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Abstract: Millions of individuals suffer from upper extremity paralysis caused by neurological
disorders including stroke, traumatic brain injury, or spinal cord injury. Robotic hand exoskeletons
can substitute the missing motor control and help restore the functions in daily operations. However,
most of the hand exoskeletons are bulky, stationary, and cumbersome to use. We have modified a
recent existing design (Tenoexo) to prototype a motorized, lightweight, fully wearable rehabilitative
hand exoskeleton by combining rigid parts with a soft mechanism capable of producing various
grasps needed for the execution of daily tasks. Mechanical evaluation of our exoskeleton showed that
it can produce fingertip force up to 8 N and can cover 91.5° of range of motion in just 3 s. We further
tested the performance of the developed robotic exoskeleton in two quadriplegics with chronic
hand paralysis and observed immediate success on independent grasping of different daily objects.
The results suggested that our exoskeleton is a viable option for hand function assistance, allowing
patients to regain lost finger control for everyday activities.

Keywords: assistive device; exoskeleton; three-layered sliding spring mechanism; functional
rehabilitation; hand paralysis; quadriplegia

1. Introduction

Many people around the world suffer from hand function impairment caused by neu-
rological disorders such as stroke [1], traumatic brain injury [2], and spinal cord injury [3],
which limits their ability to perform basic daily activities. Due to the rehabilitation plateau
of these individuals, the remaining ability of the hands are not expected to further increase,
despite undertaking conventional procedures to regain hand function such as orthopedic
surgery, medicine, or physical and occupational therapy [4]. Therefore, these individuals
live with their remaining abilities and use compensatory techniques to complete everyday
activities. Additionally, assistive tools such as feeding utensils, key turners, and writing de-
vices are often used by these individuals to improve independence and safety in activities
of daily living (ADL) [5].

By enhancing the efficiency on practical gripping capabilities, wearable robotic hand
exoskeletons increase the user’s independence [6]. In recent years, robotic technology has
been adopted for physical rehabilitation to provide enhanced treatment and comprehensive
recovery of these individuals [7]. Different robotic systems for the upper limb have been
recently introduced especially to acute and chronic stroke survivors. By powering the
hand movements to accomplish everyday activities, assistive exoskeletons have shown
the ability to improve the quality of life in patients with cervical cord injury [8]. However,
these robotic systems such as the Hand of Hope [9], FESTO (FESTO, Esslingen, Germany),
Milebot (MileBot, Hand Rehabilitation Exoskeleton Robot, Shenzhen, China), Handy Rehab
(HandyRehab, Hong Kong, China), etc. are very bulky and cumbersome to use.
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Over the last two decades, significant research has been conducted to design and
develop upper-limb wearable exoskeletons for rehabilitation purposes [10]. However,
the technology is still challenging in the areas of mechanism design, sensing, and human-—
robot interaction, despite the strong efficiency and growing market for upper-limb ex-
oskeletons. Some of the important aspects of designing an ergonomic exoskeleton device
are mechanical architecture and kinematic analysis [11]. Exoskeletons for assistive hands
in the current state-of-the-art often used rigid connection mechanisms. Mechanical links
are used in linkage-based devices to create finger-flexion-like motions through kinematic
chains [12]. Since forces, especially force directions, can be precisely controlled, this is
advantageous for safe interaction. However, rigid link structures have a low degree of
conformity and a high form factor by their very existence [5]. One of the most common actu-
ation mechanisms embedded in a soft exosuit is a tendon/cable-driven mechanism, which
typically involves several actuators [13,14]. Such mechanisms are naturally lightweight
and low profile. However, the applied forces, especially the force directions, are difficult
to manage correctly, posing a danger to the user [5]. A pneumatic actuator could save
significant weight while producing high torque. However, this type of actuator adds more
complications to the controller’s design. Furthermore, heavy pumps and/or compressed
gas tanks can compromise the system’s portability, oil/lubricant contamination may occur,
and downtime/maintenance is increased [5,15]. Hydraulic actuators may be able to meet
the need for even more torque production, especially for augmenting human capabil-
ities. Its control is less accurate than electric motors, similar to pneumatic actuators,
and incompressible liquid from a pump may contaminate the whole device, jeopardizing
protection [5]. The difficulty and flexibility of the human hand mean that it is still a big
challenge to choose the mechanism and type of actuators to create robotic exoskeleton to
handle and assist hand movements.

