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Abstract

Severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2) causes

coronavirus disease 2019 (COVID‐19), characterised by high levels of inflammation
and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids,

proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to

multi‐organ failure in severe cases. Magnesium (Mg2+) regulates many processes,

including antioxidant and anti‐inflammatory responses, as well as the proper func-

tioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a

second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency

can cause immunodeficiency, exaggerated acute inflammatory response, decreased

antioxidant response, and OS. Supplementation with Mg2+ has an anti‐inflammatory
response by reducing the levels of nuclear factor kappa B (NF‐κB), interleukin (IL) ‐
6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves

mitochondrial function and increases the antioxidant glutathione (GSH) content,

reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce

inflammation and OS, strengthening the immune system to manage COVID‐19. This
narrative review will address Mg2+ deficiency associated with a worse disease

prognosis, Mg2+ supplementation as a potent antioxidant and anti‐inflammatory
therapy during and after COVID‐19 disease, and suggest that randomised

controlled trials are indicated.
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1 | INTRODUCTION

SARS‐CoV‐2 produces coronavirus disease 2019 (COVID‐19), which
has caused more than 4.6 million deaths worldwide.1 COVID‐19 is

associated with inflammation and oxidative stress (OS) conditions,

inducing respiratory and cardiac complications, such as respiratory

insufficiency and arrhythmias. In addition, COVID‐19 patients also

may submit minor complications like dry cough, fever, fatigue, sore

throat, and diarrhoea.2‐4

Scientific publications have been shown that nutritional status

and nutrition habits are relevant in developing different comorbid-

ities associated with higher mortality in COVID‐19.5‐7 In this sense,

magnesium (Mg2+) deficiency causes low‐grade chronic inflammation
and OS.8‐10 It has led to the hypothesis that Mg2+ supplementation

might improve the severity of COVID‐19 disease,11,12 including a

possible intervention of Mg2+ in SARS‐CoV‐2 infection by inhibiting

the activity of proteases required for protein S cleavage.12 Therefore,

this narrative review focuses on the effect of Mg2+ to prevent

developing severe COVID‐19 from the perspective of Mg2+ defi-

ciency, which could contribute to an antioxidant/anti‐inflammatory
development in COVID‐19 and post‐COVID‐19 manifestations. We

also proposed that Mg2+ supplementation like a potential therapy

might ameliorate COVID‐19 effects and post‐COVID‐19 sequels.

Our exhaustive review of the scientific literature was conducted in

the ‘PubMed databases’. Search keyword terms included all possible

combinations, abbreviations, and synonyms between ‘magnesium’,

‘immune system’, ‘magnesium deficiency’, ‘magnesium supplementa-

tion’, ‘oxidative stress’, ‘inflammation’, ‘COVID‐19’, ‘SARS‐CoV‐2’,
‘thrombosis’, ‘post‐COVID‐19 manifestations’. We also considered

the publication date from March 1971 to October 2021.

2 | SARS‐CoV‐2 VIRAL LIFE CYCLE

The SARS‐CoV‐2 virus has been identified as a single‐stranded RNA‐
enveloped (positive sense), spherical or pleomorphic beta coronavi-

rus of the Coronaviridae family. SARS‐CoV‐2 infects lung and intestinal
epithelial cells via the angiotensin‐converting enzyme 2 (ACE2) re-

ceptor, causing mild to moderate upper respiratory and gastrointes-

tinal infections (Figure 1).2,13,14 SARS‐CoV‐2 can also bind to the

central nervous systemcells by alternative receptorCD147, expressed

in high levels in the brain, producing neurological symptoms such as

headaches, vision changes, dizziness, ataxia, or impaired

consciousness.15

SARS‐CoV‐2 virion has an outer surface with 24 to 40 spike

glycoproteins (S protein; divided into S1 and S2), which fuse with

different human cells such as nasal cavity cells.16 The latter bidding is

performed by the receptor‐binding domain (RBD) in the protein S1

subunit, which binds specifically at ACE2 (Figure 1).17 ACE2 is the

predominant host cell receptor, and this is the critical protein for

SARS‐CoV‐2 to invade susceptible cells.14,18,19 Moreover, SARS‐
CoV‐2 employs the transmembrane protease serine 2 (TMPRSS2)

and the proprotein convertase furin (host cell proteases) to primes

the S protein, triggering viral envelope fusion with the host cell

membrane.20,21 Then, the virus enters basal cells by activating

different endocytosis pathways, such as clathrin‐dependent endocy-
tosis, or directly releasing the SARS‐CoV‐2 genome into the

cytosol.22 Both routes allow the viral genome to reach the cytosol,

where the SARS‐CoV‐2 RNA genome unwraps from its viral envelope

to translate the viral polyproteins (pp).17,22

In the cytosol, the SARS‐CoV‐2 RNA genome is translated in two

large open reading frames (ORF), ORF1a and ORF1b, inducing the

expression of the individual non‐structural proteins (nsps) and poly-

protein 1a (pp1a) and 1b (pp1ab).17,23 The nsps comprise the viral

replication and transcription complex (RTC) that includes RNA‐
processing. The nsps also reorganise the host membranes, where the

