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A B S T R A C T

Characterising key components within functional ingredients as well as assessing efficacy and bioavailability is an
important step in validating nutritional interventions. Machine learning can assess large and complex data sets,
such as proteomic data from plants sources, and so offers a prime opportunity to predict key bioactive components
within a larger matrix. Using machine learning, we identified two potentially bioactive peptides within a Vicia
faba derived hydrolysate, NPN_1, an ingredient which was previously identified for preventing muscle loss in a
murine disuse model. We investigated the predicted efficacy of these peptides in vitro and observed that
HLPSYSPSPQ and TIKIPAGT were capable of increasing protein synthesis and reducing TNF-α secretion,
respectively. Following confirmation of efficacy, we assessed bioavailability and stability of these predicted
peptides and found that as part of NPN_1, both HLPSYSPSPQ and TIKIPAGT survived upper gut digestion, were
transported across the intestinal barrier and exhibited notable stability in human plasma. This work is a first step
in utilising machine learning to untangle the complex nature of functional ingredients to predict active compo-
nents, followed by subsequent assessment of their efficacy, bioavailability and human plasma stability in an effort
to assist in the characterisation of nutritional interventions.
Introduction

In recent years, a number of functional ingredients, such as hydro-
lysates, have been evaluated in a wide range of health areas (Patel, 2015;
Udenigwe and Aluko, 2012; Wu et al., 2019). Key active components of
hydrolysates, bioactive peptides, are known to exert functional effects
beyond nutrition alone and present a prime opportunity for prevention
and treatment of chronic disorders (Cicero et al., 2017; Moughan et al.,
2014). For key components of functional ingredients to modulate phys-
iological pathways downstream they must survive gut transit and
depending on their target, they may need to be absorbed through the
intestinal barrier (Rein et al., 2013). There have been some promising
results in identifying key components within functional ingredients, for
example, the antioxidant peptides TY and SGGY were identified after
simulated gastrointestinal digestion of walnut extracts (Feng et al., 2019)
and some bioavailable whey peptides have been demonstrated to
improve oxidative status inmuscle cells, albeit their stability in biological
fluids or their benefits in vivo are still to be shown (Corrochano et al.,
orm 12 February 2021; Accepted
evier B.V. This is an open access a
2019). Therefore, a further step in characterising key molecules within a
larger matrix would be to move beyond in vitro simulated gastrointestinal
digestion (SGID) and intestinal barrier transport, by investigating sta-
bility of molecules in a relevant physiological target which would help to
progress a functional ingredient to clinical studies. However, due to
inconsistent findings, there is little consensus on functional ingredient
strategies that can be used as interventions to prolong both life- and
health-span and reduce the expensive reliance on drugs to much later
years in life (Keehan et al., 2017; Li-Chan, 2015; Doherty et al., 2020). By
not only identifying active components of functional ingredients but also
subsequently assessing their efficacy, bioavailability and stability may be
key to enhancing the adoption of functional ingredients as both pre-
vention and intervention nutritional strategies.

Traditionally, bioactive peptides have been discovered by generating
peptide libraries from known bioactive sequences or by randomly testing
peptides within hydrolysates (Xu et al., 2014). The latter approach
generally is time consuming and involves expensive purification steps
such as ultrafiltration to produce peptide-rich fractions. Although these
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fractions are tested for bioactivity, further validation is needed to attri-
bute biological effect to specific sequences, due to the large number of
peptides within fractions, this step is highly time and resource consuming
(Hern�andez-Ledesma et al., 2005; Tao et al., 2018; S�anchez and V�azquez,
2017). In recent years, bioinformatic approaches for the characterisation
of key bioactive peptides from natural sources have been increasingly
adopted, yet these strategies often involve time consuming screening of
proteomic data from plant and animal sources for bioactive peptides
(Capriotti et al., 2015; Holton et al., 2013). Therefore, the discovery of
active components would benefit from technology integration to untan-
gle the very complex nature of food-derived products. Artificial Intelli-
gence (AI) is comprised of a number of techniques which have been
utilised in recent years in life science discovery
(�Alvarez-Machancoses�OFern�andez-Martínez, 2019; Yang et al., 2019). Of
note, in the area of peptide discovery, a machine learning approach has
been used for both prediction of bioactivity and prediction of specific
properties. Due to the high volume of known active peptides that can be
used for training of models, areas where AI-aided peptide discovery had
been particularly prolific are anti-microbial (Fjell et al., 2009; Su et al.,
2019; Yoshida et al., 2018), anti-viral (Chang and Yang, 2013),
anti-inflammation (Khatun et al., 2019; Manavalan et al., 2018a),
anti-cancer (Manavalan et al., 2017). Interestingly, machine learning
methods have been also proposed for not just discovery of novel mole-
cules but also the prediction of properties that are of crucial interest in
discovery pipelines, such us cell penetrability (Manavalan et al., 2018b)
or toxicity (Gupta et al., 2013). Despite these advances, functional
ingredient discovery using AI has only recently been described success-
fully, where a machine learning approach was shown to be capable of
predicting a characterised bioactive functional ingredient sourced from
the Oryza sativa proteome which effectively modulated circulating cy-
tokines and improved physical performance in human (Rein et al., 2019;
Kennedy et al., 2020a). Additionally, a similar approach identified two
peptides within the Pisum sativum proteome with significant anti-aging
properties (Kennedy et al., 2020b, 2020c). To that end, computational
approaches and more specifically, machine learning, holds significant
promise to characterise bioactive elements within functional ingredients
in an effort to validate their efficacy and stability.

