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Abstract: The intensive development of micro- and nanotechnologies in recent years has offered a
wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers
turned out to be a very successful technique for formulating micro- and nanoparticles with controlled
or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide
an improved therapeutic approach to prevention and treatment of various oral diseases not only
for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance
and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran,
starch, etc., are among the most preferred materials for preparation of micro- and nano-devices
for drug delivery, offering simple particle-forming characteristics and easily tunable properties of
the formulated structures. Their low immunogenicity and low toxicity provide an advantage over
most synthetic polymers for the development of pediatric formulations. This review is focused on
micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their
potential application in pediatric dentistry.

Keywords: microparticles; nanoparticles; drug delivery systems; natural polymers; polysaccharides;
chitosan; alginate; pectin; dextran; pediatric dentistry

1. Introduction

Pediatric dentistry includes diagnostics, prevention and treatment of specific diseases
and oral conditions associated with pediatric dental patients [1,2]. The most common dental
diseases during the period of childhood are dental caries and diseases of periodontium. The
main aim of contemporary pediatric dentistry is risk assessment of oral diseases and early
diagnostics, individual preventive program development and initial treatment [3,4]. The
unquenchable thirst for gathering new knowledge and striving for scientific development
result in exploitation of the innovations in pediatric dentistry as well.

The rapid development of micro- and nanotechnologies in recent years and their
gradual implementation in dentistry provoke more researchers to focus on the development
of novel polymer-based therapeutic systems and their imposition in personalized oral
treatment. Such systems provide not only new options for prevention and treatment of
oral diseases but also improvement of the properties of the materials used for operative,
endodontic and periodontal treatment for children [5,6]. Micro- and nanoparticles based on
polymers offer various advantages as drug delivery systems. By incorporating the drug in
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a polymer matrix (carrier) a sustained drug release can be accomplished [7–10]. Thereby, a
desired therapeutic effect can be achieved by administering reduced doses of the drug. At
the same time the lower risk of drug side effects and toxicity can provide a great advantage
in the development of therapeutics for children. Polymer drug delivery systems can also be
designed for targeted therapy, enabling the drug to be directed to a desired location in the
oral cavity [6,11]. Furthermore, due to their small size, nanoparticles can reach regions that
may be inaccessible to other delivery systems, such as the deep periodontal pockets [12].
Nanosizing favors the absorption and bioavailability of many drugs, leading to a reduction
in the drug dose and the frequency of its administration [13–15]. The different types of
polymer micro- and nanostructures, some of their preparation methods and advantages as
drug carriers are presented in Table 1.

Table 1. Polymer micro- and nanostructures as drug carriers.

Characteristics Polymer Microstructures Polymer Nanostructures

Size range 1–1000 µm 1–1000 nm

Preparation
methods

Spray-drying
Solvent evaporation

Ionic gelation
Emulsion solvent evaporation

Solvent extraction
Complex coacervation

Polymerization

Nano spray-drying
Solvent evaporation

Ionic gelation
Solvent diffusion

Nanoprecipitation
Reverse salting-out

Polymerization

Types of polymer structures

Microspheres
Microcapsules

Microbeads
Microfilms

Microneedles
Microchips

Microsponges

Nanospheres
Nanocapsules

Nanogels
Nanofibers
Nanotubes

Micelles
Polymersomes

Advantages as drug carriers

Targeted drug delivery
Sustained drug release

Multiple unit drug delivery
Increased drug loading

High drug encapsulation
efficiency

Targeted drug delivery
Sustained drug release

Enhanced drug solubility
Improved bioavailability
Increased cellular uptake

Variable administration routes

Over the years, different drug carriers have been investigated and tested for drug
delivery and targeting in the oral cavity. Natural polymers like polysaccharides are among
the most preferred materials in dental practice, especially for the development of pediatric
formulations, due to their biocompatibility, biotolerance and biodegradability. They dis-
play low or no toxicity, which provide an advantage over most synthetic polymers [16].
Naturally occurring polysaccharides such as chitosan, alginate, pectin, dextran, starch, etc.
(Figure 1) are being widely exploited in the medical and dental practice, providing a range
of different applications [17–19]. They are often used in the preparation of biodegradable
micro- and nano-devices for drug delivery, offering simple particle-forming characteristics
and easily tunable properties of the formulated structures [20,21].

Moreover, most polysaccharides have good adhesion to mucous membranes and
enamel surfaces, which is a prerequisite for longer retention at the site of application and
prolonged delivery of drugs in the oral cavity [22,23]. There are many examples in the
literature reporting the successful use of polysaccharides as micro- and nano drug carriers
and outlining their promising application in dentistry [6,9,24–26]. However, the available
information so far has not been summarized, which determines the urge for performing a
thorough review on that issue.

The aim of the current work was to present an overview of the advantageous applica-
tions of naturally occurring polysaccharides as micro- and nano-drug carriers in dentistry.
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Furthermore, a special focus was put on the pediatric practice and the most used treatment
approaches related to polysaccharide-based drug delivery systems in children oral care.
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2. Materials and Methods

The review article is based on the literature found in the databases of PubMed, Web of
science and Science Direct. The performed survey was within the year interval 2000–2020,
and 158 references were selected for the review. The choice of publications was made on
the basis of the relevance of the publications to the topic, the research methodology, the
research results and the year of publication. The cited publications include systematic
reviews, research articles, book chapters and meta-analysis.

3. Natural Polysaccharide Drug Carriers in Dentistry

Polysaccharides are a large group of biological substances, which are composed
of monosaccharides (sugars) linked together by O-glycosidic linkages. Their properties
depend mainly on their monosaccharide composition, linkages and molecular weight [27].