SARS‐CoV‐2 RNA will replicate and structural viral proteins will be

expressed.23 Once the viral genome has been amplified, nucleocapsid

proteins (N protein) encapsulate it, where membrane proteins (M

protein) and envelope proteins (E protein) ensure SARS‐CoV‐2
incorporation in the viral particle during the assembly process

(Figure 1). Finally, virions are secreted from the infected cell by

exocytosis to attach to another cell surface.17,24

3 | INFLAMMATION, OXIDATIVE STRESS, AND
COVID‐19

During SARS‐CoV‐2 viral life cycle, SARS‐CoV‐2 is exposed to the

innate defence system, developing pronounced inflammation and, in

acute cases, severe acute respiratory syndrome (SARS) or multi‐
organ failure, called in general terms, COVID‐19.25,26 During

COVID‐19 and its pronounced inflammation increase the secretion

of interleukin (IL) ‐1β, IL‐4, IL‐10, interferon‐gamma (IFN‐γ), inter-
feron‐γ‐inducible protein 10 (IP‐10), and monocyte chemoattractant

protein 1 (MCP‐1).27,28 Furthermore, COVID‐19 produces several

nuclear factor kappa B (NF‐κB)‐mediated cytokines, including IL‐6
and IL‐8 (Figure 2).29 COVID‐19 also induces elevated plasma

levels of pro‐inflammatory cytokines (tumour necrosis factor‐alpha
(TNF‐α), IL‐2, IL‐6, and IL‐1β).28,30 In addition, COVID‐19 patients

from the intensive care unit (ICU) show elevated levels of IL‐7, IL‐10,
MCP1, granulocyte‐colony stimulating factor (GCSF), IP‐10, and
macrophage inflammatory proteins (MIP‐1A).27 The latter promotes

hyper‐inflammation, hyperpyrexia, and organ failure.31 Organ failure

results in respiratory failure, acute cardiac complications, respiratory

distress syndrome, organ dysfunction, septic shock, and in critical

cases, causes death. Therefore, organ failure spreads mortality risk.32

T cell response in developing protective immunity is essential in

regulating inflammation. For example, an adequate T cell response

reduces the overactivation of the inflammatory response (Figure 2).

On the other hand, the suppression or deficient T cell activity in-

creases the burden on macrophages and monocytes, exacerbating

the inflammatory process, distinctive of COVID‐19 (Figure 2).33‐35

Laboratory results showed decreased T helper lymphocytes (CD3+,

CD4+) and suppressor T lymphocytes (CD3+, CD8+). These cells

control infections and prevent overactivity of the immune system
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and uncontrolled virus infection.30 Following the latter, Zhang et al.26

reported an impaired immune response related to deficit T cell

function in patients infected with SARS‐CoV‐2. Since there is an

impaired T cell function, the inflammatory process exacerbates

inflammation with an uncontrolled increase in levels of pro‐
inflammatory cytokines and chemokines (cytokine storm), produc-

ing multi‐organ failure due to tissue damage. Therefore, the cytokine
storm is associated with COVID‐19 severity.35

Inflammation also produces reactive oxygen species (ROS), and if

these ROS are not attenuated, OS is triggered, inducing oxidative

damage to proteins, lipids, and DNA. Regarding lipids, its oxidation

results in lipids radicals, such as malondialdehyde (MDA) and 4‐
hydroxynonenal (4‐HNE),36 which are highly reactive, causing DNA

damage (Figure 2). The latter induces cell cycle arrest to permit DNA

repair and proteostasis; however, if oxidative damage persists,

apoptosis cell death is promoted.37 A study in deceased COVID‐19

patients showed elevated 4‐HNE levels in the lungs, associated

with lethal outcomes, suggesting that deceased COVID‐19 patients

have a critical failure of the antioxidant response.38 Furthermore, the

MDA levels are increased in ICU and non‐intensive care unit (non‐
ICU) patients, compared with healthy groups.39,40 Therefore, these

works suggest a close relationship between antioxidant response and

COVID‐19 severity.

ROS overproduction during SARS‐CoV‐2 infection has been

attributed to NADPH oxidases (NOXs) activation, principally NOX2.

It has been shown that NOX2 is upregulated during COVID‐19
infection.41 Supporting the latter, SARS‐CoV‐2 S protein together

IL‐6 activate NOX2, producing high ROS levels in endothelial cells

(Figure 2).42 Moreover, NOX2 is stimulated by angiotensin II (Ang II),

which plasma levels are elevated in COVID‐19.43 Indeed, the upre-

gulation of Ang II has been associated with the overstimulation of

NOXs and the consequent production of ROS.44,45

F I GUR E 1 The viral life cycle of severe acute respiratory syndrome coronavirus type 2 (SARS‐COV‐2). SAR‐COV‐2 interacts with
angiotensin‐converting enzyme 2 (ACE2) receptor and then the transmembrane protease serine 2 (TMPRSS2) and proprotein convertase furin
primes S protein for entry into target cells. Two endocytosis mechanisms are known that SARS‐CoV‐2 uses for entrance to the cell:

(a) clathrin‐mediated and (b) the releasing direct of its genome into the cytosol. Both mechanisms permit the viral genome to reach the cytosol,
and once released, SARS‐CoV‐2 is translated into two open reading frames (ORF): ORF1a and ORF1b, promoting the expression of non‐
structural proteins (nsps) 1–16, and the polyprotein 1a (pp1a) and pp1b. The latter allows the replication of the viral structural proteins: spike

(S), envelope (e), the membrane (M), and the nucleocapsid (N). S, E, and M form the viral capsid, and N organises the nucleocapsid. Finally, the
virion is packaged and released outer the infected cell. The figure was created with BioRender
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Although some antioxidant enzymes such as catalase (CAT) and

superoxide dismutase (SOD) increase at the onset of COVID‐19
disease, suppressing the overproduction of ROS and OS,39 in pro-

gressive stages of COVID‐19, these enzymes significantly decrease

along with plasma levels of vitamins (A, C, E), glutathione (GSH), as

well as cofactors of antioxidant enzymes like manganese and cop-

per.40 These data suggest that COVID‐19 patients are prone to a

deficient antioxidant system during the progression of COVID‐19.
In conclusion, although the antioxidant and anti‐inflammatory

responses are present at the beginning of SARS‐CoV‐2 infection,

both are downregulated during COVID‐19 development, resulting in

OS and inflammation. Therefore, the uncontrolled inflammatory and

insufficient antioxidant response related to OS may be the principal

mechanism in multi‐organ failure during COVID‐19.

4 | MAGNESIUM, INFLAMMATION AND
OXIDATIVE STRESS

Around 600 enzymes require Mg2+ as a cofactor, while other 200

enzymes need Mg2+ as an activator to realise their functions

(Figure 3).46 Thus, Mg2+ is crucial for energetic metabolism, protein,

and amino acid synthesis, and maintenance of the electrical potential

in tissues and cell membranes.47,48 Mg2+ also participates in bone

mineralisation, muscle relaxation, and neurotransmission (Figure 3).49

In addition, Mg2+ regulates lipid composition, stabilising the cellular

membrane and reducing its fluidity and permeability.50,51 Further-

more, Mg2+ is also involved in most reactions in which adenosine

triphosphate (ATP) functions as a cofactor. For example, ATP‐Mg2+

complexes are required for the activity of glycolytic enzymes such as

F I GUR E 2 Inflammation and reactive oxygen species (ROS) overproduction during coronavirus disease 2019 (COVID‐19) infection. The
interaction between angiotensin convertase enzyme 2 (ACE2) receptor and severe acute respiratory syndrome coronavirus type 2 (SARS‐
COV‐2) generates ROS through angiotensin II (Ang II) because the latter stimulates NADPH oxidase 2 (NOX2). Moreover, the antioxidant
response decreases through SARS‐CoV‐2 infection by lessening catalase, superoxide dismutase (SOD), and glutathione (GSH). ROS
overproduction oxidises lipids in the cell membranes, generating the products of lipid peroxidation malondialdehyde (MDA) and 4‐
hydroxinonenal (4‐HNE), which are increased In COVID‐19 deceased patients. On the other hand, SARS‐CoV‐2 activates the nuclear factor
kappa B (NF‐κB), inducing the secretion of several cytokines and chemokines that include interferon‐gamma (IFN‐γ), tumoral necrosis factor‐
alpha (TNF‐α), interleukin (IL) 6 (IL‐6), IL‐18, and monocyte chemoattractant protein 1 (MCP‐1). The latter and the deficient inactivation of T
cells prompt macrophages activation, inducing the production of other cytokines, triggering cytokine storm accompanied by ROS

overproduction. The figure was created with BioRender
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hexokinase, phosphofructokinase, aldolase, phosphoglycerate kinase,

and pyruvate kinase (Figure 3).52

Mg2+ is required for the structure and activity of DNA and

RNA polymerases since it contains 2 Mg2+ binding sites, essential

for conformational changes of the enzymes during catalytic re-

actions.53 Vitamin D and vitamin D, enzymes responsible for

vitamin D metabolism, require Mg2+ as a cofactor to bind to

vitamin D (Figure 3). Mg2+ is also necessary for 25‐hydroxylation
of vitamin D in the liver and 1α‐hydroxylation in the kidneys.54

