) for 15 min at 56°C. For relative
quantification of protein bands in western blot films, we used
GelAnalyzer 19.1 software, in which the density of each band
was converted to peaks and the area under the peak was used to
calculate pixel volume.
Production of Recombinant Gp82 Protein
and Cell Binding Assay
The recombinant protein coded by the full-length T. cruzi gp82
sequence (GenBank accession number L14824), in frame with
glutathione S-transferase (GST), was produced and purified as
detailed (Cortez et al., 2006). As the expression of recombinant
gp82 protein (r-gp82) in Escherichia coli leads to the formation
of inclusion bodies, the purification was carried out by excision
of the corresponding band (~75 kDa) from SDS-PAGE gel. This
precludes contamination with LPS, provided that LPS from
different bacteria, including E. coli, are detected as bands
ranging 3.7-4.5 kDa in SDS-PAGE gel (Amano et al., 1988).
We did not detect bands corresponding to bacterial
components in r-gp82 preparation when it was run in SDS-
PAGE gel, side by side with E. coli extract, and was subjected to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
western blotting, using anti-gp82 monoclonal antibody and
anti-E. coli antiserum (Figure S1). For cell binding assay, HeLa
cells were seeded onto 96-well microtiter plates at 4x104 cells/
well and were grown overnight at 37°C. After fixation with 4%
paraformaldehyde in PBS, washings with PBS and blocking
with PBS containing 2 mg/ml BSA (PBS-BSA) for 1 h at room
temperature, the cells were incubated for 1 h at 37°C with r-
gp82 in PBS-BSA. Following washes in PBS containing 0.1%
Tween 20 and 1 h incubation with anti-gp82 polyclonal antiserum
diluted in PBS-BSA, the cells were incubated with anti-mouse IgG
conjugated to peroxidase. The bound enzyme was revealed using o-
phenylenediamine and the absorbance at 490 nm was read in
ELx800™ microplate reader (BioTek).
Indirect Immunofluorescence Assay
for Visualization of Lysosomes and
Actin Cytoskeleton
For microscopy visualization of lysosomes and F-actin, HeLa
cells were processed essentially as previously described (Onofre
et al., 2019). Alexa Fluor 488 phalloidin or TRITC-phalloidin
and DAPI were used to detect F-actin and DNA, respectively. For
lysosome visualization, anti-human LAMP2 antibody and Alexa
Fluor 488-conjugated anti-mouse IgG were used. After mounting
the coverslips with adherent cells in ProLong Gold (Invitrogen),
confocal images were acquired in a confocal microscope
(Instituto de Farmacologia e Biologia Molecular (INFAR),
Universidade Federal de São Paulo), using 63X objective, and
were processed/analyzed using Leica LAS AF (Leica, 2012,
Germany) and Imaris (Bitplane) software. The relative position
of lysosomes in confocal images was evaluated by ImageJ 1.53c
software. Cells were selected, and then green pixels (lysosomes)
and blue pixels (nucleus) were plotted in a histogram. In some
experiments, images were acquired in Olympus fluorescence
microscope BX51 coupled to a Olympus DP71 camera, using
Image-Pro Plus software.

Treatment of HeLa Cells
In assays in which HeLa cells were incubated with synthetic
peptide or drugs, which were dissolved in DMSO, the same
amount of vehicle was present in untreated controls.

Antibodies and Reagents
Antibodies directed to phospho-PKC a/bII (Thr638/641),
phospho-PKC (pan) (gThr514), phospho-p44/42MAPK
(ERK1/2) (Thr202/Tyr204), m-TOR, PTEN, b-Tubulin and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
from Cell Signaling Technology. Anti-LAMP2 (H4B4)
antibody was from Developmental Studies Hybridoma Bank
developed under the auspices of the NICHD and maintained
by The University of Iowa, Department of Biology, Iowa City,
IA 52242. Alexa Fluor 488 phalloidin or TRITC-phalloidin and
Alexa Fluor 488-conjugated anti-mouse IgG were from
Thermo Fisher Scientific. FAK inhibitor PF573228, PLC
inhibitor U73122 and PKC activator PMA were from
Sigma/Merck.
March 2021 | Volume 11 | Article 627888

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Onofre et al. Antibodies and Reagents and Statistical Analysis
Statistical Analysis
The Student’s t test, as implemented in GraphPad Prism software
(Version 6.01), was used.
RESULTS