Natural polysaccharides are widely distributed in nature and can be obtained from
renewable resources, like plants, algae, fungi, animals and microorganisms (Figure 1).
That makes them affordable and cost-effective materials for various medical and dental
applications [22,28,29]. Moreover, their properties enable relatively easy and reproducible
production of drug formulations by applying already well-studied production methods
such as spray drying, emulsion technique, coacervation, polymerization, etc. [26,30–32]. By
choosing the right production parameters, polysaccharide-based micro- and nanoparticle
can be developed with desired size, high yield, high drug encapsulation efficiency and
controlled drug release, which could make them promising drug delivery systems in the
dental practice.

3.1. Chitosan

Chitosan is a natural polymer derived from chitin through deacetylation. It is chemi-
cally comprised of N-acetylglucosamine and glucosamine copolymer units (Figure 2) [33,34].
Due to its biocompatibility, biodegradability and non-toxic properties, chitosan is one of
the most extensively exploited polymers as biomaterial in the medical and dental prac-
tice [35–37].
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Moreover, chitosan possesses a strong antiplaque activity. It causes destruction of
the bacterial cells by promoting displacement of Ca2+ of the anionic sites of the cellu-
lar membrane [38]. Chitosan has been proven effective against oral bacteria such as
Porphyronomas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans and
other pathogens [39,40]. Aliasghari et al. reported an inhibitory effect of chitosan nanopar-
ticles against S. salivarius and S. sobrinus at a concentration of 0.625 mg/mL. Chitosan
nanoparticles at a concentration of 5 mg/mL reduced up to 93.4% of the biofilm formation
of the bacteria S. mutans, which played an important role in the pathogenesis of dental
caries [41]. Another study showed the promising antibacterial activity of copper-loaded
chitosan nanoparticles against S. mutans, which was compared to that of oral antimicrobial
agents such as chlorhexidine and cetylpyridinium chloride [42]. It was believed that chi-
tosan interacted with tooth hydroxyapatite and bacterial cell wall, enhancing the adherence
of copper to the tooth surface. The presence of cationic amino groups in its molecule allows
chitosan to be adsorbed through electrostatic forces onto materials with strong negative
zeta potential, such as the tooth enamel [43]. Chitosan nanoparticles have also been pro-
posed as a perspective coating material for titanium dental implants. Divakar et al. have
determined an enhanced antimicrobial activity of chitosan conjugated silver nanoparticles
against dental implant pathogens. They have concluded that the formulated chitosan
nanoparticles are a good option to provide strong antibacterial effect, being at the same
time biocompatible and not causing cell cytotoxicity [44].

Chitosan has been widely used for developing drug delivery systems for application
in the oral mucosa and gingiva because of its excellent mucoadhesive properties. This
characteristic is attributed to the cationic nature of the polymer, which helps forming ionic
bonds with the negatively charged mucin in the mucus membranes [45]. Providing longer
mucosal residence time is essential for treating local inflammatory conditions in the oral
cavity when a prolonged therapeutic effect at the site of application is desired. Conventional
antimicrobial formulations for the mouth, such as toothpaste and mouthwash, have short
duration of action and very low penetration into the periodontal pocket due to the rapid
clearance of the administered biomolecules [24]. An ideal local delivery system should
be able to deliver antimicrobial drugs in a controlled manner with good retention at the
application site. In this regard the mucoadhesive chitosan micro- and nanoparticles are
often preferred systems that can deliver therapeutic molecules for treatment of gingivitis
and periodontitis and release them in a sustained manner [46]. Braga et al., for example,
formulated mucoadhesive chitosan microspheres loaded with ketoprofen for use in the
treatment of periodontal disease [30]. By using chitosan for microencapsulation they
achieved 4.6 times longer release of ketoprofen from the microparticles (t50: 36 h) compared
to the free drug (t50: 7.84 h). In a study by Dias et al., a novel injectable formulation
containing chitosan microparticles loaded with ornidazole was proposed for the treatment
of periodontitis [47]. The authors performed an in vitro adhesion test on sheep cheek
mucosa and proved high bioadhesion of the obtained chitosan particles. They observed
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improved adhesion with the increase in the polymer concentration, which was attributed
to the availability of a greater number of polymer chains for interaction with the mucus.
The ornidazole-loaded microspheres showed diffusion controlled sustained drug release
for up to 5 days. Govender et al. have reported the application of chitosan microspheres
for delivery of tetracycline to the periodontal pocket [48]. The authors have employed
a statistical experimental design in order to formulate a microspheres preparation with
maximum bioadhesiveness and controlled drug release. Contrary to expectations, they
found that chitosan concentration had a negative effect on bioadhesion. Probably coiling
of the polymer molecules occurred at high concentrations, which limited the polymer
chain’s flexibility. Microspheres, obtained at lower chitosan concentration, were thought to
have looser structure, which provided more space for the polymer chains to entangle with
the mucin.

Drug release from chitosan particles could be controlled by crosslinking the polymer
matrix, which has been investigated in one of our previous studies (Figure 3) [49].
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Figure 3. Scanning electron micrographs and drug release profiles of spray-dried, non-crosslinked and
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The crosslinking agents for chitosan can ionically or covalently bind the polymer
chains. The former includes substances which have a negative charge and create ionic
bridges between the positively charged chitosan chains. They can be multivalent metal an-
ions: Mo (VI), Pt (II) or molecules often loaded with phosphate groups, such as tripolyphos-
phate sodium (TPP) [50]. TPP was used by Suresh et al. for crosslinking of chitosan in order
to formulate microparticles for localized controlled release of metronidazole following
insertion into and/or around the periodontal pocket [25]. Their aim was to maintain an
effective drug concentration at the periodontal site over an extended period of time, limit-
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ing the distribution of the drug to other body organs and decreasing its side effects. The
authors showed that with the increase in the TPP a prolonged drug release was achieved
up to 24 h. Furthermore, the used crosslinking agent did not negatively affect the polymer
bioadhesion. On the contrary, an increased bioadhesion was registered with an increase
in crosslinking. This was explained with more sites on the negatively charged sialic acid
residues of mucin, remaining available for interaction with the positively charged drug.