Mg2+ participates in different cell signal pathways, functioning as

a second messenger.55,56 Finally, Mg2+ alters Ca2+ flux in the

sarcoplasmic reticulum, which modifies the permeability of the

protons in the mitochondrial membrane, altering oxidative phos-

phorylation (Figure 3).57

4.1 | Magnesium and immune system

As described above, Mg2+ is involved in essential enzymatic reactions

in the cells, including immune response. Mg2+ has a closer relation-

ship in adaptative immunity, related to cellular signalling and immu-

nomodulatory pathways.52,56,58 Mg2+ has been described as a second

signalling messenger in T cells, promoting their activation.56,59 In

individuals with X‐linked immunodeficiency with Mg2+ deficiency,

Epstein‐Barr virus infection, and neoplasia (XMEN), the magnesium

transporter 1 (MagT1) is downregulated in immune T cells.56 Since

MagT1 is essential for T cell receptor (TCR) stimulation and T cell

activation, its downregulation is related to immunosuppression in

XMEN patients.60

The reduction of free intracellular Mg2+ causes defective

expression of the natural killer (NK) activator receptor (NKG2D) on

CD8+ T and NK cells, decreasing their cytolytic responses

(Figure 4).60 NK and CD8+ T cells' functions are essential for con-

trolling viral infections because these cells induce apoptotic cell‐
infected death, a regulated programed cell death that does not

induce inflammation, and defects in this type of cell death might

cause excessive viral load.61 Since these cells are decreased, the

innate immune cells such as macrophages and neutrophils are acti-

vated to control the infection, promoting exacerbated immune

response by triggering cytokine storm (Figure 4).60,61 In this under-

standing, strengthening NKs and T cells activation through Mg2+

supplementation could be associated with a better prognosis of

COVID‐19. In contrast, Mg2+ deficiency may promote inflammation

due to the deficient activation of cytolytic response in CD8+ T cells

and NK cells.56,59,60

Different preclinic studies have also demonstrated that Mg2+

deficiency leads to exaggerated acute inflammatory response, such as

increased circulating pro‐inflammatory cytokines (IL‐1β, IL‐6, TNF‐α),
leucocytosis, increased plasma levels of complement component C3,

and the marked elevation of circulating substance P, especially after

F I GUR E 3 Functions of magnesium (Mg2+). In the figure, the roles of Mg2+ have been listed (A‐H)
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immune stress (Figure 4).9,62‐66 Mg2+ deficiency induces the Novo

synthesis of ceramide and lipid peroxidation, activating NF‐κB.67,68

NF‐κB is involved in the transcription of inflammatory genes such as

cytokines (IL‐1β and TNF‐α).61,69‐71 The latter means that Mg2+

deficiency can be related to inflammation by itself.

Imbalance Mg2+ levels are a decisive factor in mortality in

COVID‐19 cases. A retrospective study by Alamdari et al.3 found that

older patients of Teheran Iran with hypomagnesaemia have a higher

risk of mortality due to COVID‐19. Moreover, Quilliot et al.72 found

an association between Mg2+ and COVID‐19. This group conducted a
cohort study, demonstrating low serum Mg2+ concentrations in

hospitalised COVID‐19 adult patients. The serum concentrations of

Mg2+ revealed that 73.7% of the patients had hypomagnesaemia,

showing that most of the patients are located in serious to severe

cases.72 These studies reveal that hypomagnesaemia is more

frequent in patients with COVID‐19, possibly associated with the

severity of the disease. In this way, the severity of the COVID‐19
disease might be strongly related to the pro‐inflammatory state in

Mg2+ deficiency patients.

Sugimoto et al.73 reported that Mg2+ therapy during inflamma-

tory states decreases NF‐κB, IL‐6, and TNF‐α. A similar beneficial

effect is observed in the inflammatory marker C reactive protein

(CRP), which levels are decreased.74 Moreover, optimal Mg2+ status

enhances vitamin D functionality that regulates inflammation by

promoting an anti‐inflammatory effect.75,76 Although the molecular

mechanism of the relationship between Mg2+ and inflammation is

poorly described, even more in COVID‐19, it is clear that during Mg2

+ supplementation decreases inflammation markers.

Mg2+ could also indirectly be involved in the immune response

by modulating the gut microbiome. For instance, it has been reported

that diets containing Mg2+ can change microbiome composition.77‐83

In contrast, Mg2+ deficiency can lead to dysbiosis.77,79 Dysbiosis re-

fers to quantitative or qualitative changes in the composition of the

normal microbiota that causes a microbial imbalance, playing an

essential role in susceptibility to infectious diseases.84 Many studies

have associated altered gut microbiome with the severity of COVID‐
19, producing dysbiosis84‐89 while restoring Mg2+ levels could benefit

the diversity and health of the gut microbiome. Moreover, the use of

F I GUR E 4 Magnesium (Mg2+), immune system, and oxidative stress (OS). (a) Mg2+ deficiency related to the immune system produces the
(1) low expression of the natural killer (NK) activator receptor (NKG2D) on the T CD8+ cells, promoting a mild or no anti‐inflammatory
response to viruses. Consequently, a cytokine storm is triggered. (2) Moreover, circulating inflammatory cells augment, inducing the
production of interleukin (IL) 6 (IL‐6), IL‐1β, tumoral factor‐alpha (TNF‐α), and complement system C3. (3) Mg2+ deficiency induces lipid

peroxidation, which activates nuclear factor kappa B (NF‐κB). Mg2+ also induces oxidative stress by promoting (1) electron transfer system
(ETS) interruption, generating reactive oxygen species (ROS) production. Furthermore, (2) the production of antioxidant enzymes is deficient,
and (3) glutathione (GSH) is depleted because of anormal Mg2+ levels. (4) Mg2+ deficiency is also associated with metabolic syndrome and low‐
grade chronic inflammation, such as obesity, diabetes, and cardiovascular diseases
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probiotics and prebiotics for preventing and treating COVID‐19
could modulate the gut microbiome.84,88,89 Therefore, Mg2+ usage