In the present study, by modifying the design of a recent exoskeleton developed
by Biitzer et al. [5], we prototyped an advanced compact, cost effective, lightweight,
fully wearable rehabilitative hand exoskeleton. First, we designed the finger mechanism
with a strong focus on safety, convenience, and usability in everyday life. Then, we fab-
ricated the exoskeleton and tested the performance of our system in terms of grip types,
range of motion (ROM), fingertip force, and weight. Finally, we evaluated the usability in
everyday life, including convenience, safety, and weight, and looked into the immediate im-
pact on the functional ability of two individuals with neuromotor hand impairments with
chronic cervical spinal cord injury (SCI). Our 3D-printed lightweight (228 g) hand exoskele-
ton with five DOF helped both study participants to grasp, hold, and manipulate different
objects. At the end, we compared our exoskeleton to similar works, highlighting the benefits
and limitations.

2. Materials and Methods
2.1. Design
2.1.1. Design Requirements for Exoskeleton

Among patients with various neuromotor disorders (e.g., SCI, stroke, and brachial
plexus injury), the form and level of necessary assistance for everyday activities varies
significantly in the presence of spasticity, contractures, muscle tone, and joint stiffness in
the hand [5]. Hence, in the present study, we tried to design the exoskeleton in a way that
most individuals can use it in daily activities. In this section, from the literature, studies,
and functional tests with previous designs in patients with neuromotor hand impair-
ments, we extracted detailed criteria for the design case. By considering the following
requirements, we proposed a useful device for patients.

Types of the functional grasping: Recent studies have found that four grasping functions
(palmar pinch, medium wrap, parallel extension, and lateral pinch) and a flat hand are
required in order to perform over 80% of all grasping tasks in everyday life [16-18].
The thumb must be able to abduct and adduct to perform these most frequently used grip
types [16,18].
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Range of motion (ROM): Bain et al. [19] found that the functional range of motion
of the fingers to perform 90% of the activities is 19°-71°, 23°-87°, and 10°-64° at the
metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal
(DIP) joints, respectively. Feix et al. [18] examined current human grasp taxonomies and
combined them into a new taxonomy known as “The Grasp Taxonomy.” They demonstrated
the thumb’s important function in performing different grasping types by rearranging
grasps according to the thumb’s adduction-abduction motion [18,20].

Grasping force: The human hand’s functional use is needed for a wide range of daily
tasks such as grasping objects, self-feeding, dressing, and washing. Biitzer et al. [5]
discovered that 10 N of fingertip force is needed to lift items weighing up to 1 kg, such as
water bottles (to drink).

Weight: It is important to create a lightweight exoskeleton in order for the user to find
it more comfortable to wear. Other hand exoskeletons usually weigh between 300 g and
5Kg [5,21].

Safety: At all times, a hand exoskeleton must ensure the user’s safety. The exoskeleton’s
mechanical and control mechanisms must account for normal finger joint motions and
hand size. Furthermore, mechanical limitations must ensure that finger joints are not
subjected to excessive pressures [22].

Comfort: Since the user must wear the robot during activity, a hand exoskeleton must
be convenient for the user. The device’s kinematics and ergonomic nature must ensure that
it does not induce discomfort or exhaustion [12].

2.1.2. Three-Layered Sliding Spring Mechanism

The main mechanism for gripping movements and providing the necessary fingertip
force is the flexion/extension of the fingers, and it is challenging to develop a mechanism
that can mimic the finger flexion and extension. Inspired by the exoskeleton developed
by Biitzer et al. [5], to design a lightweight exoskeleton, we used 3-layered sliding springs
(Figure 1) to imitate human finger flexion and extension.

