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Detecting Demyelination by PET: The Lesion
as Imaging Target
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Abstract
Noninvasive imaging of demyelination and remyelination is critical for diagnosis and clinical management of demyelinating diseases.
Positron emission tomography (PET) has the potential to complement magnetic resonance imaging (MRI) by providing a quan-
titative measure specific to demyelination. In Brugarolas et al’s study1, we describe the development of the first PET tracer for
voltage-gated Kþ channels based on a clinically approved drug for multiple sclerosis that can be used for imaging demyelination in
animal models.
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Myelin is essential for proper functioning of the central nervous

system. Its main role is to speed up the propagation of electrical

impulses along myelinated fibers, and it also provides protec-

tion and nutrients to neurons. In many diseases, the myelin

sheath is damaged, which can cause a wide range of motor,

sensory, and cognitive symptoms. Disruption to the myelin

sheath may be genetic (eg, leukodystrophies),2 immunological

(eg, multiple sclerosis),3 traumatic (eg, traumatic brain injury

and spinal cord injuries),4,5 ischemic (eg, stroke), or degenera-

tive (eg, Alzheimer disease or even normal aging).6 Quantita-

tive imaging of changes in myelin content is critical to

understanding these diseases and monitoring their progression.

Myelin is composed of lipids (70% dry weight) and proteins.

Given its high lipid content, water molecules within myelin have

limited diffusion, which can bedetected using magnetic resonance

imaging (MRI). Lipid itself also changes the relaxation properties

of nearby water protons, most prominently by shortening the T1

relaxation time constant. Consequently, MRI is very sensitive to

demyelinating lesions. In practice, however, various tissue prop-

erties and pathologies can give rise to similar findings on MRI, and

as a result, it can be challenging to distinguish demyelination from

other potentially coexisting processes such as inflammation and

axonal loss, solely by MRI. In addition, the physics of MRI are

such that the signal is not fully quantitative, which limits our

ability to monitor changes in myelination over time.

Positron emission tomography (PET) uses radioactive

molecules to detect pathological changes in live subjects.

Because PET scanners detect radiation emitted directly by the

radiotracer, they can provide quantitative images of the

radioactive source within the subject. As such, a tracer that

preferentially localizes to demyelinated lesions could provide

a quantitative measure of demyelination.

Current PET tracers for demyelination bind to myelin,7

which has the limitation that small areas of demyelination are

masked due to the high abundance of surrounding myelin. This

is particularly problematic when the structures of interest, such

as in multiple sclerosis (MS) lesions, are small (often on the

order of 0.5 mm in diameter or less). In addition, since myelin

is mostly made of lipids, tracers for myelin are very lipophilic,

which typically results in tracers with high background due to

nonspecific binding.

We took a different approach. It has long been known that

demyelination alters the distribution of axonal potassium chan-

nels.8-11 In normally myelinated axons, sodium channels con-

centrate at the nodes of Ranvier (also known as myelin-sheath
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gaps) and potassium channels at the neighboring juxtapara-

nodes beneath the myelin sheath.10 During demyelination,

Kþ channels become exposed, migrate through the demyeli-

nated segment and increase in expression. This exposure of Kþ

channels results in leakage of intracellular potassium ions,

which in turn impairs propagation of electrical impulses. This

process is the basis for the mechanism of action of the multiple

sclerosis drug, 4-aminopyridine (4AP, dalfampridine). 4-

aminopyridine is a small cationic molecule that binds inside

the pore of voltage-gated Kþ channels (Kv1 family), blocking

the passage of Kþ ions. Based on this mechanism, we proposed

that a radiolabeled form of 4AP could potentially serve to

detect demyelinated lesions (Figure 1).

In order to test our hypothesis, we commissioned the pro-

duction of 14C-labeled 4AP for autoradiography experiments.

