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Abstract: Many complex diseases, such as psychiatric and behavioral disorders, are commonly char-
acterized through various measurements that reflect physical, behavioral and psychological aspects of 
diseases. While it remains a great challenge to find a unified measurement to characterize a disease, 
the available multiple phenotypes can be analyzed jointly in the genetic association study. Simultaneously testing these 
phenotypes has many advantages, including considering different aspects of the disease in the analysis, and utilizing cor-
related phenotypes to improve the power of detecting disease-associated variants. Furthermore, complex diseases are like-
ly caused by the interplay of multiple genetic variants through complicated mechanisms. Considering gene-gene interac-
tions in the joint association analysis of complex diseases could further increase our ability to discover genetic variants 
involving complex disease pathways. In this article, we propose a stepwise U-test for joint association analysis of multiple 
loci and multiple phenotypes. Through simulations, we demonstrated that testing multiple phenotypes simultaneously 
could attain higher power than testing one single phenotype at a time, especially when there are shared genes contributing 
to multiple phenotypes. We also illustrated the proposed method with an application to Nicotine Dependence (ND), using 
datasets from the Study of Addition, Genetics and Environment (SAGE). The joint analysis of three ND phenotypes iden-
tified two SNPs, rs10508649 and rs2491397, and reached a nominal P-value of 3.79e-13. The association was further rep-
licated in two independent datasets with P-values of 2.37e-05 and 7.46e-05. 
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1. INTRODUCTION 

 Genome-wide association studies (GWASs) have been 
commonly adopted for investigating the genetic basis of 
complex human diseases, successfully identifying thousands 
of single nucleotide polymorphisms (SNPs) associated with 
complex diseases [1, 2]. However, for many complex diseas-
es, the findings to date only explain a small percentage of 
heritability [3-5]. The genetic etiology of complex human 
diseases has remained largely unknown, and detecting genet-
ic variants that account for the “missing heritability” has 
continued to be a major goal and challenge for the coming 
decade. The GWASs have commonly used a single-locus 
approach to test the association between a single SNP and a 
disease outcome of interest. Such a single-locus and single-
phenotype strategy could have limitations on fully utilizing 
information from the genotype level and the phenotype level. 
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First, complex diseases are usually caused by multiple genet-
ic variants, each conferring a small to moderate effect. The 
single-locus tests could be under-powered due to the low 
effect sizes of causal variants and the burden of multiple 
testing. In addition, genetic variants may interact with one 
another through complicated mechanisms, and thus, may be 
overlooked if they are tested separately without considering 
possible interaction effects. Second, a complex disease may 
manifest with a wide variety of features, such as multiple 
measurements of a disease, intermediate phenotypes, sub-
phenotypes, and endophenotypes. These phenotypes may 
better characterize the underlying disease etiology, and 
hence, provide more information than a single disease out-
come [6]. In genetics, it is also a common phenomenon that 
shared genetic variants may simultaneously influence multi-
ple phenotypes (i.e., pleiotropy) [7]. The successful identifi-
cation of shared genetic variants contributing to seemingly 
distinct phenotypes will help elucidate the common genetic 
cause of these phenotypes, and will promote the develop-
ment of a more efficient strategy to treat or prevent these 
diseases.
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 There is also a growing interest in analyzing multiple 
related phenotypes in GWAS [6, 8, 9]. For instance, Phe-
nome-Wide Association Studies (PheWAS) are interested in 
analyzing multiple phenotypes instead of single phenotype. 
These studies commonly adopt a conventional single-
SNP/single-phenotype approach in the analysis. Although 
convenient, the single-SNP/single-phenotype approach may 
significantly increase the number of statistical tests, leading 
to reduced power. To account for the issue of multiple test-
ing due to the increased number of phenotypes, Lange et al.
proposed to use principal components of phenotypes (PCP) 
for dimensionality reduction [10]. However, such a strategy 
is less straight forward for interpretation, because the out-
come becomes a linear combination of phenotypes. More 
importantly, a PCP captures key phenotype information but 
not necessarily phenotype information related to genetic in-
formation. To address this limitation, Klei et al. extended the 
PCP method with a principle component of heritability 
(PCH) method [11]. However, this PCH method required 
estimating a PCH for each single SNP, which is computa-
tionally intensive for high-dimensional data. A number of 
other methods were also proposed by using the generalized 
estimation equations (GEE) and the generalized Kendall’s 
Tau test [12, 13]. It has been shown that these multi-
phenotype tests have improved performance over a single-
phenotype test. However, these available methods are mainly 
developed to test each single SNP at a time. Statistical meth-
ods that consider the joint effect of multiple variants with 
multiple phenotypes are still under-developed. 
 During the past decade, multi-locus tests considering 
gene-gene interactions have been increasingly used in genet-
ic association analyses [14-20]. Non-parametric methods, 
such as U-statistic-based methods, have shown great promise 
for high-dimensional data analysis, especially when the un-
derlying phenotype distributions and modes of inheritance 
are unknown. Various formations of U-Statistics have been 
adopted for multi-locus association tests [21-24]. For exam-
ple, Schaid et al. proposed a U-statistic-based score test that 
summarized a set of SNPs, and then examined their joint 
association with a phenotype [21]. Wei et al. extended this 
method by using data-adaptive weights for different genetic 
variants [22]. We and others have further considered possi-
ble interactions among genetic variants, and proposed a for-
ward-U test and a likelihood ratio Mann-Whitey test for 
quantitative phenotypes and binary phenotypes, respectively 
[23, 24]. These multi-locus methods have emerged as prom-
ising tools in the joint association analysis of a single disease 
phenotype. It is also of great interest to extend those methods 
for the analyses of multiple phenotypes. 
 In this article, we propose a U-Statistic-based method, a 
stepwise U-test, for testing the joint association between 
multiple genetic variants and multiple phenotypes. It can be 
viewed as an extension of a recently developed forward U-
test for single-phenotype analyses [23]. The proposed meth-
od has the following properties: 1) it searches forwardly for 
SNPs that are associated with one or more phenotypes; 2) it 
filters backwardly to remove phenotypes that are not relevant 
to genetic variants; and 3) it tests the joint effect among 
SNPs while allowing for possible interactions. Through sim-
ulations, we have shown the proposed method had improved 
performance over a single-phenotype test. We also illustrated 