Interaction of Trypanosoma cruzi Gp82
and Host Cell LAMP2 Is Inferred From the
Structural Models
Using on-line servers Phyre2 and Swiss-model, we generated 3D
models of gp82, without the residues 1-29 at the N-terminus
and 500-516 at the C-terminus (Figure 1A), and of LAMP2
without residues 1-29 and 378-410 (Figure 1B). According to a
previous finding, the main host cell binding site of gp82,
corresponding to the sequence LARLTEELKTIKSVLSTWSK
(Manque et al., 2000), is part of an a-helix that connects the
N-terminal b-propeller domain to the C-terminal b-sandwich
domain (Cortez et al., 2012). We searched for the LAMP2
domain that could interact with the referred gp82 sequence at
the distance of up to 4 Å, taking into account that it contains the
acidic residues E259 and E260, critical for host cell binding, in
addition to basic residues K262 and K265 (Manque et al., 2000;
Cortez et al., 2012). Two LAMP2 regions that potentially
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
interact with gp82 were found, and in one of them nested the
presumed site for gp82 binding (Figure 1B). Shown in Figure
1C is one of the predicted models of gp82-LAMP2 docking, in
which the gp82 residues E259/K262 and the presumed LAMP2
amino acid residues N148/D149 involved in the interaction
are highlighted.

Peptide P5 Based on LAMP2 Sequence
Inhibits Gp82 Binding to Host Cells
To determine the LAMP2 sequence involved in gp82 binding, we
used synthetic 20-mer peptides, spanning the region presumed
to be the domain that interacts with gp82 (Figure 2A). Out of
ten, eight peptides (p1-p8) had an overlapping of 10 residues.
There was no overlapping between peptides p8 and p9, which
were separated by 127 residues that did not attain the proximity
of 4Å for gp82 interaction. The peptides were tested for the ability
to inhibit gp82 binding to host cells. We used the recombinant
gp82 protein (r-gp82), which was shown previously to have a host
cell binding capacity comparable to that of the native gp82 (Ruiz
et al., 1998). GST, to which r-gp82 is fused, is devoid of ability to
bind to HeLa cells (Cortez et al., 2006; Ferreira et al., 2006;
Zanforlin et al., 2013; Martins et al., 2015). Microtiter plates
coated with HeLa cells were incubated with the r-gp82, at
40 μg/ml, in absence or in the presence of individual peptides, at
A B

C

FIGURE 1 | Structural models of gp82 and LAMP2 proteins and their presumed interaction. (A) T. cruzi surface molecule gp82, without residues 1–29 (N-terminus) and 500-
516 (C-terminus). The cell binding site is highlighted (yellow). (B) LAMP2 without residues 1–29 (N-terminus) and 378–410 (C-terminus). Domains that potentially interact with
gp82 are indicated (orange and red). Also indicated is the presumed site of interaction with gp82 cell binding site (magenta). (C) Highlighted in the model of gp82–LAMP2
interaction are the gp82 residues E259 and K262 (yellow) and the presumed LAMP2 amino acid residues involved in the interaction (magenta).
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200 μg/ml. Binding of r-gp82 to cells was significantly inhibited by
peptide p5 (Figure 2B). Next, the effect of varying concentrations of
peptide p5 was determined. Peptide p5 inhibited r-gp82 binding to
cells in a dose-dependent manner (Figure 2C). An assay was also
performed in which HeLa cells were incubated with r-gp82 at
varying concentrations, in absence or in the presence of peptide p5
at 100 μg/ml. At all concentrations, r-gp82 bound significantly less
to HeLa cells in the presence of peptide p5 (Figure 2D).
Gp82-Mediated Metacyclic
Trypomastigote Invasion of Host Cells
Is Inhibited by Peptide P5
We examined the ability of peptide p5 to interfere with gp82-
mediated MT internalization. In the invasion process, we have
consistently seen that after 1 h incubation of HeLa cells with MT,
at MOI=10, approximately 25% of cells were invaded (Figure
S2A), most of them harboring one parasite per cell (Figure S2B).
Large cells, with more than one nucleus, were apparently more
susceptible to MT invasion, harboring a few parasites per cell
(Figure S2C). The average number of cells with more than one
nucleus was not higher than 10%, and those that were infected
represented about 50%. Metacyclic forms are internalized in a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
vacuole expressing lysosome membrane markers (Cortez et al.,
2016; Rodrigues et al., 2019), as shown in Figure 3A. In large
multinucleated cells, a few parasites per cell could be seen in a
lysosome membrane-derived vacuole, upon reaction with anti-
LAMP2 antibody (Figures 3A and S3). Clearly evident in these
cells is the spreading of lysosomes and accumulation at the edges
(Figures 3A and S3), a profile that is also observed in cells
incubated with r-gp82 protein (Figure 3B). The relative position
of lysosomes was quantified in selected cells (11 from control and
13 from samples treated with r-gp82), by plotting green pixels
(lysosomes) and blue pixels (nucleus) in a histogram.
Uninucleated as well as multinucleated cells were included in
the analysis. In the histogram plotted to compare quantitatively
the lysosomes positioned away from the nucleus, a higher
number could be seen in cells incubated with r-gp82 than in
control cells (Figure S4).