Although some modification of the polymeric carrier can be achieved with negatively
charged molecules or ions, substances that form strong covalent bonds with its chains are
more effective in crosslinking chitosan. The molecules of these crosslinking agents must
have at least two free functional groups. Dialdehydes (glutaraldehyde, glyceraldehyde,
glutaric acid, etc.) are the most widely used agents for this purpose. They chemically
crosslink the polymer by binding to the free amino groups of chitosan, forming stable imine
structures [51]. Pichayakorn et al. have investigated the effects of different concentrations
of glutaraldehyde and cross-linking time on the characteristics of chitosan microparticles
containing metronidazole for periodontitis treatment [26]. The results indicated that
the optimal conditions for microparticles with a high percentage of entrapped drug and
preferable release profile were 1:1 drug:chitosan ratio, 5% glutaraldehyde based on chitosan
solution and 30 min cross-linking time. The authors have proposed a hydrogel formulation
containing the obtained particles as a promising drug delivery system with prolonged
release of metronidazole to be clinically used for periodontitis. Although glutaraldehyde
has been established as very effective in crosslinking chitosan, the safety of its use and the
risk of toxicity should be taken into consideration.

The examples given so far confirm the widespread use of chitosan as a drug carrier and
its significant potential for modified or targeted drug delivery in the oral cavity (Table 2).
Although it has already been extensively studied as a material for creating micro- and
nano-drug carriers, the constant investigation of new possibilities for its functionalization
stimulates researchers to continue their research on it.

Table 2. Chitosan-based micro- and nanoparticles as drug carriers intended for dental application.

Active
Substance Production Method Particle

Diameter
Entrapment
Efficiency Application Ref.

Amoxicillin Clavulanic acid Ionic gelation 45–270 nm NA* Bacterial plaque [52]

Bupivacaine Emulsion technique NA* 83% Dental pain [53]

Ketoprofen Spray drying 2–3 µm 54–62% Periodontitis [30]

Metronidazole Emulsion technique 43 µm 59% Periodontitis [26]

Metronidazole External gelation 800 µm 60–75% Periodontitis [25]

Miconazole Complex coacervation 1000 µm 49–67% Oral candidiasis [31]

Nal-P-113
peptide Polymerization 216.20 nm 89% Root caries restoration;

periodontitis [32]

Ornidazole Emulsion-
ionotropic gelation 29–53 µm 11–32% Periodontitis [47]

Sodium fluoride Ionic gelation 100 nm 4–6% Caries prevention [54]

Sodium fluoride Ionic gelation 219 nm 30% Caries prevention [55]

Sodium fluoride Spray drying 3–6 µm 74–84% Caries prevention [56]

Silver fluoride Reduction of silver nitrate 6 nm NA * Caries prevention [57]

Silver
sodium fluoride Reduction of silver nitrate 3–4 nm NA * Caries prevention [58]

Tetracycline Gelation technique 1400–1700 µm NA * Periodontitis [48]

* NA—not available information.
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3.2. Sodium Alginate

Alginates are natural water-soluble polysaccharides extracted from the cell wall of
various species of brown algae. They consist of linear copolymers of β–(1,4) linked D–
mannuronic acid (M) and β–(1,4)-linked L–guluronic acid (G) units (Figure 4). Mannuronic
and guluronic blocks can be arranged in homogenous (poly-G, poly-M) or heterogenous
(MG) patterns [28].
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Like chitosan, sodium alginate is non-toxic, biodegradable and biocompatible in the
oral environment, which makes it another valuable biopolymer for application in the dental
practice. Due to their hydrophilic nature, elasticity and low cost, alginates are the most
widely used impression materials in dentistry [59–61]. However, their potential as carriers
for oral drug delivery also should not be neglected. The main methods for preparation of
alginate particles as drug delivery systems are presented in Figure 5 [20,62]. For example,
alginate-based microbeads were developed as promising local chlorhexidine releasing
devices for periodontal therapy [63]. The addition of the active substance to the alginate
solution led to an ionic interaction with the polymer and initiated a gelling process. This
required the production process to go through two stages—obtaining drug-free polymer
microparticles and their subsequent drug loading by diffusion of chlorhexidine into them.
The reported results indicated that the type of production method significantly affected the
size of the obtained microstructures. By emulsifying an alginate solution in an oil phase
and gelling with calcium ions (internal gellation), an average particle size of 100–400 µm
was achieved. Smaller structures with a size of 20–70 µm were obtained by ultrasonic spray
technique. According to this method, alginate solution was dispersed by ultrasonic energy
into CaCl2-solution (external gelation) using nozzle’s tip with a needle of 0.5 mm diameter.
The release of chlorhexidine from the formulated particles was determined in vitro using
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artificial saliva and the results showed that alginate-based beads had comparable releasing
characteristics as clinically approved systems.
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Alginate in combination with chitosan has been proposed as an effective encapsulation
agent for minocycline, an antibiotic which is typically used for treatment of periodontal
diseases [64]. In a study by Park et al., alginate-chitosan microspheres loaded with 10%
minocycline were prepared by ionotropic gelation method [65]. The particles were designed
as a biodegradable device for implantation in the periodontal pocket, providing drug
concentrations in the gingival fluid for seven days. The results indicated a substantial
activity of the novel formulation against pathogenic bacteria, such as Prevotella intermedia,
causing periodontitis.

Ferraz et al. developed injectable microparticles for delivery of antibiotics, used for pe-
riodontitis treatment—amoxicillin, amoxicillin with clavulanic acid, and erythromycin [66].
Microspheres with a median diameter of 450 µm were prepared through an extrusion
methodology, proposed by the authors, using sodium alginate and hydroxyapatite in a
ratio 4:1 w/w, and a 0.1M solution of CaCl2 as a crosslinking agent. The obtained particles
showed fast initial release followed by a sustained release of the incorporated antibiotics,
which outlined them as good alternatives for a delivery system of the studied drugs. Fur-
thermore, they expressed osteoconductive properties, enhancing bone regeneration while
treating periodontitis.