Recently, a functional ingredient, NPN_1, derived from the V. faba was
shown to address skeletal muscle loss (Cal et al., 2020). In this study, Cal
et al. (2020) reported beneficial effects on protein synthesis, protein
degradation and TNF-α secretion in vitro. In a murine disease model, daily
administration of NPN_1, for 18 days, attenuated muscle atrophy in the
soleus hindlimb muscle, increased integrated density of Type I and Type II
fibres and significantly up-regulated protein synthesis-related genes. This
highlights the potential to address muscle atrophy by simultaneously
addressing the balance of protein synthesis, protein degradation and
inflammation in skeletal muscle (Schiaffino et al., 2013; Cai et al., 2004).

The aim of this research is to bring forward the characterisation of
natural functional ingredients, by identifying constituent active mole-
cules, using machine learning, and subsequently validating efficacy,
assessing bioavailability and stability in a biological matrix. In this study,
we use a machine learning approach to characterise bioactive peptides
within NPN_1. We synthetically reproduce and validate the effects of two
predicted bioactive peptides, found within the proteome of NPN_1, on
muscle protein synthesis and inflammation in vitro. We also assess the
bioaccessibility and bioavailability of NPN_1 by mimicking the upper gut
transit and assessing the predicted peptides ability to be transported
across the intestinal barrier in vitro. Finally, we examine the stability of
both peptides within NPN_1 in human plasma.

Methods

Materials

Phorbol-12-myristate-13-acetate (PMA, P8139), trifluoroacetic acid
(TFA), 10 kDa MWCO centrifugal concentrators (Vivaspin 500,
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Z614025), thiazolyl Blue Tetrazolium Bromide (MTT, M5655), lipo-
polysaccharide (LPS) from Escherichia coli O127:B8, pepsin (P6887),
pancreatin (P7545), porcine bile extract (B8631), penicillin-
streptomycin solution (P4333), human plasma (P9523) were obtained
from Sigma-Aldrich (MO, USA). Human monocytic leukaemia THP-1
cells (88081201), C2C12 muscle cells (91031101) and Caco-2 intestinal
cells (86010202) were from European Collection of Authenticated Cell
Cultures and purchased from Sigma-Aldrich (MO, USA). HT-29 intestinal
cells were obtained from American Type Culture Collection (ATCC HTB-
38). Optima grade formic acid, water and acetonitrile, used for sample
and mobile phase preparation, Pierce BCA protein concentration kit used
to determine protein concentration, Pierce Peptide Retention Time
CalibrationMixture, LC-MS/MS system, RSLCnano Ultimate 3000 system
coupled to Q Exactive Orbitrap mass spectrometer through electrospray
interface, 0.22 μm filter PES syringe filter and S6 In-Cell ELISA Kit were
obtained from Thermo Fisher Scientific (CA, USA). The TNF-α ELISA kit
was purchased from BioLegend (CA, USA). Desalting cartridges, Oasis
HLB, with 10 mg sorbent, were obtained from Waters Corporation (MA,
USA). Horse serum (26050–088) and Hanks’ Balanced Salt solution
(HBSS, 14025) were from Gibco Life Technologies (CA, USA). Roswell
Park Memorial Institute medium (RPMI 1640) and Dulbecco’s Modified
Eagle Medium (DMEM) were from Lonza (Basel, Switzerland). PEAKS
software, used for peptide identification, was obtained from Bioinfor-
matics Solutions Inc. (ON, Canada).

Characterisation of NPN_1

A predictive machine learning approach was used to predict peptides
with two different activities, anti-inflammatory and protein synthesis,
both these activities were chosen based on the activity of the natural
hydrolysate, NPN_1 (PeptiStrong™) that was created to reduce inflam-
mation and improve protein synthesis (Cal et al., 2020). To predict
anti-inflammatory activity, we focused on TNF-α reduction and used an
untargeted approach (Fig. 1). Structured and unstructured data sources
such as scientific literature, patents and public databases were interro-
gated for anti-inflammatory peptides, specifically, for peptides capable of
attenuating TNF-α secretion. The data collected was then manually
curated to ensure high quality standards. Once a reliable non redundant
dataset of labelled anti-inflammatory peptides was attained (~104 data
points), a neural network predictive architecture consisting of stacked
recurrent and dense layers was trained in 10-fold cross validation. No
explicit features were extracted for the input sequences, rather, latent
features were automatically computed by a first embedding layer in the
architecture. Each of the best models for the validation sets were then
fine-tuned on a set of peptides specifically labelled for TNF-α inhibition.
This smaller set (~2 � 102 peptides) included a set of proprietary pep-
tides that were previously validated for activity in-house from multiple
natural sources. These peptides were tested mostly on THP-1 cells at
various concentrations (typically ranging from 0.005 μg/mL to 50
μg/mL) and exhibited different levels of activity, including no activity
(therefore used as negative examples for the training purpose). The
ensemble of the 10 resulting neural network models was used to predict
on another set of proprietary peptides with experimentally determined
effect on TNF-α secretion and an accuracy higher than 85% was
measured.