To test the effect of peptide p5 on MT invasion, peptides p4
and p6 were used as controls. In the 3D model of LAMP2, the
sequences corresponding to these peptides are located on the
surface (Figure 3C). HeLa cells were incubated for 1 h withMT, in
absence or in the presence of peptide p4, p5 or p6, at 100 μg/ml,
and were processed for intracellular parasite quantification.
Peptide p5 significantly inhibited MT internalization whereas
A B

DC

FIGURE 2 | Inhibition of gp82 binding to cells by peptide p5. (A) Sequences of peptides spanning the LAMP2 domain identified as the site of interaction with gp82.
(B) HeLa cells were incubated with r-gp82, in absence or in the presence of the indicated peptide. Binding was measured by ELISA. Representative results of one of
three assays are shown. Values are the means ± SD of triplicates. Inhibition by peptide p5 was significant (*P < 0.0001). (C) HeLa cells were incubated with r-gp82,
at 40 mg/ml, in absence or in the presence of peptide p5 at the indicated concentrations. Values are the means ± SD of three experiments performed in triplicate.
Inhibition by peptide p5 at different concentrations was significant (*P < 0.01, **P < 0.005, ***P < 0.0001). (D) HeLa cells were incubated with r-gp82, at the
indicated concentrations, in absence or in the presence of peptide p5 at 100 µg/ml. Values are the means ± SD of triplicates from a representative assay. Binding of
r-gp82 to cells was significantly inhibited in the presence of peptide p5 (*P < 0.0005, **P < 0.0001).
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peptides p4 and p6 had no inhibitory effect (Figure 3D). Next, the
effect of varying concentrations of peptide p5 was determined.
Peptide p5 inhibited MT invasion in a dose-dependent manner
(Figure 3E).

Host Cell Protein Kinase C and ERK1/2
Are Activated Upon Interaction With
Metacyclic Trypomastigote
The host cell PKC and ERK1/2 have been implicated in
gp82-mediated MT internalization (Martins et al., 2011;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Onofre et al., 2019). To examine whether MT effectively
induced the activation of these kinases, HeLa cells were
incubated with MT for 5 or 30 min and then processed for
western blotting, along with the control cells that had no contact
with parasites. As active PKC translocates to the plasma
membrane, we isolated membrane and cytosol fractions, which
were analyzed by western blotting using antibody to phospho-
PKCa/bII and to phospho-ERK1/2. As control for the correct
fractionation, antibody to LAMP2 was used. Detection of
mammalian target of rapamycin (mTOR) was included in this
A