Moreover, microencapsulation of cells using alginate has been studied as a potential
approach for bone-tissue engineering in the regenerative dentistry. Alipour et al. have
cultured human dental pulp stem cells in alginate-gelatin microcapsules. The results
demonstrated a promoted cell proliferation and osteogenic differentiation [67].

3.3. Pectin

Pectin is an anionic polymer mainly extracted from citrus or apple fruits, composed
of D–galacturonic acid and L–rhamnose units (Figure 6). It is a non-toxic natural polysac-
charide, often used in food and drinks as a thickening and gelling agent [68,69]. Pectin
has demonstrated a beneficial effect against emanel erosion caused by acids, which is a
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major factor for tooth decay. Adding pectin to acidic soft drinks has been established as an
important approach to reduce dental erosion [70].
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As a drug carrier, pectin has demonstrated bioadhesive properties to mucin and mu-
cous membranes, as well as adsorption to enamel surfaces [71]. Several studies reported the
formulation of pectin nano- or microstructures encapsulating active substances [11,72,73].
Although different methods can be applied in order to develop such polymer particles
like emulsion-based techniques, coacervation or spray drying, the basis for the formation
of micro- and nanostructures is usually ionotropic gelation of pectin [74–76]. Similar to
alginate, pectin forms a gel structure in the presence of calcium, zinc or copper ions, which
is due to the formation of strong ionic bonds between the cations and the galacturonic acid
of the polymer [77,78]. The rapid swelling and dissolving of pectin in the saliva is usually
marked as a disadvantage for the polymer in terms of producing long-acting delivery
systems. Esposito et al. have emphasized on the need of crosslinking procedures in the
formulation of drug-loaded pectin microparticles in order to reduce polymer dissolution
and prolong the drug release [72]. They evaluated the encapsulation in pectin microspheres
of two antibiotics—metronidazol and tetracycline, which can be applied in the treatment
of periodontal diseases. Calcium chloride was used as an ionic crosslinker in order to
modify the rapid swelling and solubility in water of the pectin microparticles. It has
been demonstrated by means of particle size modification and hardening procedures that
pectin microcapsules with desired morphological and dimensional characteristics can be
formulated as perspective systems intended for controlled release of drugs.

An interesting alternative to the divalent ions for the gelation of pectin has been
proposed by some authors, who used chlorhexidine not only as a dental antiseptic, but
also as a reagent in the formation process of the polymer particles. Lasco et al. formulated
chlorhexidine-loaded pectin microparticles using the active substance as a cross-linking
agent for the polymer [73]. They reported that the drug-pectin interactions were so strong
that the release of the drug was highly limited. Zinc ions were included in the optimal
microparticle formulation for chlorhexidine delivery. They competitively interacted with
pectin, limiting the formation of drug-polymer bounds, which provided a weaker structure
of the gel network and allowed an improvement of the drug release.

Another application of pectin in the development of drug delivery systems for the
dental practice is related to its negative charge and the ability to increase the stability of
liposomal structures in the oral cavity. Pistone et al. have demonstrated that the surface
charge of the nanostructures was of great importance for both their stability in salivary
environment and bioadhesion [11]. The authors have formulated polysaccharide-coated
liposomes for application as nano-sized delivery systems addressed to teeth. Although they
determined that chitosan provided the highest in vitro adsorption onto hydroxyapatite in
the presence of artificial saliva, its positively charged liposomes showed instability due to
significant aggregation. The authors emphasized the stabilizing effect of pectin as a coating
polymer. The negatively charged pectin-coated liposomes showed high stability without
aggregation in the artificial saliva and were suggested as promising formulations to be used
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as a tooth adhesive nanosystem, providing improved treatment of tooth ailments. Similar
conclusions were reported by other researchers, who have also studied the potential use of
pectin in the formulation of liposomes [79–81].

3.4. Dextran

Dextran is a complex branched polysaccharide, synthesized by lactic acid bacteria or
their enzymes in the presence of sucrose. The polymer linear chain consists of D–glucoses
linked by α-(1→6) bonds with possible branches of D–glucoses linked by α-(1→4), α-(1→3),
or α-(1→2) bonds (Figure 7) [29]. Dextran has been considered as a promising polymer
carrier candidate for a wide variety of therapeutic agents due to its physico-chemical
properties and physiological acceptance [82].
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Wu et al. used dextran for the development of an intrapocket delivery system of
minocycline for periodontitis treatment. They applied ion pairing/complexation tech-
nique to formulate minocycline-calcium-dextran sulfate complex microparticles with
high encapsulation efficiency (97%) and high drug loading (45%). The obtained deliv-
ery systems demonstrated potent antimicrobial effects against Streptococcus mutans and
Aggregatibacter actinomycetemcomitans. The in vitro studies showed sustained release of
minocycline for at least 9 days at pH 7.4 and 18 days at pH 6.4 in phosphate-buffered
saline [10].

Dextran in combination with poly-(lactic-co-glycolic acid) has been utilized for formu-
lating microparticles, loaded with interleukin 1 receptor antagonist (IL-1ra). The results
suggested that the developed microspheres were excellent candidates for periodontitis
treatment, effectively inhibiting the gene expression of pro-inflammatory factors induced
by IL-1β in human gingival fibroblasts [83].

Some studies define dextran as a suitable microcarrier for gene delivery of bone
regeneration growth factors in patients, needing dental implant treatments to restore oral
functions [84–86]. A novel microparticle formulation for periodontal tissue regeneration,
based on dextran, was suggested in 2005 by Chen et al. [84]. The authors encapsulated
recombinant human bone morphogenetic protein-2 (rhBMP2) with dextran using double-
phase emulsified condensation polymerization. RhBMP2 is a potent osteoinductive growth
factor, inducing bone formation by stimulating the differentiation of mesenchymal cells
into chrondroblasts and osteoblasts. It has been commercially available in orthopaedics, but
it has also been applied to improve bone regeneration in challenging cases requiring dental
implant treatment [87]. However, complications related to an initially high dosage for
maintaining an effective physiological concentration at the defect site have been reported,
which determined the need of a polymer carrier like dextran in order to achieve a protein
delivery in the oral tissue in a sustained manner. By encapsulating rhBMP2 into dextran-
based microspheres, Chen et al. demonstrated that equivalent therapeutic effect could be
achieved with smaller quantity of rhBMP2. The formulated dextran microspheres showed
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high encapsulation efficiency (82%), long-term stability (6 months at storage below 4 ◦C)
and prolonged retention both in vitro and in vivo.