Predictive models (in this specific case based on neural networks) are
initially trained with datasets built and curated from literature, patents or
public databases and subsequently refined with internally validated
peptides. The predict-test-refine loop can be iterated multiple times
before achieving the desired accuracy. The library of unlabeled peptides
activity is assigned to generally consist of peptides characterised from
natural sources through Mass Spectrometry.

A targeted approach was employed to identify peptides with muscle
protein synthesis bioactivity. Specifically, proteins involved in the
myogenesis and hypertrophy mechanisms were targeted (Table 1).
Known protein-protein and protein-peptide interactions of those proteins



Fig. 1. Workflow for peptide prediction.

Table 1
Examples of Uniprot entries used for targeted approach to identify proteins of
interest for prediction of muscle synthesis bioactive peptides.

Uniprot
ID

Gene Protein Organism

P23443 KS6B1 Ribosomal protein S6 kinase beta-1 Human
Q9UBS0 KS6B2 Ribosomal protein S6 kinase beta-2 Human
Q13541 4EBP1 Eukaryotic translation initiation factor 4E-

binding protein 1
Human

P42345 MTOR Serine/threonine-protein kinase mTOR Human
P62753 RS6 40S ribosomal protein S6 Human
P31749 AKT1 RAC-alpha serine/threonine-protein kinase Human
P15172 MYOD1 Myoblast determination protein 1 Human
P13349 MYF5 Myogenic factor 5 Human
P15173 MYOG Myogenin Human
P23760 PAX3 Paired box protein Pax-3 Human
P23759 PAX7 Paired box protein Pax-7 Human
Q06413 MEF2C Myocyte-specific enhancer factor 2C Human
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were analysed to identify binding regions of note. Then peptide profiles
likely to mimic those interactions were built to be used to scan unlabeled
peptides within our database of MS profiles.

The two approaches were finally combined to carry out the final
prediction and identify the most efficacious peptides within the proteome
of V. faba derived NPN_1. BLASTP (Camacho et al., 2009) (word size¼ 2;
matrix ¼ PAM30, e-value ¼ 10000) was used to filter out peptides
exhibiting homology to known bioactive peptides. As a result of these
targeted and untargeted approaches, two highly ranked novel peptides
were selected for further investigation.

Peptide synthesis and ingredient production

All predicted peptides used in this study were produced by GenScript
(NJ, USA), where peptide sequence and purity (95–99%) were validated
by HPLC–MS/MS. All peptides were solubilised in ultrapure H2O and
aliquoted for single use.
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NPN_1 was prepared as previously described by Cal et al. (2020) (Cal
et al., 2020). Briefly, commercially obtained protein powder from V. faba
(60–63% protein content; AGT Foods Europe, The Netherlands) was
solubilised in an alkalising solution and homogenised by agitation. A
food-grade endoprotease catalysed the hydrolysis reaction under pre-
defined enzyme-specific conditions, such as temperature and a value of
pH 6, for several hours. Following hydrolysis, the hydrolysate underwent
a thermal enzyme deactivation by raising temperature (85 �C) and a
pasteurisation step. Finally, it was spray dried to a fine powder with an
inlet temperature of >160 �C.
Cell culture

C2C12 cells are an immortalized mouse skeletal muscle cell line used
in biomedical research to study the differentiation of myoblasts and to
explore skeletal muscle biochemical pathways. C2C12 cells were main-
tained at 37 �C and 5% CO2 in complete growth medium (DMEM, 1% L-
glutamine solution, 1% penicillin-streptomycin and 10% sterile filtered
foetal bovine serum (FBS) previously heated at 55 �C for 30 min. THP-1
cells were maintained in RPMI 1640 supplemented with 1% L-glutamine,
10% heat-inactivated FBS and 1% penicillin–streptomycin. Intestinal cell
lines Caco-2 and HT-29 were cultured and differentiated as previously
described by Ferraretto et al. (2018) (Ferraretto et al., 2018).
Determination of S6 phosphorylation

Phosphorylation of S6 was measured as described by Cal et al. (2020)
(Cal et al., 2020). Briefly, C2C12 cells (8000 cells/cm2) were seeded in
growth medium in a 96-well plate. After 48 h, cells were differentiated in
differentiation medium (DMEM, 1% L-glutamine, 1%
penicillin-streptomycin and 2% heat inactivated horse serum) for 7 days.
Before treatment, cells were starved for 3 h in growth medium without
serum. Additionally, cells were incubated in HBSS for 1 h to deprive
amino acids. Finally, differentiated myoblasts were treated for 30 min
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with the peptide HLPSYSPSPQ (0.005–5 μg/mL), insulin (positive con-
trol, 0.58 μg/mL) or HBSS (untreated control). Experiments were per-
formed in triplicate on three different days. Phosphorylation of S6 was
assessed by using S6 In-Cell ELISA Kit according to manufacturer’s
instructions.