the proposed method with an application to Nicotine De-
pendence (ND).

2. METHODS 

 Suppose we have a study population of N subjects. Each 
subject has T measured phenotypes, and is genotyped with K
SNPs. Let 

,1 ,( ...... )i i i TY y y=  and 
,1 ,( ...... )i i i KX x x=  be 

the phenotypes and SNP genotypes for subject i. Here, we 
assume that all phenotypes are quantitative and may have 
unknown distributions. We further assume 1) a subset of 
phenotypes is associated with part of K SNPs; 2) a subset of 
SNPs influences part of T measured phenotypes with possi-
ble interactions.

2.1. U-Statistic 

 We have recently proposed a U-Statistic-based method, 
referred to as forward U-test, to test the joint association 
analysis between multiple loci and a single phenotype [23]. 
In this article, we extend forward U-test for testing the joint 
association between multiple loci and multiple phenotypes. 
Following the similar notations, we assume k disease-
associated SNPs comprising L multi-locus genotypes, denot-
ed by G1, G2, . . . , GL. The selection process of k disease-
associated SNPs is detailed below (Section 2.2). Here, a mul-
ti-locus genotype, Gl, is defined as a vector of k single-locus
genotypes that an individual carries. We denote by 

{ | }l i lS i X G= =  the group of subjects carrying a multi-

locus genotype, lG , 1 l L� � ; and | |l lm S=  the number 
of subjects in Sl.

 For each single phenotype ty ,1 t T� � , we first 

choose a kernel function as 
, , , ,( , )i t j t i t j t� y y y y= � , and 

then define a general L-group U-Statistic, 
( )

, ,( ) 1

,1

�
�

t

l l l lt l l L

l ll l L

U
U

� ��� < �

��� < �

=
�

� ,    Eq. (1) 

where ( )

, , ,

,

( , )
l l

t

l l i t j t

i S j S

U � y y
�

�

� �

= �  is a two-group U-statistic 

defined for groups
lS and

lS
�
, and

,� ( ) /( )l l l l l lm m m m
� � �
= +  is 

a weight parameter to account for the number of subjects in 
various genotype groups. Given the U-Statistic of each phe-
notype defined in Eq. (1), a multivariate U-Statistic for T
phenotypes,