B

D

E

C

FIGURE 3 | Inhibition of gp82-mediated MT invasion of host cells by peptide p5. (A) HeLa cells were incubated with MT for 30 min and then processed for confocal
fluorescence microscopy to visualize lysosomes (green), nucleus (blue), and adherent parasites (red). Scale bar = 10 µm. Note the internalized MT with lysosome
marker (white arrows) and lysosome accumulation at the cell edges (yellow arrows) in a multinucleated large cell. (B) HeLa cells were incubated for 30 min in
absence or in the presence of recombinant gp82 (r-gp82) and visualized by confocal microscopy. Scale bar = 20 µm Note the perinuclear localization of lysosomes
in control cells, the lysosome spreading in cells incubated with r-gp82 and the accumulation at edges (yellow arrows) in a multinucleated cell. (C) The 3D model of
LAMP2, highlighting the peptide p5 sequence (magenta), the sequences of p4 (green) and p6 (yellow) that do not overlap with p5. (D) HeLa cells were incubated for
1 h with MT in absence or in the presence of the indicated peptide, at 100 mg/ml, and processed for intracellular parasite quantification. Values are the means ± SD
of four independent assays performed in duplicate. MT invasion was significantly reduced in the presence of peptide p5 (*P <0.001). (E) HeLa cells were incubated
for 1 h with MT in absence or in the presence of peptide p5 at the indicated concentrations, and the internalized parasites was quantified. Values are the means ±
SD of three independent assays performed in duplicate. Inhibition of MT internalization by peptide p5 was significant at all concentrations (*P < 0.05, **P <0.01,
***P < 0.0005).
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assay, because there are indications that MT associates with
mTOR and LAMP2 at peripheral lyososomes (Cortez et al.,
2016). The increase in the phosphorylation levels of PKC and
ERK1/2 was detectable after 5 min interaction of HeLa cells with
MT, and was more pronounced after 30 min (Figure 4).
Activated PKC was detected predominantly in the membrane
fraction, whereas activated ERK1/2 remained mostly in the
cytosolic fraction (Figure 4). LAMP2 and mTOR partitioned
in the membrane fraction and the higher intensity in cells
incubated with MT for 30 min (Figure 4) is possibly due to
lysosome biogenesis induced by gp82, as previously observed
(Cortez et al., 2016).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Gp82-Induced Activation of Host Cell
Protein Kinase C and ERK1/2 Is Blocked
by Peptide P5
First, we determined the effect of gp82 on PKC and ERK1/2
activation, HeLa cells were incubated for 30 min in absence or in
the presence of r-gp82 at 10 μg/ml, the membrane and cytosolic
fractions were isolated and analyzed by western blotting. The
phosphorylation levels of PKC and ERK1/2 increased upon
interaction with r-gp82, PKC being detected predominantly in
the membrane fraction and ERK1/2 in the cytosolic fraction
(Figure 5A). The membrane fraction was enriched in mTOR and
the cytosolic fraction in phosphatase PTEN (Figure 5A).
FIGURE 4 | Activation of host cell PKC and ERK1/2 upon interaction with MT. HeLa cells were incubated in absence or in the presence of MT for the indicated
time. Cytosolic (C) and membrane (M) fractions were isolated and analyzed using antibody to phospho-PKC and to phospho-ERK1/2. Anti-LAMP2 and anti-mTOR
antibodies were used as fractionation control. Note the increase in the phosphorylation levels of PKC and ERK1/2 induced by MT.
March 2021 | Volume 11 | Article 627888
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To demonstrate that PKC activation is induced by gp82-
mediated interaction of MT with host cells, an additional
experiment was performed. The parasites were incubated in
absence or in the presence of monoclonal antibody directed to
gp82 for 30 min and then were seeded onto HeLa cells. After
30 min incubation, the cells that interacted with MT and the
control cells that had no contact with parasites were processed
for western blotting and detection of phosphorylated PKC. Anti-
gp82 monoclonal antibody reduced the capacity of MT in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
activating PKC (Figure S5). Treatment of HeLa cells with anti-
gp82 monoclonal antibody did not have any effect.

Next, the effect of peptide p5 on gp82-induced PKC and
ERK1/2 activation was determined. HeLa cells were incubated
for 30 min with r-gp82 at 10 μg/ml, in absence or in the presence
of peptide p5 at 50 μg/ml. The recombinant gp82 and peptide p5
were absent in control cells. After western blotting of cell
extracts, the nitrocellulose membranes were revealed with
antibody directed to phosphoylated PKC and ERK1/2, as well
A