Determination of TNF-α secretion

The anti-inflammatory activity of the peptide TIKIPAGT was assessed
using differentiated THP-1 cells (Daigneault et al., 2010). In brief, THP-1
undifferentiated monocytes cells were seeded in 24-well plates (1.0 �
106 cells/well) and maintained in culture medium with 100 nM PMA for
72 h to induce their differentiation into macrophages. After differentia-
tion, macrophages were treated with TIKIPAGT (0.05–5 μg/mL) for 24 h,
subsequently washed and stimulated with 100 ng/mL of LPS for further
24 h. Cell supernatants were collected and frozen at �80 �C. TNF-α was
quantified in supernatants by using a TNF-α ELISA kit following manu-
facturer’s instructions.

Simulated in vitro gastrointestinal digestion

To assess the stability of HLPSYSPSPQ and TIKIPAGT within NPN_1,
SGID was performed. Firstly, NPN_1 was reconstituted in ultrapure H2O
at a final concentration of 37.5 mg/mL. Then, it was centrifuged at 4000
rpm for 20 min, the supernatant was filtered through 0.22 μm filter PES
syringe filter and its protein content was determined using BCA assay.
SGID was performed on NPN_1 supernatant as described by Minekus
et al. (2014) with some modifications (Minekus et al., 2014). As sug-
gested by Minekus et al. (2014), oral phase was not performed as NPN_1
was digested as a liquid formulation (Minekus et al., 2014). Gastric phase
was performed by mixing NPN_1 with porcine pepsin (100 U of pepsin
per mg of protein) for 2 h at 37 �C with continuous shaking. An aliquot
was taken for further LC-MS/MS analysis. Intestinal phase was performed
by mixing gastric chyme with pancreatin (2 U of enzyme per mg of
protein) and bile extract (10 μmol of bile per mg of protein) for 2 h at 37
�C. Intestinal digestion was stopped by adding protease inhibitor 4-(2-
aminoethyl) benzenesulfonyl fluoride hydrochloride (1 mM). Digestates
were sterilised filtered using 0.22 μm PES syringe filter. Samples were
stored at �80 �C for further LC-MS/MS analysis and cell exposure. SGID
and LC-MS/MS analysis were performed on three different days.

LC-MS/MS analysis

Before LC-MS/MS analysis, SGID samples were filtered using a 10 kDa
MWCO centrifugal concentrators. Samples were acidified with 0.2%
formic acid, desalted, lyophilized, and reconstituted in Optima grade
H2O. The protein content of an aliquot was determined by BCA assay and
a fraction containing 5 μg of peptides, was lyophilized and reconstituted
in 5 μL Optima grade H2O containing 0.1% TFA and 5 μg of Pierce
Peptide Retention Time Calibration Mixture.

LC-MS/MS analysis was performed on RSLCnano Ultimate 3000
system coupled to Q Exactive Orbitrap mass spectrometer using elec-
trospray interface (ThermoFisher Scientific Inc., CA, USA). NPN_1 sam-
ples were separated utilising 60 min gradient from 5 to 75% of Optima
grade acetonitrile in Optima grade H2O containing 0.1% formic acid on
15 cm reverse-phase C18 column at a flow rate of 300 nL min�1.

Mass spectrometer was operated in data-dependent mode, with MS
and MS/MS at 70000 FWHM and 17500 FWHM resolution, respectively.
From the MS scan, the 15 most intense ions were selected for MS/MS.
Fragmentation spectra from putative peptides were used for peptide
identification using PEAKS software (Bioinformatics Solutions Inc., ON,
Canada) with following parameters: enzyme, none; peptide mass toler-
ance, 10 ppm; fragment mass tolerance 0.05 Da; variable modifications,
oxidation (M), Deamidation (NQ), Pyro-glu from Q; false discovery rate
(FDR) 1%; activation method CID; PEAKS “PTM finder” module for the
full PTM profile of all peptides in the sample.
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Intestinal transport of peptides

Intestinal co-culture model was performed as previously described by
Ferraretto et al. (2018) by seeding 70% differentiated Caco-2 cells
together with 30% differentiated HT-29 cells at a density of 4 � 104

cells/cm2 (Ferraretto et al., 2018). Co-cultures were seeded in Trans-
well® Millicell® 24 insert plates (1.0 μm) assembled to a Millicell® 24
well receiver tray (EMD Millipore, MA, USA) and kept in complete RPMI
1460 medium. Transepithelial electrical resistance (TEER) was moni-
tored on 0-, 3- and 6-days post-confluence using a Millicell®-ERS vol-
tohmmeter (EMD Millipore, MA, USA).

Co-culture treatments were performed as previously described by
Corrochano et al. (2019) (Corrochano et al., 2019). Before treatment,
co-cultures were washed 2 times with HBSS and incubated for 30 min in
HBSS at 37 �C. Then, 200 or 100 μg of SGID NPN_1 was mixed together
with HBSS up to 400 μL (final concentration 0.5 and 0.25 μg/μL) were
added to the apical side of the inserts and 800 μL of HBSS were added to
the basolateral compartments. Samples were not lyophilized. TEER
values were monitored immediately and then again at 2 h. After the 2 h
treatment, apical and basolateral solutions were collected and kept at
�80 �C prior to LC-MS/MS analysis. Intestinal transport was performed
in triplicate for each concentration and on three different days.