1( ...... )TY y y= , can be formed as 
(1) ( 2) ( )

( , ...... )
TU U U U= . Under the null hypothesis of no 

association, it follows asymptotically a multivariate normal 
distribution, N(0, � ). The test statistic to evaluate the joint 
association of k SNPs and T phenotypes is thus defined as:

 
1

U U
�

�� = � ,      Eq. (3) 

which follows a Chi-square distribution with T degrees of 
freedom, 2� ( )T . In practice, the sample covariance matrix 
� is used in Eq. (3), which is detailed in the Appendix. 
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2.2. Forward Section of SNPs 

 While dealing with a large number of SNPs, it is likely 
that a significant proportion of SNPs are not disease-related. 
In this article, we follow the same strategy used in the for-
ward U-test to select k disease-associated SNPs from total K
genotyped SNPs, and use them to build the above test statis-
tic� . This selection process starts with a single SNP. In the 
first step, each SNP j can partition the subjects into two gen-
otype groups in three possible ways: 

1 , 2 ,{ { | AA}, { | Aa/aa}}i j i jS i x S i x= = = = ;

1 , 2 ,{ { | Aa}, { | AA/aa}}i j i jS i x S i x= = = = ; and 

1 , 2 ,{ { | aa}, { | AA/Aa}}i j i jS i x S i x= = = = .

We scanned each SNP, and select a single SNP and a parti-
tion with the maximum test statistic� . We denote the corre-
sponding partitioning strategy in the first step as 
{ (1) (1)

1 2,S S }. In the second step, a second SNP j � is selected 
and further partition all subjects into four groups, as 
{ ( 2) (1)

1 1 1

jS S S
�

= � , ( 2) (1)

2 1 2

jS S S
�

= � , ( 2 ) (1)

3 2 1

jS S S
�

= � ,
( 2 ) (1)

4 2 2

jS S S
�

= � }. Again, the SNP and partitioning strategy 
with the largest test statistic�  is selected. It should be noted 
that under the null hypothesis of no association, the four 
groups of subjects (i.e. ( 2)

1S …. ( 2 )

4S ) have the same pheno-
typic values. Upon the rejection of the null hypothesis, the 
phenotypes are not all equal among four groups of subjects, 
without assuming an additive effect from SNPs. Therefore, 
the proposed method tests for association while allowing for 
statistical interactions, [25] and SNPs with non-linear inter-
action effects can be detected. By repeating the selection 
process, SNPs is selected forwardly to partition subjects into 
multi-locus genotype groups. To avoid the issue of over-
fitting, a 10-fold cross-validation procedure is adopted to 
determine the most parsimonious model. Assuming the for-
ward selection is stopped at step s, we then have the final 
model with s SNPs, which comprise L multi-locus genotype 
groups, { ( ) ( ) ( )

1 2, ......,
s s s

LS S S }.

2.3. Backward Section of Phenotypes 

When dealing with multiple phenotypes, it is also likely 
that a subset of phenotypes has no genetic relevance. Be-
cause the number of phenotypes is generally small, we pro-
pose to use a backward selection strategy to filter out pheno-
types that are not genetically related. The selection process 
starts with all T available phenotypes. In the first step, multi-
locus genotype groups can be formed by using the forward 
selection process described in Section 2.2, with a corre-
sponding test statistic T� . In the second step, by removing 

one phenotype, ; 1ty t T� � , at a time, T possible pheno-
type subsets can be formed, each with T-1 phenotypes. For 
each subset of phenotypes, multi-locus genotype groups can 
be formed by using the forward selection, with a correspond-
ing test statistic

�
� � �

( )

1 ,1
t

T t T . The smallest test statistic 

obtained from T possible phenotype subsets, 
�

� 0( )

1

t

T
, will then 

be compared to that of T phenotypes, 
T�  by their corre-

sponding p-values. The genotype-phenotype association can 
be assessed by 2

(� ( ) )T Tp P T= � �  and 0 0( ) ( )2

1 1(� ( 1) )
t t

T Tp P T
� �
= � � �  for 

T phenotypes and T-1 phenotypes, respectively. We remove 
a phenotype,

0t
y , if 0( )

1

t

T �
� leads to a more significant associ-

ation than T� , i.e. 
�

� 0( )

1

t

T Tp p . The backward selection of 
phenotypes and forward selection of SNPs are conducted 
iteratively until no phenotypes can be removed to improve 
the significance of the association.  