could be able to mitigate systemic inflammation by regulating

microbiome, preventing dysbiosis.77,90‐92

4.2 | Magnesium and oxidative stress

Aerobic living systems use oxygen (O2) for many processes. For

instance, in mitochondria, to produce energy in the form of ATP, O2 is

the final electron acceptor in the electron transport chain (ETC).93

However, electron leakage reduces O2 to superoxide radical (O2
·−). It

is the most reactive radical during this process. O2
·− also be produced

in cytosol by different enzymes such as NOXs or xanthine oxidase

(XO) or in the endoplasmic reticulum by cytochrome p450 reductase

or cytochrome b5.36 The antioxidant system can reduce O2
·− into

hydrogen peroxide (H2O2) by different enzymes such as SOD or

NOX4.36 H2O2, in turn, is reduced to H2O by CAT, glutathione

peroxidase (GPx), or glutathione reductase (GR), among others. O2
·−

and H2O2 can react together or with some metals in Fenton and

Haber‐Weiss reaction inducing hydroxyl radical (•OH), a highly

reactive ROS that generates different biomolecules damage.36 Thus,

these ROS have been maintained at low concentrations in a redox

balance. Low ROS concentrations are associated with cellular sig-

nalling; however, if redox balance cannot be maintained, ROS levels

increase induces OS and oxidative damage.36,93 Therefore, the

establishment of cellular antioxidant responses must be fast and

efficient to neutralise the potential oxidant effects of ROS.

Low consumption and the consequent deficient status of Mg2+

have been associated with antioxidant response decrease, and, in

consequence, OS increase (Figure 4).8,58,94,95 Moreover, in a state of

intracellular Mg2+ deficiency, a reverse flow of Mg2+ in the mito-

chondria is induced, promoting the ETS interruption and mitochon-

drial decoupling, which increases ROS production.96 Adding to this

increase of ROS, the low availability of Mg2+ decreases the produc-

tion of antioxidant enzymes, leading to OS.97,98 Mg2+ participates as

an indirect antioxidant due to being a cofactor of enzymes that

produce GSH, mitigating the effects of OS in the stabilisation of the

cell membrane (Figure 4).99,100 Also, during OS and proinflammatory

states, the treatment with organic Mg2+ salt such as magnesium

isoglycyrrhizinate and magnesium lithospermate B induces activation

of nuclear factor erythroid 2‐related factor 2 (Nrf2).101‐103 This

transcriptional factor modulates gene transcriptions and protein ex-

pressions of antioxidant enzymes such as CAT, SOD, and GPx.101,104

Evidence shows that Mg2+ deficiency is associated with increased OS

and cytokine due to antioxidant defences decrease in different car-

diovascular diseases such as hypertension.10,94,105,106 Furthermore,

moderate or subclinical Mg2+ deficiency prepares phagocytic cells to

release pro‐inflammatory cytokines that lead to chronic oxidative

and inflammatory stress.107 Therefore, Mg2+ deficient status reduces

antioxidant defence and increases inflammation, producing OS.

Regarding GSH, a nonprotein tripeptide conformed by glycine,

cysteine, and glutamate, is an essential and the highest ubiquitous

intracellular antioxidant.108,109 Therefore, it has multiple important

biological functions, including maintaining the normal cellular

oxidation‐reduction state, cell signalling, and antioxidant functions

due to reducing particular ROS such as H2O2.
110 Also, GSH can

maximise the activity of the other antioxidants such as vitamin C

through glutathione S‐transferase (GST). GST catalyses the

glutathione‐dependent reduction of dehydroascorbate, restoring

their antioxidant function.111,112 It has been shown that GSH

depletion frequently occurs due to insufficient Mg2+ concentrations

in acute deficiency.94,105,106 That is, some enzymes that catalyse the

biosynthesis reaction of GSH and maintain its correct operation

require Mg2+. For example, γ‐glutamyl‐cysteine ligase (GCL) and

glutathione synthetase (GS) are enzymes completely dependent on

ATP, requiring Mg2+ as a cofactor.105,113,114 Also, γ‐glutamyl‐trans-
peptidase (GGT) uses Mg2+ as an activator of this enzyme.115‐117 A

study published by Mohammadi et al.118 reported that magnesium

sulphate (MgSO4) significantly decreased oxidative damage caused

by hypoxia in mouse brains. In addition, Mg2+ supplementation im-

proves mitochondrial function and increases the content of GSH in

mitochondria.118,119 Also, MgSO4 was effective as a treatment for

preeclampsia, significantly promoting GSH production and thus sup-

pressing ROS production.120 As described in this section, Mg2+

deficiency represents a risk factor for maintaining an optimal

oxidation‐reduction state, leading to OS development. Thus, chronic

Mg2+ deficiency has severe oxidative implications such as lipid per-

oxidation, causing general cellular dysfunction and even cell

apoptosis associated with inflammation and OS.94,121

Mg2+ deficiency is frequently associated with is a strong rela-

tionship between OS and metabolic syndrome, associated with low‐
grade chronic inflammation, such as obesity, diabetes, and cardio-

vascular diseases (Figure 4).8,58 For instance, the increase in lipid

peroxidation and OS was observed in a study of obese women with

Mg2+ deficient diets, which presented low Mg2+ concentration in

erythrocytes.122

Because Mg2+ has multiple functions in the body, its deficiency

has been related to chronic inflammatory and OS, which can

compromise the immune response, inducing individuals more prone

to infection such as SARS‐CoV2. Thus, nutritional supplementation
may strengthen the immune system to manage COVID‐19.