Fixed blade

Sliding blades

C
Sliding blades

e el

Figure 1. (A) Three-layered spring blade mechanism utilized for finger flexion and extension.
The main finger mechanism consists of stainless-steel spring strips (two sliding spring blades on
top of one fixed blade) and solid bodies. (B,C) The relative length of the springs changes as the
sliding spring is moved, resulting in spring bending. The motion mimics the flexion/extension of a
human finger.

The mechanism is composed of two main parts: blades and solid bodies (Figure 1A).
On top of the fixed spring blade, two sliding springs are placed. The relative length of the
springs changes as the sliding spring is moved, resulting in spring bending. Bending can
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be localized in three parts together with the springs using rigid elements linking the two
springs, resulting in a final motion that mimics the flexion/extension of a human finger
(Figure 1B,C).

We have designed a V-shape configuration (Figure 2) with two angled sliding springs
to produce the desired fingertip force with the three-layered sliding spring mechanism.
The required torque in the joints in the three-layered sliding spring system increases with
finger length for a given fingertip force. A higher torque can be achieved to produce
adequate fingertip force by increasing the moment of inertia Ix of the rectangular profile of
the springs.

w13

L="" M
where t is the thickness and w is the width of the blade. By increasing t or w, I increases,
which allows us to produce more fingertip force. The sliding spring blades” width and
thickness have rotated by an angle ©= 35°, so that the moment of inertia in the spring
blade axis I, remains constant, while the moment of inertia perpendicular to the finger
flexion/extension plane Iy increases. In addition, blades have distance (d) with the axis of
rotation (x”-y”), which we considered in our final equation Iy (Figure 2C):

3 3
© sin2(0)x ¥ ;t+w*t*(d)2 2)

I/: 29 w *
x= cos“(0) * B

A B

Finger flexion and
extension plane

Axis of

Frow

Figure 2. (A) Finger flexion/extension plane; the finger mechanism rotates based on this plane.
(B) The cross-section area of the finger mechanism and arrangement of the blades. (C) Needed axes
and dimensions to calculate the moment of inertia of the sliding blades.

We utilized cold rolled stainless steel strips (grade 301, Jiangyin Transens Metal
Products Co., Ltd., Wuxi, Jiangsu, China) with more than 1700 MPa tensile strength and
hardness between 557 and 600 HV for spring blades and used 3D printers to produce rigid
bodies (black nylon material, VPrint 3D, Hong Kong). In the finger mechanism, we used
2 blades with 4 mm width and 0.3 mm thickness as sliding blades and a 6.5 mm wide and
0.2 mm thick stainless steel strip as a fixed blade.

2.1.3. Finger Mechanism

To assist the users with finger flexion and extension, we designed a finger mechanism
for each finger by using a lead screw mechanism to push and pull the sliding blades
(Figure 3). This mechanism consists of a motor with an M3 screw on it, a lead, 3D-printed
parts, and blades (Figure 3A). We connected the blades to the lead and installed a brass
threaded insert (Shenzhen Huaxianglian Hardware Co., Ltd., Shenzhen, Guangdong,
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China) into the lead in order to make it move forward and backward with the motor shaft
rotation (Figure 3B).

A Lead

Sliding blade
(Stainless steel 1.4310)

-

Screw

Fixed blade B
(Stainless steel 1.4310

M3 Brass »” ¥

Threaded Insert

Lead

Figure 3. (A) Lead screw mechanism used to push and pull the sliding blades. The mechanism
consists of one DC motor with an M3 screw on it and lead. (B) A brass-threaded insert is installed
into the lead to allow it to move forward and backward with the rotation of the motor shaft.