2.4. Test of Significance 

 Because the proposed method conducts model selection 
by maximizing the test statistic, the asymptotic test is no 
longer valid [26-28]. To examine the overall significance of 
the association, a permutation test is then conducted by ran-
domly shuffling the phenotypes and then applying the for-
ward selection of SNPs and backward selection of pheno-
types as described above. Based on the permutation distribu-
tion of the test statistic� , an empirical P-value, which takes 
model selection into account, can be attained. In a replication 
study when the multi-locus genotype combinations and the 
subset of phenotypes are pre-determined from an initial 
study, the overall significance of the association can be ob-
tained from a Chi-square distribution.

3. RESULTS 

3.1. Simulation Studies 

Simulation Settings 

 We conducted simulation studies to evaluate the pro-
posed method, and compared it to the forward U-test, which 
analyzes one phenotype at a time. In each replicate, we simu-
lated 1,000 subjects, each genotyped with 10 SNPs. The 
genotypes were simulated by assuming a minor allele fre-
quency of 0.3 and Hardy Weinberg Equilibrium (HWE). 
Each simulation scenario was repeated for 1,000 times to 
evaluate the type I error rates and statistical power of two 
methods. For simplicity, we assume an additive model for kth

SNP (i.e., 0kx = for AA, 1kx = for Aa, and 2kx = for
aa). We first evaluated the type I error rate of the proposed 
method by simulating the phenotypes independently from 
the genotypes, assuming each phenotype follows a standard 
normal distribution. The type I error rates were evaluated for 
a varying number of phenotypes (i.e. from 1 to 5). To evalu-
ate statistical power, phenotypes were simulated according to 
various disease scenarios described below.  

Simulation I: Varying Number of Shared SNPs 

 In the first simulation, we considered two phenotypes, 
each influenced by 4 SNPs with an additive effect. We eval-
uated the performance of the proposed method by varying 
the number of shared SNPs that were associated with both 
phenotypes (i.e. from 0 to 4). The two phenotypes were thus 
simulated by:
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4

1 1

0 0

4

2 4 2

0 0

� � �

� � �

q q

i i j q j

i j

q q

i i k k

i k

y x x

y x x

�

+

= =

�

+

= =

�
= + +�

�
�

�
= + +

�
�

� �

� �

;

0 0 0� � � 0; {0,1, 2, 3, 4}q= = = � ; 

where the first q SNPs were shared SNPs that were associat-
ed with both phenotypes; and the remaining (4-q) SNPs were 
unique SNPs that were associated with one of the pheno-
types. In such a disease scenario, we expected that the shared 
genetic components of two phenotypes would increase as the 
number of shared SNPs increased.

Simulation II: Varying Effect Size

 In the second simulation, we also considered two pheno-
types, each influenced by 2 SNPs with an additive effect. We 
further assumed two phenotypes shared one causal SNP. The 
phenotypes were thus simulated by:

1 1 2 1

2 1 3 2

� � �
� � �

y x x

y x x

= + +�
�

= + +� ;

where
1x  was the shared SNP that influenced both pheno-

types, and 
2x and 3x  are unique SNPs that only influenced 

one of the phenotypes. We evaluated the performance of the 
proposed method by varying the relative contribution be-
tween the shared SNP and the unique SNPs (i.e. � /�  and �
/ � ).

Simulation III: Varying Patterns of Interaction Effects 

 In the third simulation, we considered two phenotypes, 
influenced by 2 shared SNPs, but through various modes of 
inheritance that may or may not involve interactions. Each 
phenotype was simulated from three possible disease mod-
els, including an additive effect model, a multiplicative ef-
fect model, and a threshold effect model. The first model did 
not have an interaction effect, while the other two models 
had an interaction effect. The details of the simulation were 
described below: 

a. Both phenotypes were simulated through an additive ef-
fect model,

1 1 1 2 2 1

2 1 1 2 2 2

� � �
� � �

y x x

y x x

= + +�
�

= + +� ; 

b. One phenotype was simulated through an additive effect 
model, while the other phenotype was simulated through 
a multiplicative effect model, which assumed an interac-
tion effect on a multiplicative scale.