The use of organic solvents for the formulation of polymer micro- and nanoparticles
could become a critical issue, especially in pediatric dentistry, due to possible toxic effects.
Avoiding such solvents is also essential to prevent potential damage and bioactivity loss
of the encapsulated protein structures like the human bone morphogenetic protein (BMP)
during particle preparation. These arguments led to the development of a modified
dextran-based microcarrier for rhBMP2 [85]. A dextran-based precursor was synthesized
by substituting the polysaccharide hydroxyl groups with glycidyl methacrylate (Dex-GMA).
The precursor was then used to formulate microspheres in an aqueous two phase system by
polymerization of Dex–GMA emulsified in a poly-(ethylene glycol) solution. The obtained
microspheres with rhBMP2 were acceptable for injection particle size in the range from 10
to 60 µm in diameter, high encapsulation efficiency (86%) and in vitro sustained protein
release (more than 60% of the drug were released in 20 days).

In a further attempt to accomplish functionalized modification of the BMP carriers and
enhanced biological activity, dextran microspheres loaded with bone morphogenetic pro-
teins were incorporated into a newly synthesized glycidyl methacrylated dextran/gelatin
hydrogel scaffold [86].

A similar approach has been applied for locally controlled delivery of insulin-like
growth factor-I (IGF-I) from dextran–co-gelatin microspheres [88]. IGF-I is a polypeptide
growth factor, which plays a very important role in the biology of oro-dento-facial tissues
and organs, including the development and regeneration of the periodontium [89]. In an
aqueous solution, the positively charged protein could easily interact by polyionic com-
plexation with negatively charged gelatin and thus be immobilized in the polymer matrix.
In this case gelatin was preferred for cooperation with glycidyl methacrylate dextran (Dex-
GMA). IGF-I incorporated dextran-gelatin delivery systems showed a significant biological
effect on periodontal healing enhancement, which was attributed mainly to the nature of
the microspheres that could provide proper drug protection, permeation enhancement and
enzyme inhibition. Another advantage of the proposed system was the prolonged protein
release (more than 28 days) at a relevantly constant rate after an initial burst effect.

At a later stage, dextran nanoparticles have been suggested as an alternative to the
above described protein microcarriers. Composite glycidyl methacrylated dextran (Dex-
GMA)/gelatin nanoparticles with mean diameter of 53.7 nm were formulated to deliver
growth factors for periodontal regeneration, taking advantage of their small size and the
possibility of better biodistribution as well as site- and cell-specific drug delivery [90].

3.5. Starch

Starch is another biopolymer used in the development of micro- and nanocarriers for
various medical and dental purposes. It is a polysaccharide consisting of anhydroglucose
units linked together primarily through α–D–(1→4) glucosidic bonds (Figure 8). Its struc-
ture can be divided into two parts: amylose (linear structure of α-1,4 linked glucose units)
and amylopectin (branched structure of α-1,4 chains linked by α-1,6 bonds) [91]. Starch
has attracted attention due to its inherent biodegradability, annual renewability in nature
and low material cost. It has also been included, although not so widely, in several drug
delivery systems for dental practice [92–95].

The potentially harmful effects of many of the synthetic therapeutic agents used in
the prevention and treatment of children’s tooth decay and periodontitis, necessitate the
search for alternative approaches and the application of more gentle natural biomolecules.
Rezapour et al. have proposed the use of curcumin for decreasing dental caries, formulating
starch nanoparticles as its carriers [92]. Curcumin is a natural anti-inflammatory agent (pro-
duced by plants of the Curcuma longa species), which indirectly prevents the formation of
biofilm and plaque on teeth, being active against the oral bacteria Streptococcus mutans [96].
The suggested starch-based nanostructures seemed to be a successful strategy for deliv-
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ering the active substance in the oral cavity, overcoming limitations like curcumin poor
solubility and bioavailability.
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A more trivial approach against Streptococcus mutans was proposed by Costa One et al.,
who prepared, using spray drying technique, starch nanocapsules with chlorhexidine [93].
They tested in vitro the antimicrobial activity of the obtained nanoparticles and reported
significant efficiency—90% cell death of S. mutans in artificial saliva. Moreover, a con-
trolled drug release was observed, which allowed the application of the active substance
at lower concentrations—reducing its side effects and at the same time preserving its
therapeutic efficacy.

Encapsulation of chlorhexidine with starch has also been studied by Queiroz et al. [94].
The authors developed a polysaccharide-based film, containing the active substance, in-
corporated into nanoparticles. The proposed drug delivery system was produced through
a simple, cheap and reproduceable process. A water/glycerol solution of starch was
heated till gelatinization and after adding ethanol and chlorhexidine under stirring, a film
was formulated, containing drug-loaded particles. The formation of nanoparticles was
attributed to the starch precipitation with ethanol and subsequent absorption of the drug.
The conducted in vitro drug release studies indicated that the delivery system could be
active for more than 21 days.

Moreover, starch has been used as a carrier in the fabrication of metal nanoparticles
with antibacterial activities. Kassaee et al. synthesized silver nanoparticles, stabilized by
starch [95]. They performed γ-ray reduction of silver ions in aqueous starch solutions,
deriving optimal parameters for the formation of particles with narrow size distribution
and high production yield: 5 kGy γ -irradiation of a 2 × 10−3 M solution of AgNO3
containing 0.5% starch.