5 | MAGNESIUM CONSUMPTION DURING
COVID‐19 AND POST‐COVID‐19 DISEASE

In addition to inflammatory and OS conditions, low Mg2+ consump-

tion is associated with a higher incidence of diabetes and cardio-

vascular diseases.96,123‐126 Both diseases are associated with a worse

prognosis in COVID‐19, according to the meta‐analysis published by

Gold et al.127 Furthermore, COVID‐19 patients with serum concen-

trations of Mg2+ ≤0.75 mM (low concentrations) are the most

frequent hospital admissions.3,72 Considering the above, we suggest

that the frequent consumption of foods high in Mg2+ might prevent

severe COVID‐19 symptoms. The diet can provide the primary
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source of Mg2+.128 For instance, whole‐grain cereals (Mg2+ in peri-

carp) are considered the best dietary source of Mg2+; even part

of the observed benefit with whole‐grain cereals intake is due to

Mg2+.129,130 Also, leafy‐greens foods such as chard, spinach, purslane
(due to chlorophyll), and nuts are good sources of Mg2+. Some other

foods consumedmore frequently also have high levels ofMg2+, such as

dark chocolate, black beans, soy nuts, and some other seeds

(Table 1).131,132

Kopf et al.134 reported that the correct daily intake of fruit,

vegetables, and whole grains significantly decreased levels in some

inflammatory markers such as the lipopolysaccharide‐binding pro-

tein, TNF‐α, and, IL‐6. Therefore, the latter suggestion points out that
increasing Mg2+ intake through food has favourable effects. More-

over, the severity of COVID‐19 cases are related to respiratory

insufficiency or acute respiratory distress syndrome (indicator: low

O2 saturation); coagulopathies (indicator: elevated D‐dimer, pro-
thrombin time prolongation); inflammation (indicator: elevated CRP

(an indicator of active acute inflammation), IL‐6); multi‐organ dam-

age: liver damage (indicator: hypoalbuminemia), and lymphope-

nia.3,72,135 Thus, these symptoms can be reduced by Mg2+

supplementation. For instance, it has been observed that concomi-

tant supplementation of vitamin D, vitamin B12, and Mg2+ in COVID‐
19 patients can decrease ICU admission incidence and O2 therapy

requirements.11

5.1 | Respiratory insufficiency and magnesium
supplementation

Inflammation markers in COVID‐19 severity could be directly related
to serum Mg2+ levels. Chronic obstructive pulmonary disease

(COPD) and COVID‐19 show high levels of systemic inflammatory

markers, such as CRP, leucocytes, IL‐6, IL‐8, and fibrinogen. Both

diseases also present the same mechanisms in endothelial dysfunc-

tion, including vascular inflammation and OS. Furthermore, both

COPD and COVID‐19 reduce mediators that promote vasodilation

such as endothelial nitric oxide synthase (eNOS).28,30,38,136‐141 It has

been demonstrated that COPD severity was associated with serum

Mg2+ deficiency and a worse quality of life in COPD patients.142 In

line with this, Mukerji et al.143 demonstrated that intravenous adju-

vant therapy with MgSO4 improves bronchodilator therapy in acute

exacerbations of COPD. Additionally, intravenous MgSO4 as adjuvant

therapy benefits moderate to severe acute asthma, a disease with

high levels of inflammation and OS, by acting as a bronchodilator and

improving pulmonary functions.144‐146 Since COPD, asthma and

COVID‐19 present systemic inflammation, it is suggested that Mg2+

supplementation might enhance lung function in cases of respiratory

failure in COVID‐19. Together these shreds of evidence suggest that
complementary therapy with Mg2+ reduces the symptoms of in-

flammatory respiratory diseases and improves respiratory functions.

Therefore, Mg2+ may be a potential therapy in cases of COVID‐19
respiratory failure due to exacerbated inflammation, preventing

their development at severe.

Another aspect that may be related to respiratory failure is

diaphragm dysfunction, implying a partial or complete diaphragm

function loss.147,148 McCool and Tzelepis149 mentioned that ‘Dia-

phragmatic dysfunction is an underdiagnosed cause of dyspnoea.’ In

this sense, a possible cause of respiratory failure in COVID‐19 may

be diaphragm dysfunction; however, this area has been poorly

explored. Interestingly, it has been reported that prolonged me-

chanical ventilation causes diaphragm dysfunction.150 However, van

Steveninck and Imming151 reported a case of diaphragm dysfunction

before intubation and mechanical ventilation in a COVID‐19 patient.