Human plasma stability

The stability of lead peptides was assessed in human plasma over 24 h
(Di et al., 2005). Commercially available human plasma was recon-
stituted in 5 mL of ultrapure H2O. Peptides were mixed with human
plasma to a final concentration of 0.1 mg/mL and incubated at 37 �C in a
Dynex AM89B heater (Dynex Technologies, NY, USA) with continuous
movement. Aliquots (50 μL) were taken at the time points 0 min, 5 min,
30 min, 1 h, 2 h, 4 h, 8 h, 16 h and 24 h and mixed with 200 μL of ice-cold
methanol containing 0.1% formic acid. Then, tubes were vortexed for 30
s and left the on ice for at least 3 min. After centrifugation (15,000 rpm,
10 min, 4 �C), supernatants were collected and dried in a SpeedVac
Savant SPD1010 (Thermo Scientific) overnight. Dried samples were
stored at�80 �C until LC-MS/MS analysis was performed. Human plasma
stability was tested in triplicate on three experimental occasions. MS data
was processed by PEAKS Online X build February 1, 1010.85, Bioinfor-
matics Solutions Inc.

Cell viability assay

The 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl- 2H-tetrazolium bro-
mide (MTT) colorimetric method was used to determine cell viability
after treatments. Mitochondrial respiration, an indicator of cell viability,
was assessed by the mitochondrial-dependent reduction of MTT to for-
mazan (Mosmann, 1983). THP-1 and C2C12 cells were seeded in 96–well
plates and cultured as mentioned above. Both cell lines were treated with
increasing concentrations of peptide (0.005 μg/mL – 50 μg/mL) for 24 h.
Thereafter, medium was replaced with 0.5 mg/mL MTT dissolved in
culture medium and cells were incubated at 37 �C for 2 h. The MTT so-
lution was removed and 100 μL DMSO solution was added to each well.
The plate was vortexed for 5 min and absorbance of the solution was
measured at 570 nm. The viability of differentiated THP-1 cells and
C2C12 cells in response to treatment with peptides was calculated as %
cell viability ¼ (OD treated/OD control) x 100.

Statistics and visualisation

All statistical analyses were performed using the statistical computing
software R (R Core Team. R: A languag, 2018). For in vitro experiments,
significant differences between treatment groups and untreated controls
were determined by one-way ANOVA followed by a Dunnett’s test. Data
are presented as a percentage of untreated controls (mean � SEM of at
least 3 independent experiments). Estimated decay rate was established
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using y¼ e^{aþ bx} for half-life calculations, for these graphs, each data
point represented the area of the MS peak as reported by PEAKS at the
corresponding timepoint. Data points for each peptide were scaled as a
percentage of the maximum area for that peptide in any replicate. Data
points equal to zero were dropped from the analysis. All time points were
represented by 8 or 9 datapoints from experimental triplicates. Before
fitting the model, data was dropped after the first time point where the
limit of detection was reached. For all analyses, P value < 0.05 was
considered significant. Graphs were generated using the ‘ggplot2’ R
package (Wickham, 2009) and the exponential decay model was fit by a
custom Python script using the NumPy v1.18 (van der Walt et al., 2011)
and SciPy v.1.4.1 (Virtanen et al., 2020) libraries.

Results & discussion

This study utilised machine learning to identify two constituent
bioactive peptides in a functional ingredient (NPN_1) which was previ-
ously shown to reduce muscle wastage in vivo (Cal et al., 2020). The ef-
ficacy and oral bioavailability of predicted constituent peptides within a
larger matrix was assessed in vitro, as well as their ability to resist
degradation in human plasma.

Prediction of constituent peptides within of NPN_1

This study employed machine learning to characterise a functional
ingredient derived from V. faba. Following LC-MS/MS analysis of NPN_1,
constituent peptides were predicted with selective targets of the
phospho-S6 pathway in skeletal muscle cells and TNF-α secretion in
macrophages, respectively. In addition, we show that predicted peptides
consistently survive SGID, cross the Caco-2:HT29 intestinal barrier and
exhibit a favourable in vitro stability profile.

Using a machine learning approach to characterise the peptide hy-
drolysate NPN_1, we identified constituent peptides: HLPSYSPSPQ
(Fig. 2A) with predicted bioactivity for S6 phosphorylation and TIKI-
PAGT (Fig. 2B) predicted with anti-TNF-α activity (Table 2).
HLPSYSPSPQ, contains 10 AA residues with a molecular weight of
1112.19 Da with a neutral net charge while TIKIPAGT, consists of 8 AA
with a molecular weight of 799.95 Da and displayed a net charge of 1.
TIKIPAGT was identified within parent protein, B0BCL7. While
HLPSYSPSPQ was distributed across three parent proteins: Q43674,
Q43673 and P05190.