Because binding of 4AP requires the channels to be open,

something that only occurs during membrane depolarization,

incubation of tissue sections with the radiolabeled drug gave no

significant binding. We then performed autoradiography after

administering the drug to live mouse models of demyelination

and found that there was greater binding in demyelinated areas,

where there is high concentration of accessible Kþ channels,

than in normally myelinated areas, where there is low concen-

tration of accessible Kþ channels. We also saw significant

binding in the gray matter, which is not surprising since there

are many Kþ channels in those regions, with little myelin to

block access of the tracer. After confirming that 4AP

preferentially binds to areas with low-myelinated over well-

myelinated areas, we set out on a quest for a fluorine-

containing derivative that could be used for PET imaging. With

the help of Dr Pancho Bezanilla and his laboratory at the Uni-

versity of Chicago (experts in the electrophysiology of ion

channels), we found that 3-fluoro-4-aminopyridine, 3F4AP,

has similar capacity to block Kþ channels as 4AP. Additional

efforts and collaboration with University of Wisconsin–Madi-

son radiochemistry professor, Dr Onofre DeJesus, led to the

successful labeling of 3F4AP with F-18.12 With [18F]3F4AP on

hand, we performed microPET/CT imaging in rodents with

demyelinated lesions at the University of Chicago, aided by

Dr Chin-Tu Chen and colleagues, and demonstrated that

[18F]3F4AP can be used to detect demyelination by PET in

rodents. Finally, a collaboration with the NIH Intramural

Research Program led to the improvement in the radiolabeling

method by Rolf Swenson and colleagues13 and to the testing of

Figure. Imaging Kþ channels from demyelinated axons. Upon demyelination, voltage-gated Kþ channels accumulate at the demyelinated
segment. [18F]3F4AP, a radiofluorinated analog of the multiple sclerosis drug 4-aminopyridine, binds to these channels and can be used to trace
demyelinated lesions noninvasively using positron emission tomography.
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the tracer in nonhuman primates conducted by Peter Herscov-

itch. Primate studies showed that [18F]3F4AP has excellent

properties for brain imaging, including rapid entry into the

brain, slow to moderate clearance, and high signal in the brain

(SUVmax 3-6, depending on the brain region).

An important challenge that we faced in this project was

how to convince ourselves (and the reviewers) that the signal

was specific for Kþ channels. Since 4AP and 3F4AP target Kþ

channels that are directly involved in neuronal function, it is

not possible to perform blocking studies by saturating the

receptors with cold drug as this would cause fatal seizures to

the animals. We believe it may be possible to partially block

the signal, but this will require careful titration of the cold drug

while measuring the concentration of the tracer and radiome-

tabolites in blood as well as mathematically modeling the data.

Nevertheless, several indirect pieces of evidence point to high

degree of specific binding, including the facts that binding is

lowest in white matter (which typically shows highest nonspe-

cific binding in PET studies), that no binding is observed when

the drug is applied directly to tissue sections, where most

receptors that could give rise to nonspecific binding remain

available and most importantly that there were significant dif-

ferences between demyelinated animals and controls in 3 dif-

ferent murine models of demyelination. These models include

Shiverer mice that lack compact myelin due to a null mutation

of the myelin basic protein gene,14,15 lysolecithin-injected

mice, which display chemically induced focal demyelination,16

and DTA mice, which are a genetically engineered strain in

which tamoxifen injections induce death of oligodendrocytes

and consequent demyelination.17,18 The results in DTA mice

are particularly exciting, as they suggest that our tracer is sen-

sitive to demyelination and remyelination.

Many questions remain. For example, since Kv1 channels

are involved in many other processes such as cell migration and

proliferation, regulation of cell volume, and immune cell acti-

vation, how do other potentially coexisting processes, such as

inflammation, affect the PET signal? It is known that inflam-

mation also occurs in MS and that Kþ channels (such as Kv1.3)

are expressed in microglia, so it is important to look at this in

the future. The fact that [18F]3F4AP targets a protein as ubi-

quitous as Kþ channels may provide additional applications for

the tracer. In the past, there have been tracers developed with 1

application in mind, which have found application for other

purposes. For example, [18F]flurodeoxyglucose, [18F]FDG,

was developed to monitor brain activity, but it has found its

most enduring use in the imaging of tumors and metastases.

Similarly, a tracer for Kþ channels could potentially have

applications for cancer, inflammation, neurodegenerative dis-

eases, and kidney diseases.

In addition, longitudinal studies comparing PET, MRI, clin-

ical scores, and histology in MS models will provide invaluable

information for the successful translation of 3F4AP to humans.

If proven sensitive and specific for demyelination, this tracer

has the potential to solve a significant challenge in the field,

namely, how to detect and quantify remyelination in clinical

trials of myelin repair drugs, which is currently a major focus in

MS drug development.19

In summary, the article describes step-by-step the process of

developing the first PET tracer for voltage-gated Kþ channels,

including validating the target in mouse models of MS, devel-

oping fluorinated small molecules amenable to F-18 labeling,

and imaging them in rodent models of MS and monkeys. As

with any new concept, many unanswered questions remain

regarding [18F]3F4AP for those willing to explore them.

The work took 6 years and a large team of people, which

included experts in neuroscience, animal models, synthetic

chemistry, electrophysiology, and PET imaging from the Uni-

versity of Chicago, the University of Wisconsin at Madison,

Case Western University, and the National Institutes of Health.
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