According to the previous study [5] of the evaluation of maximum fingertip force as
a the function of the input force, we assumed that the required input force to make the
blades slide and produce the necessary fingertip force is about 60 N. To identify a suitable
motor for our mechanism, we used the following equation:

Dm (L+pxmxDy F+Dpx p
T=Fs_m (2 TE*T* Y m ZF - m* R
2 ( 7% D —pL )*( 2 ®)

where T is the torque, Dy, is the pitch diameter of the screw, L is lead, and p is the coefficient
of friction. Based on the equation above, we utilized a 12V DC motor (Shenzhen Sinlianwei
technology Co. LTD, Shenzhen, China) with the stall torque of 1.2 kg/cm and angular
speed of 800 rpm to move the blades and make the mechanism bend.

2.1.4. Thumb Abduction and Adduction

The function of the thumb is extremely crucial in hand activity, especially in ADLs
that require gripping or pinching. The thumb must be able to abduct and adduct as well as
be used in pad opposition (e.g., precision pinch) or side opposition to perform these more
commonly used grip forms (e.g., lateral pinch). The thumb mechanism of our exoskele-
ton is divided into two main motions. To perform flexion and extension in the thumb,
we used the same 3-layered mechanisms, whereas to execute abduction and adduction,
we connected the thumb to the main body in such a way that it has rotational motion in the
carpometacarpal (CMC) joint (Figure 4A). By using a spring blade, which has the ability
to rotate around the point where it is connected to the thumb (Figure 4B), and a slider
that is moved by a small geared motor (Figure 4C) with a stall torque of 1.3 Kg.cm and
rotational speed of 148 rpm (Fuzhou Bringsmart Intelligent Tech. Co., Ltd., Fuzhou, China),
we produced a force on the rigid body of the mechanism, near the MCP joint that made the
thumb mechanism rotate around the CMC joint to mimic abduction/adduction motion
(Figure 4D).

To move the slider, we used two strong fishing wires (wires were mounted in such
a way that they passed through the grooves created in the main body to move the slider)
connected to the slider and the motor. The blade was almost fully within the main module
while the thumb was abducted (Figure 4D situation I). When the slider was moved by
a motor, the spring blade was pushed out of the main body and abducted the thumb
(Figure 4D situation II and III).
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Figure 4. Thumb abduction and adduction will help patients perform up to 80% of daily activities by
executing four main grasping types. (A) The thumb mechanism is connected to the main body in
such a way that we have rotational motion in the CMC joint. (B) The blade, which pulls and pushes
the thumb finger mechanism, has the ability to rotate around the point where it is connected to the
thumb. (C) By using a spring blade and a slider that is moved by a small geared motor, we produced
a force on the rigid body of the mechanism near the MCP hand joint to perform thumb abduction
and adduction. (D) When the slider is within the hand module, the thumb is completely adducted
(Situation I). When the slider is moved, the spring is pushed out of the main body of the robot and
then, by the pushing mechanism, it makes the thumb abduct (Situations I and II).

2.1.5. Ring and Little Finger Mechanism

We removed the finger mechanism for the little finger in order to have space in our
exoskeleton to place a small motor to move the slider for thumb abduction and adduction.
Instead, we created an extra part that was connected to the ring finger mechanism, enabling
it to bend the little finger alongside with the ring finger (Figure 5).

Eew

Figure 5. To bend the little finger, an extra part was attached with the ring finger mechanism.

2.1.6. Hand Fixation

To apply as little pressure to the intrinsic hand muscles as possible when wear-
ing the robot and securing the user’s hand and fingers, we used straps for each finger
(Figure 6I) and one wide strap in the palm parallel to the abductor pollicis brevis muscle
(Figure 61I). We also recommended the patients wear cotton gloves underneath the
robot for more comfort.
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Figure 6. Straps for each finger mechanism (I) and one wide strap in the palm parallel to the abductor
pollicis brevis muscle (I) was used in the exoskeleton.