B

D

C

FIGURE 5 | Blockage of gp82-induced activation of host cell PKC and ERK1/2 by peptide p5. (A) HeLa cells were incubated for 30 min in absence or in the
presence of r-gp82. The cytosolic (C) and membrane (M) fractions were analyzed by Western blotting using antibody to phospho-PKC and to phospho-ERK1/2.
Note the increased phosphorylation levels of PKC and ERK1/2 upon incubation with r-gp82, and the detection of PKC and ERK1/2 predominantly in the membrane
and cytosolic fractions, respectively. (B) HeLa cells were incubated for 30 min with r-gp82 in absence or in the presence of peptide p5. The western blot was
revealed with antibodies directed to: phospho-PKC, phospho-ERK1/2, b-tubulin or GAPDH. Note the impairment of gp82-induced PKC and ERK1/2 activation by
peptide p5. (C) Densitometry analysis of Western blots were performed. Values are the means ± SD of three independent assays. (D) HeLa cells were incubated for
30 min in absence or in the presence of r-gp82 and then processed for visualization of actin cytoskeleton (red) and nucleus (blue). Scale bar = 20 µm. Note the
disrupted cortical F-actin in cells incubated with r-gp82 (white arrows). To facilitate visualization, a magnified image from the framed area (square) is also shown.
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as b-tubulin or GAPDH, which served as loading controls. Both
PKC and ERK1/2 had their phosphorylation levels increased
upon interaction with r-gp82, an effect that was counteracted by
peptide p5 (Figure 5B). Quantification of western blot bands
using GelAnalyzer 19.1 software confirmed the increase in PKC
activation induced by r-gp82 and inhibition by peptide p5 in
repeated assays (Figure 5C). PKC and ERK1/2 have been
associated with actin cytoskeleton organization in different cell
types (Nurminsky et al., 2007; Wang and Hatton, 2007). F-actin
rearrangement is induced by r-gp82 (Cortez et al., 2006), what
we confirmed by incubating HeLa cells for 30 min with r-gp82 at
20 μg/ml and then processing for visualization at the confocal
microscope. Disruption of F-actin was detectable in cells
incubated with r-gp82 (Figure 5D).
Focal Adhesion Kinase Inhibitor Affects
Gp82-Induced Protein Kinase C Activation
A previous study showed that treatment of HeLa cells with specific
FAK inhibitor PF573228 results in ERK1/2 dephosphorylation,
alteration in the actin cytoskeleton architecture and higher
resistance to gp82-mediated MT invasion (Onofre et al., 2019).
Here we examined whether FAK inhibitor affected gp82-induced
PKC phosphorylation. HeLa cells were either untreated or treated
for 45 min with 40 μg/ml FAK inhibitor in serum-free medium.
Untreated and FAK inhibitor-treated cells were then incubated for
30min with r-gp82 at 10 μg/ml, and processed for western blotting
analysis. FAK inhibitor blocked PKC and ERK1/2 activation
induced by r-gp82 (Figure 6A). PKC activation by r-gp82 and
inhibition by FAK inhibitor was confirmed by densitometry in a
repeated assay (Figure 6B). Actin cytoskeleton disorganization
was detectable upon 30 min incubation of HeLa cells with FAK
inhibitor (Figure 6C). A more extensive F-actin disarrangement
was observed in cells treated with FAK inhibitor (Figure 6C) than
in cells incubated with r-gp82 (Figure 5D).
Phospholipase C Inhibitor Blocks Gp82-
Induced Protein Kinase C Activation and
Lysosome Mobilization and Inhibits
Metacyclic Trypomastigote Invasion
The PKC isoform (a and/or b) activated in HeLa cells upon
interaction with MT or r-gp82 belongs to the group of classical
PKCs that are activated by Ca2+ (Huang et al., 1986) and
diacylglycerol (DAG) (Nishizuka, 1986). This suggested that
PLC, which generates DAG and inositol 1,4,5-triphosphate
(IP3) that releases Ca2+ from intracellular reservoirs (Streb
et al., 1983) was implicated in PKC activation. To determine
the involvement of PLC in gp82-induced PKC activation, HeLa
cells were incubated for 5 or 20 min with specific PLC inhibitor
U73122, at 10 μM, a concentration used for treatment of different
cell types (Berven and Barritt, 1995; Muto et al., 1997). After
removal of the drug, the cells were incubated with 20 mg/ml
r-gp82 for 30 min. Extracts of untreated and U73122-treated
cells were prepared and analyzed by western blotting for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
detection of phosphorylated PKC. Treatment of cells with PLC
inhibitor for 20 min blocked gp82-induced PKC activation, as
visualized in the western blot (Figure 7A) and confirmed in a
repeated assay, as shown by densitometry analysis (Figure 7B).
Next, the effect of U73122 on MT invasion was examined. HeLa
cells, untreated or pretreated with 10 μMU73122 for 5 or 20 min,
were incubated with MT for 1 h and processed for internalized
parasite quantification. Pretreatment of HeLa cells for 20 min,
but not for 5 min, significantly increased the resistance to MT
invasion (Figure 7C). An experiment was also performed to
determine whether pretreatment of cells with U73122 interfered
with the gp82 activity in inducing lysosome spreading, provided
that requirement of PLC on lysosome exocytosis has been
reported (Andrei et al., 2004). HeLa cells were pretreated with
U73122 for 20 min, and then were incubated with r-gp82 for
30 min, and processed for immunofluorescence microscopy. In
cells pretreated with PLC inhibitor, the lysosome spreading
induced by r-gp82 was impaired, and the perinuclear lysosome
localization was similar to that observed in untreated cells
(Figure 7D).
Phorbol Ester PMA Activates
Protein Kinase C, Disorganizes
Actin Cytoskeleton, and Inhibits
Lysosome Mobilization
We have found in previous studies that treatment of HeLa cells
with phorbol ester PMA inhibits MT invasion by blocking the
spreading of lysosomes and exocytosis (Martins et al., 2011).
PMA, an activator of PKC, has been shown to inhibit diverse cell
processes, such as angiotensin-induced activation of PLC (Brock
et al., 1985), alfa 1-adrenergic responses, including the increase
in free cytosolic Ca2+ and release of IP3 (Lynch et al., 1985),
phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by
muscarinic receptor activation (Vicentini et al., 1985). To
determine the effect of PMA on HeLa cells that could reduce
the susceptibility to MT invasion, a set of experiments were
carried out. First, HeLa cells were untreated or treated with 100
nM PMA for 30 min, in absence or in the presence of a broad
spectrum PKC inhibitor Go 6983 at 2 nM, and the membrane
and cytosolic fractions were analyzed for detection of
phoshorylation levels of PKC and ERK1/2, using b-tubulin as
fractionation and loading control. Highly activated PKC was
detected in the membrane fraction, and ERK1/2 in the cytosolic
fraction, of PMA-treated cells (Figure 8A). Next, we compared
the actin cytoskeletal structure in untreated and PMA-treated
cells, upon 30 min interaction with MT. PMA-treated cells
exhibited a highly disorganized actin cytoskeleton, with an
appearance distinct from that induced by MT (Figure 8B). In
cells incubated with MT, the actin stress fibers are more preserved
and membrane ruffles, such as seen in PMA-treated cells, are not
visualized. As regards lysosome spreading, pretreatment with
PMA or PLC inhibitor U73122 rendered the HeLa cells
unresponsive to MT-induced mobilization of lysosomes, which
remained concentrated perinuclearly (Figure 8C).
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DISCUSSION