The presented examples prove that starch has great potential as a drug carrier in dental
practice. Nevertheless, its use in pediatric dentistry should be approached with precaution,
taking into account that starch itself may possess significant cariogenic effect [97]. The
possible starch-caries issue rather makes starch not a polymer of first choice for use in
pediatric dentistry.

3.6. Other Polysaccharides

Cellulose and its derivatives have been widely exploited as drug carriers for the
formulation of micro- and nanostructures [98–105]. As early as 1983, attempts were made
to achieve a sustained delivery of tetracycline into the periodontal pocket, developing a
reservoir type of device made up of cellulose acetate [98]. The polymer systems released
their drug load within 24 h by a diffusion mechanism. However, the formulations showed
brittle physical properties and were not tested clinically. In more recent studies, cellulose
was used rather as a material for impregnation of silver nanoparticles [99–101]. Lately,
there has been an increased interest in bacterial cellulose and its use as a drug carrier in the
dental practice [102,105].

Hyaluronic acid is a naturally occurring linear polysaccharide, which is a key element
in the soft periodontal tissues, gingiva, and periodontal ligament [106]. In the field of
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dentistry it is mainly used in postoperative dental surgery to improve the healing process.
Moreover, hyaluronic acid has recently been recognized as an adjuvant treatment for
acute and chronic gingivitis and periodontitis. Various clinical trials have shown its anti-
inflammatory, anti-oedematous and anti-bacterial effects against microorganisms present in
subgingival plaque [106,107]. Hyaluronic acid has been well-studied for the development
of drug-loaded micro- and nanoparticles, which makes it a promising candidate for a drug
delivery carrier in the dental practice [108,109].

Curdlan is a β–(1→3)–D–glucan, produced mainly from Alcaligenes faecalis, but also
from some Rhizobium, Cellulomonas and Agrobacterium strains. It is a high molecular
weight polysaccharide (Mw > 2.0 × 106 Da), forming a similar to starch structure [110].
Curdlan-based microspheres have been evaluated for drug targeting on mucosal tissues
and for controlled release of active agents and vaccines [111]. There are also studies in
the literature, reporting the successful utilization of the polysaccharide as a nano-sized
carrier for intracellular siRNA delivery, for nanoencapsulation of curcumin and for green
synthesis of silver nanoparticles [112–114]. These examples prove the potential of curdlan
as a drug carrier with possible application in dental practice.

Studies indicated that xanthan gum showed acceptable bioadhesion in theperiodontal
pocket and oral mucosa [115]. This polysaccharide has been used for developing a delivery
system for targeted release of chlorhexidine and metronidazole [116,117].

Other natural polysaccharides, which have been investigated as micro- and nano-drug
carriers are pullulan and fucoidan [118,119].

4. Applications of Polysaccharide Micro- and Nanoparticles in Pediatric Dentistry

The examples discussed so far clearly confirm the applicability of micro- and nano-
drug carriers in dentistry. The introduction of such innovative therapeutics into the
pediatric dental practice is a slow process that requires in-depth research on their safety
and efficacy. However, polysaccharide-based drug delivery systems have the potential to
become promising therapeutic approaches in the treatment of the most common dental
conditions and diseases during childhood, such as: prevention of dental caries, control of
oral biofilm, endodontic treatment and periodontitis (Figure 9).
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4.1. Prevention of Dental Caries—Primary and Secondary Prevention
4.1.1. Fluoride

Both professional and home-use applications are considered to be significantly effec-
tive in caries prevention with regard to fluoride topical methods [120–122]. Apart from
the popular fluoride-containing products for professional use in the prevention of dental
caries such as varnishes, gels, rinses, foam, etc., in recent years innovative products have
been developed. During their first use, they are professionally applied and then they can
be self-applied (for home use). The products are called fluoride-containing bioadhesive
slow-release tablets in which the active agent is encapsulated into polymeric micro- or
nanoparticles which ensure a prolonged release of fluoride as a delivery system. There
are different places in the oral cavity where they could be applied—oral mucosa, hard
dental tissue surfaces, steel bracket or wire arch, etc. [123,124]. In a recent clinical study, a
similar mechanism of action was demonstrated by nanoparticles in the presence of sodium
fluoride (NaF) as an active ingredient [54]. The aim of the team was to investigate the
efficiency of biopolymers like chitosan, alginate, and pectin as a basis for bioadhesive
and biocompatible nanoparticles loaded with fluoride for caries prevention. The results
showed that pectin and alginate were able to form stable nanoparticles in an acidic envi-
ronment similar to those during cariogenic attacks. However, chitosan as a carrier was the
most effective polymer, ensuring continuous delivery of the caries protective agent. The
results of an experimental study by Ebrahim et al. also supported the promising action
of fluoride/chitosan nanoparticles [55]. Up to 2017, there was only one clinical study
that reported the effect of the use of fluoride ions incorporated into bioadhesive fluoride
tablets [125]. The review of the contemporary scientific literature provides insight and
demonstrates numerous in vitro and ex vivo studies, investigating the succession of this
therapeutic approach [126,127].

Along with nanosystems, microparticles using chitosan as a carrier and active agent
NaF also showed potential for optimizing the release of fluoride ions and thereby improving
its preventive action [56]. A series of in vitro and ex vivo studies are required to confirm
the “in vivo” obtained results up to now and to enhance the clinical significance of oral
care products containing nano and microparticles.

In addition to the direct effect of fluoride ions on enamel, the mineralizing effect, when
slow-releasing fluoride chitosan-coated nanoparticles were used, was due to the increased
fluoride concentration found on the tooth surface and higher resistance to the cleansing
action of the salivary flow [54].

4.1.2. Silver

Nanostructures called nano-silver fluoride systems have also been suggested as an
option for caries preventive therapy and have been recently investigated in an in vitro
study conducted by Targino [57]. Chitosan was used as a stabilizing agent and a carrier
for silver nanoparticles and fluoride. The results of the study reported low toxicity and
high efficiency in low doses of the newly investigated composition in comparison with
chlorhexidine. Both active agents in the research (silver and fluoride) and the carrier
(chitosan) showed antimicrobial activity against the most important pathogenic bacterial
Streptococcus mutans. Therefore, nanosilver fluoride systems show the potential to control
tooth decay and possibly reduce dental caries.