Previously, traditional wet lab isolation and testing methods have
faced the challenge to characterising functional ingredients (Capriotti
et al., 2015). However, deciphering the complexity of functional in-
gredients and being able to identify active compounds is key in helping
understand the kinetics of the extract, the likelihood of it performing in
vivo and specifically in human (Udenigwe and Aluko, 2012; Lafarga and
Hayes, 2017; Craik et al., 2013). Until recently, the use of AI andmachine
Fig. 2. MS/MS ionization spectra of the peptides found in the functional ingred
(C) relative abundance of HLPSYSPSPQ and TIKIPAGT found in the functional ingre

228
learning for discovery in life science had been theorised but not fully
realised (Kadurin et al., 2017; Sanchez-Lengeling and Aspuru-Guzik,
2018; Segler et al., 2017). However, there are some recent exceptions,
Rein et al. (2019) described a novel anti-inflammatory rice functional
ingredient characterised with four anti-inflammatory AI discovered
bioactive peptides (Rein et al., 2019). A further three constituent pep-
tides within the same ingredient were described by Kennedy et al.
(2020), using machine learning methods (Kennedy et al., 2020a). Addi-
tionally, AI and machine learning was recently utilised to predict a novel
bioactive peptide, discovered in P. sativum, that reduced cellular aging in
a double blind placebo clinical trial (Kennedy et al., 2020b). Combined,
these results not only establish the intelligent approach to discovery and
characterisation but also highlights the specificity of this process result-
ing in measurable characterised functional ingredients. Although further
clinical testing is required, these results are an early indication that by
adopting machine learning techniques, there is an opportunity to identify
the key active compounds within a functional ingredient and predict
associated bioactivities in a wide range of different health benefitting
areas.

Bioactivity of predicted peptides

To validate the effects of HLPSYSPSPQ and TIKIPAGT, their activity
was assessed in vitro. The effect of HLPSYSPSPQ on protein synthesis was
measured using S6 phosphorylation. The treatment of differentiated
myoblasts with 0.05 μg/mL of predicted constituent bioactive peptide
HLPSYSPSPQ, significantly increased the phosphorylation of S6 by 50%
compared to untreated cells (P < 0.01, Fig. 3). The in-silico predictions
were further validated in vitro as TIKIPAGT significantly decreased TNF-α
secretion by 55% in LPS-stimulated macrophages at 0.05 μg/mL
compared to untreated cells (P < 0.001, Fig. 4). Surprisingly, higher
concentrations (0.5 and 5 μg/mL) exerted equivalent efficacy which may
be indicative of a saturation effect. In addition, none of the peptides
induced cell toxicity compared to untreated control (Fig. S1).

A recent study demonstrated that NPN_1, a V. faba derived hydroly-
sate, increased phosphorylation of S6 in skeletal muscle cells and reduced
TNF-α in macrophages (Cal et al., 2020). In addition, NPN_1 mitigated
soleus muscle loss and boosted Type I and Type IIa fibre density in mice.
Phosphorylation of S6 induces the translation of mRNA transcripts for
ribosomal proteins and elongation factors which ultimately leads to
muscle protein synthesis (Peterson and Schreiber, 1998; Gordon et al.,
2013). Cells treated with the peptide HLPSYSPSPQ exhibited a signifi-
cant increase in S6 phosphorylation, these results are in alignment with
previous findings where NPN_1 treatment, also significantly increased
phosphorylation of S6 in differentiated myoblasts (P < 0.05) (Cal et al.,
2020). As HLPSYSPSPQ cannot be the sole peptide responsible for the S6
phosphorylation activity of NPN_1, further study is required to assess the
effects on efficacy and bioavailability from other constituents within this
ient, NPN_1. MS/MS ionization spectra of (A) HLPSYSPSPQ, (B) TIKIPAGT and
dient, NPN_1.



Table 2
Characterisation of bioactive peptides.

Sequence Length Molecular Weight Charge Uniprot ID

Protein 1 Protein 2 Protein 3
TIKIPAGT 8 799.95 1 B0BCL7
HLPSYSPSPQ 10 1112.19 0 Q43674 Q43673 P05190

Fig. 3. Effect of HLPSYSPSPQ treatment on S6 phosphorylation. C2C12 cells
were treated with HLPSYSPSPQ (0.05 μg/mL – 5 μg/mL) for 30 min following a
starvation protocol and compared to untreated cells. (One-way ANOVA analysis;
*P < 0.05, **P < 0.01; at least 3 independent replicates).