2.1.7. Electromyographic (EMG) Control

Control commands for the actuators of our hand exoskeleton are taken from surface
EMG signals. The EMG signals can be recorded by surface electrodes placed on different
arm, hand, and shoulder muscles based on each individual’s residual motor condition
after a cervical cord injury [23]. For instance, a C5 injury preserves the innervation of
shoulder and elbow flexors, while C6 injury spares wrist extensors and C7 injury spares
elbow extensors.

EMG electrodes are interfaced with a low-noise instrumentation amplifier (INA128,
Texas Instruments Inc., Dallas, TX, USA). Then, EMG signals are filtered (10 to 500 Hz
Bandpass) and amplified (x1000) by an operational amplifier (OPA188, Texas Instruments
Inc., Dallas, TX, USA) before being digitized by a microcontroller (STM32F103, STMicro-
electronics, Geneva, Switzerland) for real-time bio-signal processing to distinguish the
most possible intended hand motion (Figure 7).

Rup  Cur

A/D

—1/0
Driver
En

Figure 7. Schematics of the EMG control module. The EMG signal is pre-amplified by an instrumen-

tation amplifier and then filtered and amplified by the operational amplifier before being digitized
by a microcontroller. After detecting the envelope, control triggers are sent.

For bio-signal processing, a linear envelope detection strategy is applied where the
EMG signal is first rectified (1Xil) and then smoothed using following equation:

n
i—1 Di
n

MA, = 4)

where n is the number of periods in the moving average and D; is the demand in period i.
The control strategy for grasping is based on the maximum voluntary contraction (MVC)
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signals and is triggered by an adjustable threshold. When the EMG amplitude crosses
the preset MVC value, a trigger is sent to the driver circuit (DRV8833, Texas Instruments
Inc., Dallas, TX, USA) to run the motors to execute a grasping or hand-opening function
(Supplementary Video S1).

2.2. Experimental Methods
2.2.1. Measuring the Types of Grasping and the ROM of Hand Exoskeleton

Each joint of our hand exoskeleton is designed to flex to a maximum of 70° in order to
achieve the necessary range of motion. However, the length of the sliding blades limits
the total flexion. Hence, we measured the average finger flexion/extension angle to assess
the ROM of the fingers. To evaluate the finger mechanism, first, we tested it on a healthy
individual (male, 25 years old, right-handed). The participant’s finger was in a relaxed
state, and the mechanism performed the finger flexion and extension from the original
position (the finger was in the extended position) to the flexed position. Next, we evaluated
the exoskeleton for different grasping types. We tested the functionality of the executable
grasp types by asking the study participant to grasp a number of objects with the assistance
of the exoskeleton. We chose objects that are used in daily activities, such as a spoon, bottle
of water, paper cup, pen, cellphone, and key (Figure 8).

|

w-— .

Figure 8. A key, pen, paper cup, spoon, and bottle of water were used to test the functionality of the
hand exoskeleton.

2.2.2. Fingertip Force Measurement

To evaluate the output force produced by the finger mechanism, we tested the mecha-
nism in a custom benchtop setup (Figure 9). After the finger mechanism of the exoskeleton
was completely assembled, we fixed the finger mechanism and a load cell on the test
bench (Hunan Tech Electronic Co. Ltd., Changsha, Hunan, China) with two plates and
an interface board (Arduino Uno, Arduino LLC, Turin, Italy). To make the mechanism
flex and measure the output force, we attached a power supply to the motor of the finger
mechanism. Then, we measured the fingertip force for different input voltages (5 to 12 V).

2.2.3. Measuring the Dimension and Specifications of the Finger Mechanism and Whole
Exoskeleton Robot

To make the exoskeleton portable and comfortable, the robot should be small and
lightweight. In order to evaluate the size and weight of the robot, after evaluating the
fingertip force and ROM, we measured the size and the weight of the exoskeleton.
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Finger
Mechanism

Arduino

Figure 9. Benchtop setup for measuring fingertip forces as a function of voltage. A variable power
supply (not shown) was used to apply different voltages to the motor, and a load cell was used to
measure the fingertip force.