Our results have indicated that interaction of MT gp82 with its
host cell receptor LAMP2 induces the signaling pathway that
involves the activation of PKC and the downstream ERK1/2. The
process of gp82-mediated MT invasion resembles therefore the
stimulation of different cell types by diverse factors. For instance,
PKC was required for activation of ERK1/2 in mycobacterial
infection of macrophages (Yadav et al., 2006) or upon
proinflammatory stimulation by basic calcium phosphate
crystals (Nadra et al., 2005).

The MT gp82 sequence involved in host cell attachment was
identified twenty years ago (Manque et al., 2000), but only
recently the target cell receptor for gp82 was identified.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
LAMP2, which is expressed at low levels in the plasma
membrane of HeLa cells, was found to function as receptor for
gp82 (Rodrigues et al., 2019). Here we mapped the LAMP2
sequence predicted to bind gp82. The synthetic peptide based on
that sequence impaired the binding of r-gp82 to HeLa cells, as
well as MT internalization, and blocked the gp82-induced PKC
and ERK1/2 activation.

We have found that the PKC activated in HeLa cells by MT or
r-gp82 belongs to the group of Ca2+-activated PKCs. This is in
agreement with the requirement of Ca2+ in the process of MT
invasion (Dorta et al., 1995; Ruiz et al., 1998) and with the fact
that the gp82-induced disruption of target cell actin cytoskeleton,
which is associated with lysosome spreading (Martins et al.,
2011), is Ca2+-dependent (Cortez et al., 2006). The source of
A