1 1 1 2 2 1

2 1 1 2 2 3 1 2 2

� � �
� � � �

y x x

y x x x x

= + +�
�

= + + +� ;  

c. One phenotype was simulated through an additive effect 
model, while the other phenotype was simulated through 
a threshold effect model, which assumed an interaction 
effect in the presence of minor alleles at both SNPs,  

1 1 1 2 2 1

2 1 2 2

� � �
� ( 0) ( 0) �

y x x

y I x I x

� = + +�
�

= � > > +��  ; 

d. One phenotype was simulated through a multiplicative 
effect model, while the other phenotype was simulated 
through a threshold effect model, 

  

1 1 1 2 2 3 1 2 1

2 1 2 2

� � � �
� ( 0) ( 0) �

y x x x x

y I x I x

� = + + +

�
= � > > +� . 

Simulation IV: Varying Number of Phenotypic Traits 

 In the fourth simulation, we considered a varying number 
of phenotypes (i.e. from 3 to 5). We further assumed only 2 
phenotypes were genetically related, so that the number of 
noise phenotypes varied from 1 to 3. The first two pheno-
types were simulated through the disease models discussed 
in Simulation III, while the remaining phenotypes were sim-
ulated independently from the genotypes, assuming a stand-
ard normal distribution.

3.2. Simulation Results 

Type I Error 

 The results of type I error for the stepwise U-test are 
summarized in Table 1. The results have shown that type I 
error of the new method remained well controlled at the level 
of 0.05 for different numbers of phenotypes.

Simulation I: Varying Number of Shared SNPs 

 To evaluate the statistical power, we conducted 1,000 
permutation replicates for each simulation scenario. The 
power was defined as the probability of the observed test 
statistic exceeding the 95 percentile of the empirical permu-
tation distribution. We also used sensitivity and specificity to 
measure the accuracy of SNP selection. In particular, Sensi-
tivity A was defined as the probability to select a causal SNP 
that influenced only one of the phenotypes; Sensitivity B was
defined as the probability to select a causal SNP that influ-

Table 1. Type I error rates of the stepwise U-test for different numbers of phenotypes. 

Number of Phenotypes 1 Phenotypes 2 Phenotypes 3 Phenotypes 4 Phenotypes 5 Phenotypes 

Type I error 0.042 0.053 0.045 0.051 0.050 
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enced both phenotypes; and Specificity was defined as 1 - the 
probability to select a SNP that influenced none of the phe-
notypes. The definition of these measurements remained 
same for all simulation scenarios. 
 The results of Simulation I are summarized in Table 2.
The results showed that the power of single-phenotype anal-
ysis remained stable around 0.50 (i.e. between 0.481 and 
0.530). When two phenotypes shared no causal SNPs (i.e. 
q=0), the power of the multi-phenotype analysis (i.e. 0.544) 
was comparable to that of the single-phenotype analysis. 
However, the power of multi-phenotype analysis increased 
as the number of shared SNPs increased. When all causal 
SNPs were shared SNPs (i.e. q=4), the power of the multi-
phenotype analysis (i.e. 0.903) was substantially higher than 
that of single-phenotype analysis. In terms of SNP selection, 
multi-phenotype showed an improved ability to select shared 
SNPs than single-phenotype analysis (i.e. sensitivity B), but 
reduced probability to select unique SNPs (i.e. sensitivity A). 
In terms of specificity, single-phenotype analysis and multi-
phenotype analysis had comparable performance (i.e. around 
95%).

Simulation II: Varying Effect Size 

 The results of Simulation II are summarized in Table 3.
When the effect sizes of causal SNPs increased, the statisti-

cal power of both multi-phenotype analysis and single-
phenotype analysis increased. Furthermore, when the effect 
sizes of shared SNPs or unique SNPs increased, the power of 
single-phenotype analysis increased on a similar level. Nev-
ertheless, the power of multi-phenotype analysis increased 
substantially when the effect size of shared SNP increased.  
 In terms of SNP selection, SNPs with larger effect sizes 
were more likely to be selected from either single-phenotype 
or multi-phenotype analysis. Multi-phenotype analysis may 
increase the probability to select a shared SNP (i.e. sensitivi-
ty A), but reduce the probability to select a unique SNP (i.e. 
sensitivity B). The specificity remained at a high level for 
both single-phenotype and multi-phenotype analyses (i.e. 
over 90%).