2.2.4. Test on End Users

The study was approved by the Human Subjects Ethics Sub-committee of The Hong
Kong Polytechnic University (HSEARS20190121002), and informed consents were taken
from the study participants. Two individuals with chronic cervical cord injury evaluated
the hand exoskeleton device for normal ADL and functional tasks. Both users had lesions
at the C4-C5 cervical level (American Spinal Injury Association Impairment Scale—A) and
were male with an average age of 32.5 & 10.6, injured over 2 years. A detailed demographic
of these study participants including their age, gender, neurological level of injury, injury
type, and clinical characteristics is shown in Table 1. Both participants had severe hand
impairments and could not fully flex and extend their fingers.

Table 1. Demographic and clinical characteristics of the users.

Characteristic User 1 User 2
Age 40 30
Gender M M
Neurological level C5 C4
ASIA Impairment Scale ASIA-A ASIA-A
Spinal cord injury type Complete Complete
ISNCSCI upper
extremity motor score: R L R L
Elbow flexors 5(5) 5(5) 5 (5) 5(5)
Wrist extensors 5 (5) 4 (5) 4(5) 4 (5)
Elbow extensors 4 (5) 4 (5) 4(5) 5(5)
Finger flexors 1(5) 4 (5) 3(5) 1(5)
Finger abductors 0(5) 1(5) 0(5) 0 (5)
Total: 15 (25) 18 (25) 16 (25) 15 (25)

ISNCSI: International standard for neurological classification of spinal cord injury grade; R: Right hand;
L: Left hand.

In order to control the robot by the study participants, we first evaluated their forearm
EMG signals. We connected the EMG electrodes on the patients” hand and recorded the
EMBG signals using an oscilloscope. Then, we programmed the microcontroller based
on their EMG and assessed the robot’s ability to help the grasping functions. In the test,
5 objects (Figure 8) were used to emulate daily activities such as picking up a key, self-
feeding, and holding objects such as a bottle, pen, cup, and a spoon. The participants were
first asked to try to grasp the objects without the help of the exoskeleton and later with the
assistance of the exoskeleton.
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3. Results
3.1. ROM and Types of Grasping

We designed the finger mechanism in a way that each joint is able to flex up to 70°
in order to accomplish the needed range of motion. However, the entire flexion is limited
by the length of the actively moving spring. The bending motion with and without the
finger mechanism were measured in the same experimental setup to compare to the hu-
man natural bending motion. On the human finger, the maximum angles to grasp a key
observed were the maximum bending at the MCP, PIP, and DIP joints were 60 & 3°,
35 £ 3° and 25 + 3° respectively. As a result, we measured the overall finger flex-
ion/extension angle and found that the maximum flexion in the MCP, PIP, and DIP joints
was 50°, 32.5°, and 9°, respectively (Figure 10).

- H 1
=7

Figure 10. The overall finger flexion/extension angle was measured, and the maximum flexion in
the MCP, PIP, and DIP joints, respectively, was 50°, 32.5°, and 9°.

3.2. Fingertip Force

The force produced by the finger mechanism is very important, since the robot should
produce enough force to help patients to grasp and lift objects. For self-feeding, to gen-
erate the needed force to hold and lift a bottle of water weighing 1 kg, the robot should
produce at least 10 N fingertip force. To evaluate the force produced by the exoskeleton,
we measured the maximum fingertip force of the index and middle finger mechanism.
Figure 11 illustrates that the exerted force increased linearly with the increase in applied
voltage (R? = 0.88; linear regression), and the maximum force produced by the mechanism
at 12 V was around 7.9 £ 0.1 N.