B

C

FIGURE 6 | Inhibition of gp82-induced activation of host cell PKC and ERK1/2 by FAK inhibitor. (A) HeLa cells, untreated or pretreated with FAK inhibitor, were
incubated for 30 min in absence or in the presence of r-gp82, and analyzed by Western blotting for detection of phosphorylated PKC and ERK1/2. Note that
treatment with FAK inhibitor counteracted the gp82-induced activation of PKC and ERK1/2. (B) Shown is the ratio of p-PKC/GAPDH. Values are the means ± SD of
duplicate assays. (C) HeLa cells, untreated or treated with FAK inhibitor, were processed for visualization of actin cytoskeleton (red) and nucleus (blue). Scale bar =
20 µm. Note the extensively disorganized actin cytoskeleton in cells treated with FAK inhibitor (white arrows). To facilitate visualization, a magnified image from the
framed area (square) is also shown.
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Ca2+ is presumably IP3-sensitive stores, provided the gp82-
induced PKC activation, as well as MT invasion, was impaired
by treatment of HeLa cells with PLC inhibitor. We do not know
in which way gp82-LAMP2 interaction could activate PLC. As
reviewed in (Kadamur and Ross, 2013), of six mammalian PLC
families, each respond to its own spectrum of activators that
includes heterotrimeric G protein subunits, protein tyrosine
kinases, small G proteins, Ca2+, and phospholipids. One
possibility is that gp82-LAMP2 interaction might induce PLC
activation, through one of the mentioned activators. Ca2+-dependent
PKC translocates from cytosol to plasma membrane upon activation
by diverse stimuli (Kraft and Anderson, 1983; Hirota et al., 1985).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
Accordingly, activated PKC was found mostly in the membrane
fraction of HeLa cells upon interaction with MT or r-gp82.

The association of PKC/ERK1/2 signaling with actin cytoskeleton
organization, described in different cell types (Nurminsky et al., 2007;
Wang and Hatton, 2007), was also observed in cells treated with
phorbol ester PMA. However, PMA-induced extensive disassembly
of actin stress fibers, with concomitant appearance of membrane
ruffles, had the effect of inhibiting the lysosomemobilization induced
by MT, what is compatible with previous findings that pretreatment
of cells with PMA inhibits MT invasion (Cortez et al., 2006; Martins
et al., 2011). As the morphology of the cytoskeleton is regulated by a
large number of components and can be modified by many
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C

FIGURE 7 | Blockage of gp82-induced activation of host cell PKC by PLC inhibitor. (A) HeLa cells, untreated or pretreated with PLC inhibitor, for the indicated time, were
incubated for 30 min in absence or in the presence of r-gp82, and analyzed by western blotting for detection of phosphorylated PKC. Note that treatment of cells with PLC
inhibitor for 20 min impaired the gp82-induced activation of PKC. (B) The ratio of p-PKC/GAPDH is shown. Values are the means ± of two assays. (C) HeLa cells, untreated
or pretreated with PLC inhibitor for the indicated time, were incubated for 1 h with MT, and the internalized parasites was quantified. Values are the means ± SD of five
independent assays performed in duplicate. MT internalization was significantly inhibited in cells pretreated with PLC inhibitor for 20 min (*P < 0.0001). (D) HeLa cells, untreated
or pretreated with U73122 for 20 min, were incubated with r-gp82 for 30 min and processed for immunofluorescence microscopy. The cortical F-actin structure and the
lysosome localization were similar in untreated control and in cells pretreated with U73122 min and incubated with r-gp82.
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exogenous stimuli (Larsson, 2006), we presume that different factors
trigger distinct signaling pathways, which may have in common the
activation of PKC and ERK1/2, but lead to distinct F-actin
rearrangements. In HeLa cells treated with FAK inhibitor, which
blocked the gp82-induced PKC/ERK1/2 activation, the profile of
rearrangement of F-actin differed from that induced by gp82/MT or
PMA. The actin reorganization promoted by FAK inhibitor or PMA
may have an adverse effect either on MT invasion process (Onofre
et al., 2019) and/or in the retention of parasites. Studies with TCT
have reported that transient depolymerization of the cortical actin
cytoskeleton facilitates parasite invasion, but actin reassembly is
required for the formation of a parasitophorous vacuole with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
lysosomal properties, in order to prevent parasites from exiting
host cells (Andrade and Andrews, 2004; Woolsey and
Burleigh, 2004).