Simulation III: Varying Underlying Disease Models 

The simulation results are summarized in Table 4. The re-
sults showed that both single-phenotype and multi-phenotype 
analysis were able to detect the joint association when there was 
an interaction effect between SNPs. Furthermore, multi-
phenotype analysis attained increased power over single-
phenotype analysis. The power improvement was achieved 
with/without the interaction effect. In terms of SNP selection, 
multi-phenotype analysis had improved sensitivity and speci-
ficity over single-phenotype analysis for all scenarios.  

Table 2. Power comparison between single-phenotype analyses and multi-phenotype analyses when the number of shared SNPs 
varies

Disease Model  

Single-Phen4 Multi-Pheno5

1y
2y ( 1y ,

2y )

1 1 2 3 4 1

2 5 6 7 8 2

0.15 0.15 0.15 0.15 �
0.15 0.15 0.15 0.15 �

y x x x x

y x x x x

= + + + +�
�

= + + + +�

Power
Sensitivity A1

Sensitivity B2

Specificity3

0.509
0.481

--
0.960

0.503
0.474

--
0.956

0.544
0.241

--
0.959

1 1 2 3 4 1

2 1 5 6 7 2

0.15 0.15 0.15 0.15 �
0.15 0.15 0.15 0.15 �

y x x x x

y x x x x

= + + + +�
�

= + + + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.489
0.471
0.486
0.957

0.509
0.471
0.476
0.962

0.626
0.216
0.628
0.967

1 1 2 3 4 1

2 1 2 5 6 2

0.15 0.15 0.15 0.15 �
0.15 0.15 0.15 0.15 �

y x x x x

y x x x x

= + + + +�
�

= + + + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.514
0.489
0.462
0.961

0.513
0.473
0.479
0.961

0.769
0.194
0.666
0.973

1 1 2 3 4 1

2 1 2 3 5 2

0.15 0.15 0.15 0.15 �
0.15 0.15 0.15 0.15 �

y x x x x

y x x x x

= + + + +�
�

= + + + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.527
0.463
0.476
0.959

0.530
0.491
0.486
0.962

0.880
0.152
0.675
0.974

1 1 2 3 4 1

2 1 2 3 4 2

0.15 0.15 0.15 0.15 �
0.15 0.15 0.15 0.15 �

y x x x x

y x x x x

= + + + +�
�

= + + + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.491
--

0.481
0.960

0.481
--

0.466
0.955

0.903
--

0.677
0.973

1Sensitivity A: the probability of selecting a causal SNP that influences only one phenotype 
2Sensitivity B: the probability of selecting a causal SNP that influences both phenotypes 
3Specificity   : the probability of selecting a SNP that influences none of the phenotypes 
4 single-phenotype analyses are conducted by using forward U-test 
5 multi-phenotype analyses are conducted by using stepwise U-test
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Table 3. Power comparison between single-phenotype analysis and multi-phenotype analysis when the effect sizes vary 

Disease Model  
Single-Phen1 Multi-Phen2

1y
2y 1 2( , )y y

1 1 2 1

2 1 3 2

0.1 0.1 �
0.1 0.1 �

y x x

y x x

= + +�
�

= + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.191
0.439
0.456
0.903

0.178
0.473
0.462
0.900

0.353
0.260
0.600
0.913

1 1 2 1

2 1 3 2

0.1 0.2 �
0.1 0.2 �

y x x

y x x

= + +�
�

= + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.320
0.944
0.253
0.954

0.340
0.929
0.238
0.952

0.449
0.505
0.281
0.959

1 1 2 1

2 1 3 2

0.2 0.1 �
0.2 0.1 �

y x x

y x x

= + +�
�

= + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.330
0.246
0.940
0.950

0.335
0.233
0.941
0.962

0.823
0.087
0.996
0.971

1 1 2 1

2 1 3 2

0.2 0.2 �
0.2 0.2 �

y x x

y x x

= + +�
�

= + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.645
0.845
0.832
0.960

0.650
0.823
0.846
0.954

0.927
0.371
0.916
0.971

1 single-phenotype analysis is conducted by using forward U-test 
2 multi-phenotype analysis is conducted by using stepwise U-test