In the same year, a randomized placebo-controlled clinical trial evaluating the effec-
tiveness of nanosilver fluoride was conducted by dos Santos et al. [58]. One hundred and
thirty primary teeth were included in the study and treated with a new formulation of
nanosilver fluoride once a year. The concentrations of the components in micrograms per
milliliter, were as follows: chitosan 28.585 mg/mL, Ag+ 376.5 mg/mL and sodium fluoride
5028.3 mg/mL. The effect of arresting caries development was significant without staining
the teeth surface. In the research, the authors have drawn up a detailed protocol for the
application of the novel anti-caries agent as part of the individual plan for caries prevention.
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There are only a few clinical trials, studying the effect of nanoparticles in the caries
prevention treatment for children, which makes them highly informative and useful. Apart
from the afore-mentioned article from 2014, in 2017 the results of a randomized, controlled,
split-mouth, double-blinded, crossover, and prospective pilot clinical study have been
reported [128]. Among twelve children of age between 7 and 8 years, the enamel surface
of the permanent incisors and first molars was treated with two types of agents–nano-
silver fluoride (NSF) solution (experimental group) and saline solution (control group).
Statistically significant lower values of Streptococcus mutans levels and colonies were found
when enamel was treated with NSF nanoparticles. In addition to these findings, the pH of
the biofilm and dental plaque accumulation via the Simplified Oral Hygiene Index (OHI-S)
were measured at several time points during the experiment. The authors found that the
application of the investigated nanosystem could not affect the acidity of bacterial biofilm,
whereas it resulted in a reduction in plaque accumulation.

4.1.3. Calcium Phosphate

Calcium phosphate, usually in the form of amorphous calcium phosphate (ACP), plays
a significant role in primary and secondary prevention of dental caries [6]. Zhang et al.
investigated the effect of chitosan nanoparticles including ACP for remineralization of
enamel subsurface lesions [129]. The scanning electronic microscope observations showed
significantly higher efficiency of the remineralizing effect on the enamel surface of prepared
ACP-chitosan nanoparticles in comparison with fluoride treatment.

Beside the mineralizing effect of calcium phosphate, it could be successfully used in
the coating of polymer microspheres with biomimetic layers [130]. These particles have
been investigated as an alternative strategy in biomaterials for their effect on bone and
hard dental tissue remineralization. The controlled release of ions resulted in the formation
of an apatite layer on the tissue surface.

4.1.4. Other Effective Preventive Agents

In 2014, Ruan et al. evaluated the effect of amelogenin-chitosan nanoparticles included
in hydrogel for enamel remineralization [6,131]. Along with the significant improvement
of mechanical properties of the treated enamel, the gel demonstrated a suppressive effect
on bacterial growth. Thus, in this research two different mechanisms of caries prevention
have been found—mineralizing effect of the amelogenin-chitosan gel by regrowth of the
apatite crystals as well as inhibition of dental biofilm accumulation. The authors reported a
detailed protocol for the application of the hydrogel and emphasized the promising results
of its use in future for caries prevention.

4.2. Control of Oral Biofilm

Oral biofilm is responsible for the most common oral disease in children—dental
caries [132–134]. Along with the mineralizing and remineralizing effect of fluoride, pre-
vention of dental caries involves control of oral biofilm. It is considered as one of the most
important factors for caries initiation and development [135,136]. Thus, some researchers
developed nanosystems directed towards the eradication of the biofilm matrix and resident
bacterial microflora. In 2019, Naha et al. synthesized polymer-coated nanoparticles with
iron oxide as an active ingredient [136]. The nanoparticles were termed nanozymes (Dex-
NZM) and the used polymer was dextran. The results showed a significant reduction in the
onset and severity of caries lesions and could be a useful option for alternative treatment
of oral disease. However, further studies are necessary to confirm the correlation between
biofilm eradication and Dex-NZM.

4.3. Endodontic Treatment

The treatment of pulpal inflammation or periapical lesions in permanent teeth with
incomplete root development is a tremendous challenge that pediatric dentists are facing
when attending dental patients. There are two main methods for endodontic treatment
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of teeth with necrotic pulp—apexification and revascularisation. Due to the prognostic
uncertainties and long-term follow-up of the revascularisation, dentists prefer to using
the apexification technique—induction of closure of the apical foramen with mineralized
tissue or formation of an artificial apical barrier to allow for condensation of the root filling
material and promote an apical seal [137].

Among the numerous techniques and different types of materials, Ca(OH)2 necessi-
tating multiple visits for material replacement and mineral trioxide aggregate (MTA) for
one-visit apexification are the most frequently used. The application of Ca(OH)2 shows
numerous advantages and high efficiency in the endodontic treatment in primary and
permanent dentition. Due to risk of infection, the trauma of periapical tissues or missed
patient appointments, a study conducted by Strom et al. in 2012 reported the same effi-
ciency of Ca2+-loaded microspheres structured with a shell composed of alginate [138].
The results of the in vitro experiment demonstrated slow and constant release of ions in
the root canal maintaining a pH of about 9. Owing to the advantages of the microspheres
in comparison with the commercial formulation of Ca(OH)2 paste for root canal filling, the
results demonstrated sustained release activity of the Ca2+ ions. Additionally, the authors
reported suitable size and encapsulation efficiency for application to the root canal of the
tooth. Therefore, the application of the Ca-loaded microspheres could be used effectively
for a single-visit Ca(OH)2 apexification technique.

Thus, the mechanism of action of the sustained drug delivery system could be a
useful property in the endodontic treatment of newly erupted permanent teeth with
incomplete root development [137,138]. Extensive clinical research is required to further
investigate the efficacy of this new treatment approach to overcome the technical and
environmental factors.