Although the transient increase in host cell cytosolic Ca2+

concentration and lysosome spreading are common features of
MT and TCT invasion (Rodrıǵuez et al., 1995; Docampo and
Moreno, 1996; Ruiz et al., 1998; Martins et al., 2011), the
signaling pathways triggered by these parasite forms in the
host cell are distinct. In a study using normal rat kidney cells,
it has been suggested that PKC activity is not required for TCT
invasion, on the basis that treatment of cells with PKC inhibitors
did not impair calcium response or the centripetal F-actin
A B

C

FIGURE 8 | Effect of PKC activator PMA on cytoskeleton disruption and MT-induced lysosome mobilization. (A) HeLa cells were untreated or treated with PMA, in
absence or in the presence of PKC inhibitor Go 6983, and the membrane (M) and cytosolic (C) fractions were analyzed for detection of phoshorylation levels of PKC
and ERK1/2. (B) HeLa cells, untreated or treated with PMA, were incubated with MT for 30 min and processed for immunofluorescence microscopy to visualize actin
cytoskeleton (red) and nucleus (blue). Scale bar = 10 µm. (C) HeLa cells, untreated or treated with PMA or PLC inhibitor U73122, were incubated with MT for 30 min
and processed for immunofluorescence microscopy to visualize lysosomes (green). In untreated cells that interacted with MT, lysosome spreading induced by the
parasite (white arrow) can be seen. Scale bar = 10 µm.
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reorganization, and did not affect the efficiency of parasite
internalization (Rodrıǵuez et al., 1995). The authors did not
test the effect of phorbol esters, which greatly increase the affinity
of PKC for Ca2+ and enhance the enzyme activity (Castagna
et al., 1982). The difference in signaling pathways triggered by
MT and TCT in target cells is presumably associated with the fact
that, differently from MT, the TCT entry is initiated by plasma
membrane invagination (Woolsey et al., 2003). In a lysosome
exocytosis- dependent process, TCT induces plasma membrane
injury and a rapid form of endocytosis that internalizes
membrane lesions (Fernandes et al., 2011).

Our results, together with previous findings, provide a picture
of the possible mechanism of gp82-mediated host cell invasion
by MT, as depicted schematically in Figure 9. Recognition of MT
gp82 by LAMP2 induces in the host cell the activation of PLC,
with generation of DAG and IP3. By acting on IP3-sensitive
intracellular stores, IP3 releases Ca2+, thus increasing the cytosolic
Ca2+ concentration. Both Ca2+ and DAG activate PKC, which is
translocated to the plasma membrane. Following PKC
phosphorylation, the downstream ERK1/2 is activated. This
chain of events leads to the actin cytoskeleton rearrangement
and lysosome spreading, promoting MT internalization.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
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Supplementary Figure 1 | Lack of reactivity of purified r-gp82 with anti-E. coli
antibody. Purified r-gp82 and E. coli extract were analyzed by western blotting,
using monoclonal antibody to gp82 and anti-E. coli antiserum. Note in the r-gp82
preparation the band detectable by monoclonal antibody to gp82, but no bands
corresponding to bacterial components recognized by anti-E. coli antiserum.

Supplementary Figure 2 | Host cell invasion by T. cruzi MT. (A) HeLa cells were
incubated with MT for 1 h and then stained with Giemsa for internalized parasite
counting. Values are the means ± SD of five independent assays performed in
duplicate. Shown in (B) is a cell harboring one parasite (arrow), surrounded by non-
infected cells. Adherent parasites are also seen. Shown in (C) are cells harboring
one parasite and a binucleated cell with four internalized parasites (arrows). Scale
bar = 10 µm.

Supplementary Figure 3 | Lysosome-dependent T. cruzi MT internalization.
HeLa cells were incubated with MT for 30 min and then processed for confocal
fluorescence microscopy to visualize lysosomes (green), nucleus (blue), and non-
internalized parasites (red). Scale bar = 10 µm. Note the internalized MT with
lysosome marker (white arrows) and lysosome accumulation at the cell edges
(yellow arrows) in binucleated large cells.

Supplementary Figure 4 | Relative positioning of lysosomes upon incubation of
cells with r-gp82. HeLa cells treated or not with r-gp82 (Figure 3B) were analyzed
by plotting green pixels (lysosomes) and blue pixels (nucleus) in a histogram. The
lysosomes positioned away from the nucleus were then plotted in a histogram. The
peak signal intensity in the presence of r-gp82 is indicated by red arrow.

Supplementary Figure 5 | PKC activation induced by gp82-mediated interaction
of MT with host cells. The parasites were incubated in absence or in the presence
anti-gp82 monoclonal antibody for 30 min and then were seeded onto HeLa cells.
After 30 min incubation, the cells that interacted with MT and the control cells that
had no contact with parasites were processed for detection of phosphorylated
PKC. Anti-gp82 monoclonal antibody reduced the capacity of MT in activating PKC.
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