Fig. 4. Anti-inflammatory activity of TIKIPAGT. Effect of TIKIPAGT on TNF-
α secretion in THP-1 differentiated macrophages. THP-1 macrophages were
treated with TIKIPAGT (0.05–5 μg/mL) for 24 h before treating with 100 ng/mL
of LPS for 24 h. The secretion of TNF-α was quantified by ELISA. (One-way
ANOVA analysis; ***P < 0.001; at least 3 independent replicates).
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hydrolysate. Of note, Cal et al., 2020 observed no effect on S6 phos-
phorylation in the same cell line with unhydrolysed V.faba, indicating a
possible peptide network specific effect. Additionally, the same study
demonstrated that the functional ingredient, NPN_1, decreased
LPS-induced TNF-α release in human macrophages. The cytokine, TNF-α,
is responsible for producing chronic inflammation, which is implicated in
skeletal muscle dysfunction (Londhe and Guttridge, 2015). Moreover,
TNF-α has been shown to inhibit the regeneration of satellite cells, pre-
cursors to skeletal muscle cells, in dystrophic muscle (Acharyya et al.,
2010). Similar to NPN_1, the application of constituent peptide, TIKI-
PAGT, resulted in a significant reduction of TNF-α in human macro-
phages. Corrochano et al. (2019) used macrophages to test the
anti-inflammatory effect of 6 bioavailable natural peptides found in whey
proteins through traditional screening methods, however, none of the
treatments altered TNF-α secretion (Corrochano et al., 2019). The
anti-inflammatory ingredient described by Rein et al. (2019) contained
four bioactive peptides discovered through AI and was tested in vivo,
where 20 g of a rice protein hydrolysate significantly reduced TNF-α in
healthy subjects in a 24-h kinetic study which suggests that bioactive
peptides within the product are able to reach their target organs (Rein
et al., 2019). This further highlights the opportunity of AI and machine
learning on successful discovery whereby bioaccessible constituent bio-
actives can be described and validated.
Bioaccessibility and bioavailability of predicted peptides

Certainly, for bioactive peptides to exert their therapeutic effect in a
specific target downstream, they need to be bioaccessible and bioavail-
able. Therefore, the stability of HLPSYSPSPQ and TIKIPAGT, within
NPN_1, was assessed through the upper gut tract in vitro. Initially, SGID
consisting in a 2-h gastric phase followed by a 2-h intestinal phase was
performed on NPN_1. It was shown that the lead peptides HLPSYSPSPQ
and TIKIPAGT survived to the proteolytic effect of pepsin, the acidic
conditions of the stomach and, subsequently, to the 2-h simulated in-
testinal digestion (Fig. 5 A and B). Although this study did not aim to
absolute quantify peptide content, the abundance of HLPSYSPSPQ and
TIKIPAGT at the different gut stages, was estimated by comparison with
other peptides within the NPN_1. Median peak area value of 71 peptides
present in all sample sets was used for normalisation, yielding median
normalised relative abundance only of the peptides which survive all gut
stages. This normalised relative abundance allows for the closer look at
relative ratios of peptides at different phases. As shown in Figs. 2C and
5C, the two peptides of interest, HLPSYSPSPQ and TIKIPAGT, show
similar ratio in intact NPN_1 and after the SGID process. They are both
found at around the median of the surviving peptides. The bioavailability
of HLPSYSPSPQ and TIKIPAGT was tested by treating a Caco-2:HT29
intestinal barrier with SGID NPN_1 using an FDA approved technique
to measure human intestinal permeability (Li et al., 2016; Larregieu and
Benet, 2013). The integrity of the intestinal barrier was maintained
across the study as the TEER values were not significantly altered pre-
and post-treatment and did not differ from negative control (cells with
medium, data not represented). Of note, both peptides were able to cross
the intestinal co-culture and, therefore, likely to reach target organs
downstream (Fig. 6A and B). This also underlies that HLPSYSPSPQ and
TIKIPAGT are not only resistant to stomach and intestinal proteases but
also to the metabolic activity of brush border enzymes such aminopep-
tidases, endopeptidases and carboxypeptidases. Interestingly, after in-
testinal absorption, the peptide TIKIPAGT is third of the median, whereas



Fig. 5. MS/MS ionization spectra of the peptides found in the simulated gastrointestinal digested functional ingredient, NPN_1. MS/MS ionization spectra of
(A) HLPSYSPSPQ, (B) TIKIPAGT and (C) relative abundance of HLPSYSPSPQ and TIKIPAGT found in the full simulated gastrointestinal digested (SGID) functional
ingredient, NPN_1.

Fig. 6. MS/MS ionization spectra of the peptides in the basolateral compartment after 2-h intestinal co-culture treatment with the simulated gastroin-
testinal digested functional ingredient, NPN_1. MS/MS ionization spectra of (A) HLPSYSPSPQ, (B) TIKIPAGT and (C) relative abundance of HLPSYSPSPQ and
TIKIPAGT found in the basolateral compartment after 2-h intestinal co-culture treatment with the simulated gastrointestinal digested functional ingredient, NPN_1.
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HLPSYSPSPQ is 6 times the median (Fig. 6C).
The resistance of predicted peptides to proteolytic digestion was