This suggests that diaphragm dysfunction without mechanical

ventilation or intubations may also be related to others processes,

such as sepsis due to SARS‐CoV‐2. Sepsis is a massive inflammatory
response characterised by OS, cytokines, and mitochondrial

dysfunction.152,153 In a prospective study, Demoule et al.154 reported

that sepsis contributes to the development of diaphragmatic

dysfunction in ICU admissions. It has been shown that elevated TNF‐
α and IL‐6 in diaphragm dysfunction is strongly associated with OS,

driving muscle contractile dysfunction and atrophy.155‐157 Whidden

et al.155 demonstrated the use of Trolox (a potent antioxidant)

attenuated diaphragmatic contractile dysfunction and prevented

skeletal muscle loss, concluding that preventing OS could be an

optimal strategy to avert diaphragm weakness. On the other hand,

Jiang et al.158 reported that MgSO4 protects against diaphragm

dysfunction caused by sepsis, attenuating the loss of diaphragm force

by reducing inflammation through TLR4/NF‐κB pathway inhibition. In

this understanding, if diaphragm dysfunction caused by sepsis con-

tributes to respiratory failure in COVID‐19, Mg2+ therapy could

attenuate OS and inflammation, avoiding respiratory insufficiency.

5.2 | Coagulopathies, inflammation, and OS:
magnesium supplementation

During COVID‐19 infection, fibrinogen and circulating D‐dimer levels
are elevated, inducing hypercoagulation.159 Coagulation is a conse-

quence of innate and adaptative immunity activation. It has been

shown that inflammation‐induced coagulation is featured by tissue

factor (TF) activation and upregulation of coagulant pathways, pro-

moting thrombin production.160 Although the mechanism by which a

COVID‐19 induced coagulopathy development is not yet fully un-

derstood, it is supposed to have started mainly by TF activa-

tion.61,161,162 TF is expressed in monocytes and endothelial cells in

response to proinflammatory cytokines (i.e., TNF‐α, IL‐1, IL‐8, IL‐6,
and MCP‐1), leading to the production of fibrinogen, fibrin, and

thrombin. In turn, thrombin stimulates the production of the coagu-

lation factors V, VIII, IX, and XII, resulting in thrombus formation.

Increased plasma levels of D‐dimer are frequently used as an indi-

cator of coagulation. Moreover, it has been demonstrated that high

plasma levels of D‐dimer are related to coagulopathies in COVID‐
19.72,161,163,164 Thus, D‐dimer has been proposed to evaluate the

severity of lung injury in COVID‐19.161,162 Certainly, elevated D‐
dimer levels have been associated with NF‐κB activation in
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COVID‐19 patients.13,61,165,166 NF‐κB is the common link between

inflammatory and thrombotic processes by increasing cytokines

(TNF‐α, IL‐6 and MCP‐1), which activates the expression of TF, the

main trigger of the coagulation cascade.61,71,167 It has been shown

that Mg2+ deficiency is associated with hypercoagulability and is

partly mediated by excessive inflammation related to high levels of

NF‐κB.168 Interestingly, Mg2+ supplementation reduces NF‐κB
expression and its activation,73,101 which suggests that Mg2+ sup-

plementation decreases cytokine production, deactivating the coa-

gulopathy pathway. Moreover, in vitro studies show that Mg2+

inhibits clotting factors (prothrombin, thrombin, V, VII, IX) and re-

duces clotting blood.169‐171 Also, fibrin clots density and lysis time

decreased with increasing Mg2+ concentrations.170,172 Some authors

also consider platelet‐activating factor (PAF) as key in generating

microthrombosis in COVID‐19.12,173 PAF has a central role in

inflammation due to stimulating the activation of NF‐κB. Further-
more, it has been shown that the reduction of extracellular Mg2+

results in a rapid increase in active PAF, inducing the NF‐κB activa-

tion.174,175 The above indicates a strong association between theMg2+

deficiency and coagulopathies, whereMg2+ supplementationmay be a

potential therapy in coagulopathies associated with COVID‐19.

5.3 | Post COVID‐19 manifestations

Lasting effects of illness have been reported post‐COVID‐19, scien-
tific community named as ‘Long‐COVID’ to refer to the post‐COVID
conditions or sequels. In a study, Kamal et al.176 collected post‐
COVID‐19 symptoms and diseases from COVID‐19 survivors, and

the most common symptom was fatigue (72.8%). Other manifesta-

tions were mental disorders [anxiety (38%), dementia (28.6%),

depression (28.6%), obsessive‐compulsive disorder (4.9%)], pain

TAB L E 1 Foods and their Mg2+ content

Food group Food

Amount of Mg2+ (mg/100 g

raw food)

Nut and seed Pumpkin seeds 550

Chia seeds 392

Brazil nuts 376

Sesame seeds 345

Cashew nuts 292

Almond nuts 270

Peanuts 168

Legumes Black beans (mature

seeds)