3.3. Size and Weight of the Exoskeleton

After assembling the exoskeleton, we measured the size and weight of the robot.
Since we used 3D-printing technology and also utilized three-layered sliding blade mech-
anisms to mimic finger flexion and extension, the final exoskeleton weight was 228 g.
The size of the main body, including the index, middle, and ring finger mechanism, was
190 x 85 x 25 mm?, and the size of the thumb mechanism was 130 x 17 x 15 mm?3.
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User 1

User 2

Fingertip force (N)

0 T T T T T T 1
5 6 7 8 9 10 11 12

Voltage (V)

Figure 11. Fingertip force of the index and middle fingers at 5 to 12 V.

3.4. Users” Performance

Both of our study participants had chronic hand paralysis and were unable to do ADL
independently, and hence, they required significant assistance for daily living. We found
that their flexor digitorum superficialis and extensor digitorum muscles still had residual
EMG activities during volitional intent of finger flexion and extension even though they
could not move their fingers significantly. Both participants were asked to clench their
fists for 3 s (Figure 12, gray area) and then relax their hands. Figure 12 shows the forearm
muscle activities of these study individuals during the intention of opening and closing
their hand. We used these forearm EMG signals to control the hand exoskeleton.

Flexor Digitorum Superficialis Extensor Digitorum

- |
Ll L ‘lu |

0 1 2 3 4 5 6 7 8 9

Amphtude (mv)

Amplitude (mv)

-10

-20

Amplitude (mv)

Amplitude (mv)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 () 8 9
Time (s) Time (s)

Figure 12. Flexor digitorum superficialis and extensor digitorum muscles activities of two participants during intention of
opening and closing their hands. The gray box illustrates the muscle activities during 3 s of contraction.

Then, we evaluated these users for accomplishing daily tasks such as self-feeding,
operating the key, and holding different objects with different shapes and sizes. We found
that both users were unable to grasp and hold most objects regardless of their size or weight
(Table 2). However, when fitted with the robot exoskeleton, both participants succeeded
in holding and operating all the objects, including the one that they could hold without
the hand exoskeleton (Table 2). Furthermore, our tests indicated that the exoskeleton
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could assist in performing the four most used grip types: palmar pinch, medium wrap,
parallel extension, and lateral pinch.

Table 2. Users’ grasping performance with and without exoskeleton.

Item . Weight User1 User 2
Object
No. (® Without Exo.  With Exo.  Without Exo.  With Exo.
1 Key 11.5 v v X v
2 Pen 6.8 X i X i
3 Paper cup 9.5 v vV Vv Vv
4 Spoon 3.7 X Vv X Vv
5 Bottle of water 500 X v X Vv

v/: Individual could grasp and hold the object. X: Individual could not grasp and hold the object.
Exo.: Exoskeleton.

4. Discussion

Similar to the robot developed by Biitzer et al. [5], in our design, we used a V-shaped
three-layered spring blades mechanism. However, we eliminated the cumbersome cables
mechanism to allow the robot to be compact and lightweight. In addition, we included
a versatile mechanism to perform thumb abduction and adduction movements to assist
users in executing the most frequently utilized grasp types. Our design is comparable to
the other existing hand exoskeletons (Table 3). The exoskeleton designed in this study
also used a mechanism to abduct and adduct the thumb for performing the most com-
mon grasp types, while all the exoskeletons mentioned in the table, except Tenoexo [5],
are designed in a way to just flex and extend the fingers. Moreover, we designed the
five degree of freedom (DOF) exoskeleton for daily living activities, which is just 228 g,
which is lighter than other five DOF exoskeletons (except Mano [24]). Furthermore,
compared to the Tenoexo [5], since we used the same three-layered sliding spring mech-
anism, our design can produce an 8 N fingertip force, while the Tenoexo [5] produces a
maximum of 6.4 N fingertip force. This is likely due to our lead screw mechanism and the
increase in the width and thickness of the spring blades in our exoskeleton. The mechanical
evaluation of the finger mechanism showed that our design can provide a functional range
of motion by bending the user’s finger up to 91.5° in 3 s. In addition, the finger mechanism
can produce up to 8 N fingertip force, which can help the user grasp and lift objects such
as keys, a paper cup, a spoon, a full 500 mL water bottle, etc. (Supplementary Video S2).
We also showed that the exoskeleton presented in this study can assist users, especially
individuals with cervical SCI, in daily activities immediately after wearing it. Hence,
no pre-training is needed.