4.4. Periodontal Diseases

Periodontal disease is considered to be the second most common disease in children
after dental caries [139–141]. Gingival inflammation, known as gingivitis, is typical for
children, especially for the age of adolescence [140]. The changes in the periodontium that
are caused by gingival inflammation are reversible and the management plan is simple
to perform. The severe and advanced form of periodontal disease represents an inflam-
mation of the whole periodontal complex, known as periodontitis, and its development is
associated with displacement of the gingival attachment, loss of alveolar bone, periodontal
pocket, and gingival recession formation [142–144]. In contrast to adults, in pediatric dental
patients, aggressive clinical forms of periodontal diseases are prevalent [145–147]. Due to
the multifactorial etiology and complex pathogenesis as well as the incidence of aggressive
periodontal inflammation as a secondary condition of a systemic disease, their treatment is
very difficult and complicated. The most common treatment plan includes symptomatic
support treatment and monitoring.

Some bacterial species play a significant role in the development of aggressive peri-
odontal inflammation such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis,
Prevotella intermedia. When they are part of the microflora of the gingival sulcus area,
antibiotic therapy is needed to accompany the support treatment. The innovative and
successful therapeutic approach involves sustained release drug delivery systems, ensur-
ing a controlled drug release from biocompatible and adhesive carriers in the periodontal
pocket for a long period of time [148,149]. Recent studies described the effective appli-
cation of polysaccharide nanoparticles with different active agents in the periodontal
treatment [148,149].

4.4.1. Chlorhexidine Gluconate

Chlorhexidine gluconate is widely used as a drug for inflammation of periodontal tis-
sues due to its antiseptic, antifungal, antibacterial, antiviral effect, and high activity against
dental biofilm formation [150–152]. Several studies investigated the effect of chlorhexidine
nanoparticles when applied in the periodontal pocket, included in toothpaste, in gels,
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etc. [149,153]. Kovtun et al. prepared nanoparticles, based on calcium phosphate and
chlorhexidine coated with cellulose, demonstrating both anti-caries and anti-inflammatory
activities [153]. The nanosystems showed antibacterial action against E. coli and L. casei
along with the mineralizing effects of calcium and phosphate ions which were firmly
attached to the surface of enamel and dentin.

4.4.2. Antibiotics

Along with the broad spectrum of chlorhexidine, tetracycline is considered to be
a gold standard in the topical treatment of aggressive periodontal diseases in pediatric
dental patients [154–157]. The efficiency of the antibacterial action of chitosan-based
nanoparticles with doxycycline has been studied in 2020 by Xu et al. The findings demon-
strated a high level of inhibition of the oral biofilm formation and biocompatibility of
the formulation [158]. Polysaccharides have been used for the development of micro-
and nanosystems in periodontal treatment encapsulating metronidazole, minocycline,
amoxicillin, erythromycin [25,26,64,66].

5. Future Perspectives

This review has shown that micro- and nanotechnologies have entered dentistry and
may become a promising tool in improving the effectiveness and safety of oral treatment.
More and more dental products based on micro- and nanostructures are developed and
the strong acceleration in research activities to create a new quality dental materials and
therapeutics is expected to continue in the future.

Moreover, the patient-centric approach and the personalized therapy in the treatment
of oral diseases are gaining great popularity and are likely to become the focus of future
therapeutic dental strategies. These strategies involve drug treatments targeting the main
signaling pathway (key receptor or molecule) that initiates the disease process. Due to the
incredible progress of science and technology, it is possible to design and apply specific
therapeutic agents, according to the individual molecular profile of the patient. With this
personalized approach, oral treatment is expected to be more effective and associated
with reduced side effects. Therefore, a significant increase in future investment in the
development of such therapeutic targeting agents, including novel micro- and nano- drug
delivery systems, is anticipated.

Approved medicinal products based on micro- and nanoscale polysaccharide carriers
are already available on the pharmaceutical market. However, the use of such therapeutic
systems in dental practice is relatively new and there are some uncertainties as to whether
these structures can cause long term side effects in the body. Like any pharmaceutical
product, micro- and nanomaterials must undergo long and rigorous regulation before
being launched on the market, which includes a series of clinical trials. Despite the
proven biocompatibility and biodegradability of natural polysaccharides, safety profiles
of formulated polymer micro- and nano-sized structures should be subject of mandatory
studies, especially when agents with a potential risk of toxicity are used during their
production. Most of the studies related to dental micro- and nanomaterials are only in vitro
experiments, and the in vivo behavior of the formulations developed was in most cases
not investigated or demonstrated. The proposed new dental therapeutics need to be tested
in real clinical situations to prove their safety and efficacy. The future application of such
innovative therapeutic systems in dentistry requires in-depth preliminary investigation
and strict regulation.

Polysaccharides have been extensively studied for their unique characteristics as
drug carriers and dental applications ranging from preventive dentistry to bone regenera-
tion in oral surgery. Nevertheless, more research is needed to further characterize these
biomaterials and to expand their use effectively in dental treatments.
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6. Conclusions

The use of polysaccharides as carriers for drug delivery is promising and advantages,
such as being non-toxic, biocompatible and biodegradable, makes such systems favorable
for dental therapy and further improvement of clinical routine especially in the pediatric
practice. The performed literature overview showed that in addition to the widely exploited
polymers chitosan and sodium alginate, there are several other promising polysaccharides
that can also be successfully included in the development of micro- and nano-sized dental
therapeutic systems. By selecting an adequate drug carrier, using an appropriate pro-
duction method and after carefully studying the influence of the production parameters,
particulate drug delivery systems with desired physico-chemical characteristics could
be developed with high efficiency and reproducibility. Such systems are not only a new
approach to the treatment of various dental diseases, but by providing controlled and/or
targeted drug release, they can be a much more successful alternative to conventional
therapies. Polysaccharide-based micro- and nano drug delivery systems are relatively new
therapeutics in dentistry, which will continue undergoing rapid development in the future,
taking their perspective place in the personalized oral treatment.
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