171

Soy nuts 145

Lentils 47

Chickpeas 45

Green peas 33

Whole grain

cereals

Oats 138

Natural puffed wheat 133

Post shredded wheat 132

Leafy greens Chard 81

Spinach 79

Purslane 68

Kale 33

Turnip greens 31

Watercress 21

Green cabbage 12

Vegetables Okra 57

Nopal 52

Artichoke 42

Sweet corn 37

Acorn squash 32

Potato 23

Broccoli 21

Summer squash 18

Red cabbage 16

Asparagus 14

Turnip 11

Fatty fish Mackerel 60

Tuna 35

Pink salmon fish 27

Halibut 23

Fruits Avocado 29

Banana 27

(Continues)

T A B L E 1 (Continued)

Food group Food

Amount of Mg2+ (mg/100 g

raw food)

Guava 22

Papaya 21

Fig 17

Kiwi fruit 16

Cantaloupe 13

Berries 11

Grapefruit 9

Others Dark chocolate 132

Whole milk 12

Liquid yogurt 12

Whole egg 12

Source: Collected data from U.S. Department of Agriculture‐FoodData
central.133
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[joints pain (31.4%), continuous headache (28.9%), chest pain

(28.9%)], dyspnoea (28.2%), blurred vision (17.1%), tinnitus (16.7%),

and intermittent fever (11.1%).176 Mandal et al.177 reported in a post‐
COVID‐19 follow‐up that 71.9% of the patients present cough,

breathlessness, and fatigue. Carfi et al.178 and Cares‐Marambio

et al.179 also reported that the main symptoms post‐COVID‐19 are

fatigue, dyspnoea, chest pain, cough, psychological distress, and

cognitive dysfunction.176‐179 The authors concluded that the severity

of post‐COVID‐19 manifestations are related to the severity of

COVID‐19.176,177

According to a meta‐analysis by Iqbal et al.180 the most prevalent
symptoms that persist beyond 12 weeks in post‐COVID‐19 syn-

drome were fatigue, dyspnoea and sleep disturbance. Thus, fatigue is

the most frequent manifestation post‐COVID‐19. Halpin et al.181

reported that the fatigue in post‐COVID‐19 patients was not asso-

ciated with old age, since no differences of age was found on patients

in the ICU. The latter indicates that fatigue is not related to age, as

might be thought. Chronic fatigue syndrome, which could be related

to COVID‐19 fatigue, is characterised by low ATP levels and lipid

peroxidation, indicating OS presence. Castro‐Marrero et al.182

demonstrated that OS is related to mitochondrial dysfunction. Also,

Myhill et al.183 observed a strong association between mitochondrial

dysfunction and severity of chronic fatigue syndrome through the

diagnostic tool ‘ATP profile’ that helped differentiate fatigue due to

energy wastage or cellular respiration disfunction. The mitochondrial

provides energy, and when there exists mitochondrial dysfunction

apart from low ATP levels, another consequence is the increase of

ROS. In a preclinic study, Liu et al.119 demonstrated that in diabetic

mice with mitochondrial dysfunction, the mitochondrial function was

improved with dietary Mg2+ supplementation. They proposed that

the mechanism that justifies the mitochondrial function improvement

is the alteration of mitochondrial Ca2+ homoeostasis. Since fatigue is

related to mitochondrial dysfunction, Mg2+ supplementation could be

a therapy for post‐COVID fatigue by improving this mitochondrial

function.

Dyspnoea is the second most frequent symptom reported in

post‐COVID‐19 patients.176‐180 Farr et al.184 reported that patients

who required mechanical ventilation during COVID‐19 have a high

prevalence of diaphragm dysfunction. They suggested that dia-

phragm dysfunction significantly contributes to dyspnoea in post‐
COVID‐19 patients. Persistent dyspnoea could be a consequence

of respiratory tissue damage caused by OS since the COVID‐19 pa-

tients presented high levels of 4‐HNE.38,185 Thus, we suggest that

dyspnoea could be attenuated with Mg2+ supplementation since Mg2

+ antioxidant and anti‐inflammation's functions.

6 | CONCLUSIONS

COVID‐19 disease has been considered as an inflammatory disease

in which OS occurs, leading to multi‐organ failure mainly due to

vascular epithelial damage. Some antioxidant and anti‐inflammatory
treatments are used to reduce damage, among them is Mg2+.

Despite the little evidence of Mg2+ supplementation in COVID‐19
patients, the data indicate that Mg2+ supplementation decreases

inflammation and OS in acute COVID‐19 cases, avoiding the pro-

gression of the disease. In addition, the incorporation of Mg2+ in the

diet can prevent pro‐inflammatory and ‐OS, situations that make

people susceptible to infections and states of exacerbated inflam-

mation. Moreover, Mg2+ supplementation in post‐COVID‐19 may

avoid fatigue and dyspnoea associated with inflammation and OS in

post‐COVID‐19 patients. Randomised controlled trials to evaluate

the effects of Mg2+ supplementation in COVID‐19 patients on coa-

gulopathies, inflammatory and oxidative markers would be an

excellent way to investigate the direct impact of Mg2+ on the disease.
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