However, one of the main limitations of our design is the control system. It utilizes a
simple linear envelope of a surface EMG signal for single degree of freedom control, which
can be varied between the users and thus needs individual adjustments. This strategy
was also unable to control the individual fingers of the exoskeleton robot. In the future,
by using different classification algorithms such as K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Artificial Neural Networks (ANN), Convolutional Neural Network (CNN), and
Bayes network, EMG signals can be classified to allow more reliable, proportional, and
dexterous control of individual fingers or the robot with an accuracy of about 90%. Another
limitation may be the fingertip force, which is expected to be 10 N to lift items weighing up
to 1 kg [5], whereas our finger mechanism of the robot currently produces up to 8 N.
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Table 3. Comparison of recent exoskeletons with our exoskeleton.

Type of Max. Weight
Exoskeleton DOF NOA Actuators Transition ROM Controller yp Fingertip &
Control (g)
Force (N)
Three-layered
Our Design DC motor  sliding spring Up tf)’ Arduino EMG Upto8 228
. 91.5 sSensors
mechanism
Three-layered .
Lo . Up to Arduino
Tenoexo [5] DC motor sliding sl:?rmg 105° Yun Mini EMG 6.4 148
mechanism
Hand of Linear DC s gt Up to
hope [9] motor Rigid Links 120° N/A EMG N/A 500
22 N pinch
Flexo-glove DC motor  Tendon-driven N/A ATmega 2560 EMG force, 48 N 330
[25] microcontroller power grasp
force
r710r/;n(;fl Arduino
Mano [24] Servomotor Bowden cables }?an d Mega 2560 EEG 20 50
ROM Rev3
Micro
EI;(SI-G[ISJ]Q DC motor  Tendon-driven ~164° controller ‘:\1,11;)}% 10.3 104
y (TMS320F2808)
: . Custom
HandMATE Linear Rigid links ~1900  Leemsy36mi- 4 g0id ~2.45 340
[27] actuator crocontroller app

N/A: Not Available; DC: Digital Current; EMG: Electromyographic; NOA: Number of Actuators.

5. Conclusions

In this article, we presented a modified design of a motorized lightweight wear-
able hand exoskeleton to improve the grasping function of patients with hand paralysis.
By utilizing a lead screw mechanism to pull and push the sliding blades and sizes of
the fixed and sliding blades, we improved the fingertip force of the three-layered mecha-
nism used in the Tenoexo [5] exoskeleton. Moreover, we used a motorized mechanism to
abduct and adduct the thumb to perform the most common grasp types and help users
to execute more than 80% of the activities of daily living. However, most exoskeletons,
except Tenoexo [5], are designed in a way to just flex and extend the fingers. Furthermore,
we used 3D printing technology to develop a lightweight and cost-effective hand exoskele-
ton with five DOF for daily living activities, which is just 228 g. We tested the exoskeleton
on two participants with severe hand impairments and evaluated the functionality and
usability of the robot in the ADL. The results strongly support the functionality restoration
and usability of the robot in performing daily activities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21206900/s1, Video S1: The EMG activity of the flexor digitorum superficialis muscle was
recorded using three electrodes connected to the forearm. The recorded signals were sampled at
1 Khz after being amplified and filtered. An EMG envelope was used to detect users’ intent in order
to operate the robot via muscle activities. Then, the microprocessor of the exoskeleton drives the
motors of the robot to operate and perform a gripping function. During the test, an oscilloscope
was also utilized to display the signals., Video S2: Grasping a bottle of water with the exoskeleton
controlled by the user’s forearm EMG signals.
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