assessed using simulated in vitro digestion. Both peptides, HLPSYSPSPQ
and TIKIPAGT, survived not only gastric but also intestinal digestion.
Similarly, a recent study also identified several parent sequences of
HLPSYSPSPQ and TIKIPAGT, after hydrolysis of V. faba with pepsin
followed by trypsin, however, their bioavailability was not tested
(Samaei et al., 2020). HLPSYSPSPQ and TIKIPAGT both crossed the in-
testinal co-culture barrier, indicative of a promising enhanced bioavail-
ability, with HLPSYSPSPQ exhibiting greater relative abundance than
TIKIPAGT. This difference could be addressed by examining their amino
acid composition. The presence of prolines embedded within the peptide
sequences has been reported to provide peptide stability within the gut
transit (Savoie et al., 2005). HLPSYSPSPQ contains 3 prolines, rendering
it less susceptible to proteolytic degradation than TIKIPAGT. Further-
more, HLPSYSPSPQ is more hydrophobic compared to TIKIPAGT which
would suggest easier passage through the intestinal layer. Additionally,
degradation of longer parent peptides might result in release of
HLPSYSPSPQ which could explain the increase in its abundance relative
to median. Namely, the HLPSYSPSPQmotif is found to be contained in 30
longer sequences of peptides in intact NPN_1, 11 longer sequences of
peptides after SGID and 8 longer sequences of peptides in basolateral
compartment, indicating the robustness of this sequence. In comparison,
TIKIPAGT is found to be contained in 8 longer sequences of peptides in
intact NPN_1, 2 longer sequences of peptides after SGID and doesn’t
feature in any longer sequences of peptides in basolateral samples,
leaving a smaller pool for replenishment of degraded peptide.
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There have been noteworthy efforts to enhance oral delivery of
peptides by creating improved formulations (i.e. enzyme inhibitors,
surfactants and nanoparticles) or performing peptide chemical modifi-
cations (i.e. cyclization or unnatural amino acids) (Ghosh et al., 2018).
However, we demonstrated that the unmodified linear peptides,
HLPSYSPSPQ and TIKIPAGT, can resist the upper gut transit and be
transported across the in vitro intestinal barrier while they are embedded
within a peptide network. Certainly, HLPSYSPSPQ and TIKIPAGT were
transported across the intestinal barrier with other constituent peptides
of NPN_1 that were mostly neutral and hydrophilic residues, and whose
length was mainly ranged between 7 and 11 amino acids (Fig. S2). In
agreement, the passive diffusion transport of bioactive oligopeptides
through the intestinal tight junctions have been previously reported
(Shen and Matsui, 2017) although the optimum charge for peptide par-
acellular transport is not well stablished yet (Wang and Li, 2018).
Human plasma stability of predicted peptides

In addition to resisting gut transit and having good intestinal
permeation, peptides need also to possess enough stability in blood to
exert their health benefits in target tissues. Fig. 6 shows the estimated
decay rate of the peptides HLPSYSPSPQ (Fig. 7A) and TIKIPAGT (Fig. 7B)
in human plasma. Model parameters were made for HLPSYSPSPQ (a ¼
�0.63, b ¼ 3.99) and TIKIPAGT (a ¼ �2.47, b ¼ 4.27). HLPSYSPSPQ
showed a half-life of 65.79� 3.79 min and reached the limit of detection
at 8 h. TIKIPAGT presented a half-life of 16.85� 0.40 min with a limit of
detection reached at 2 h.



Fig. 7. Human plasma stability of predicted peptides. Human plasma stability of (A) HLPSYSPSPQ and (B) TIKIPAGT4.
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Evaluation of bioaccessibility and bioavailability of bioactive com-
ponents in functional ingredients is important for the development of
these ingredients. However, it is noteworthy that there is a lack of
extended research where the behaviour of food components is tested in
other biological matrices such as plasma (Rein et al., 2013). Both pep-
tides exhibited good stability in human plasma, notably HLPSYSPSPQ
showed a half-life value of 65.79 min. These results agree with previous
findings where peptides containing threonine at the N-terminus exhibi-
ted a prolonged half-life in biological matrices (Di, 2015). Although
HLPSYSPSPQ and TIKIPAGT were not measured in animals receiving
hydrolysate NPN_1 treatment in a disuse murine model described by Cal
et al., 2020), the half-life exhibited by both peptides especially that of
HLPSYSPSPQ may potentially have contributed to the in vivo efficacy
observed in this previous study (Cal et al., 2020), however, it would be
necessary to quantify these peptides in any subsequent studies. While
both peptides featured here represent lead predicted peptides for
bioactivity, other peptides were characterised though machine learning,
and as the efficacy of NPN_1 cannot be attributed to HLPSYSPSPQ and
TIKIPAGT alone, further work is required to validate efficacy and
investigate bioactivity, bioaccessibility, bioavailability and stability of
these other constituent peptides.

Conclusions

Here, we provide evidence for the use of machine learning to identify
efficacious bioactive peptides within a functional ingredient, NPN_1. By
characterising constituent peptides, we can better evaluate the bio-
accessibility and bioavailability of an ingredient and indicate if the
ingredient should be selected for further development. As both
HLPSYSPSPQ and TIKIPAGT were among peptides which remained
intact, demonstrated good intestinal barrier transport properties and
stability in vitro, these results indicate NPN_1 should progress to inves-
tigation in human. Ultimately, we demonstrate that machine learning is
an advanced powerful tool capable of characterising functional in-
gredients and identifying peptides which can target multiple physiolog-
ical pathways and warrants further in vivo investigation to determine
peptide quantification and pharmacokinetic profiles following oral
administration.
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