Table 4. Power comparison between single-phenotype analysis and multi-phenotype analysis by varying underlying disease models 

Disease Model 
 Single-Phen1 Multi-Phen2

1y
2y 1 2( , )y y

1 1 2 1

2 1 2 2

0.1 0.1 �
0.1 0.1 �

y x x

y x x

= + +�
�

= + +�

Power
Sensitivity
Specificity

0.167
0.453
0.900

0.181
0.469
0.904

0.404
0.582
0.933

1 1 2 1

2 1 2 2

0.1 0.1 �
0.2 ( 0) ( 0) �

y x x

y I x I x

� = + +

�
= > > +�

Power
Sensitivity
Specificity

0.165
0.457
0.904

0.124
0.378
0.883

0.343
0.526
0.916

1 1 2 1

2 1 2 1 2 2

0.1 0.1 �
0.1 0.1 0.05 �

y x x

y x x x x

� = + +

�
= + + +�

Power
Sensitivity
Specificity

0.162
0.447
0.900

0.280
0.567
0.930

0.512
0.660
0.945

1 1 2 1 2 1

2 1 2 2

0.1 0.1 0.05 �
0.3 ( 0) ( 0) �

y x x x x

y I x I x

= + + +�
�

= � > > +�

Power
Sensitivity
Specificity

0.314
0.582
0.930

0.334
0.600
0.934

0.722
0.744
0.953

1 single-phenotype analysis is conducted by using forward U-test 
2 multi-phenotype analysis is conducted by using stepwise U-test

Simulation IV: Varying Number of Phenotypes 

 The simulation results are summarized in Table 5. The 
results showed that the power decreased slightly as the num-
ber of noise phenotypes increased. In terms of SNP selec-
tion, both sensitivity and specificity decreased when the 
number of noise phenotypes increased.
 In summary, our simulations have shown that: 1) Com-
pared to the analysis of single phenotype with forward U-

test, the analysis of multiple phenotypes with stepwise U-test 
has increased power to detect the association, especially 
when the phenotypes share relatively large genetic causes 
(e.g. more shared SNPs, larger effect size of shared SNPs). 
2) Stepwise U-test has an increased the probability to detect 
shared SNPs, but a reduced probability to detect SNPs that 
are only causal to a particular phenotype. 3) Similar to for-
ward U-test, stepwise U-test is able to detect the joint associ-
ation when there are genetic interactions between genetic 
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variants. 4) The performance of stepwise U-test remains ro-
bust in the presence of noise phenotypes.

3.3. Application to a Nicotine Dependence (ND) Dataset 

 We illustrated the proposed stepwise U-test with an ap-
plication to a dataset from the Study of Addiction: Genetics 
and Environment (SAGE). The SAGE study is part of the 
Gene Environment Association Studies initiative (GENE-
VA) funded by the National Human Genome Research Insti-
tute. The SAGE samples were selected from three large 
complementary datasets: the Family Study of Cocaine De-
pendence (FSCD), the Collaborative Study on the Genetics 
of Alcoholism (COGA), and the Collaborative Genetic Study 
of Nicotine Dependence (COGEND) [29]. All samples in 
SAGE were unrelated and have quantitative measurements 
of various phenotypes for additions, such as alcohol, nico-
tine, marijuana, cocaine, opiates and other drugs. In this arti-
cle, we focused on three ND-related phenotypes, including 
participant’s lifetime score on Fagerström Test for Nicotine 
Dependence (ftnd_total), number of cigarettes smoked per 
day (ftnd_4), and number of nicotine symptoms endorsed 
(nic_sx_tot). We evaluated the joint association between 
three phenotypes and 155 SNPs that were reported for their 
potential association with ND. Because the SAGE study only 
had the genotypes of 128 SNPs, we further imputed the gen-
otype of the other 27 SNPs by using PLINK [30]. Our study 
population was mainly biracial, and we used HapMap phase 
III founders of CEU (Utah residence with Northern and 
Western European ancestry) and ASW (African ancestry in 
Southwest USA) as the reference panels for the Caucasian 
and African American subjects respectively [31].
 We applied stepwise U-test to samples of COGEND for 
an initial association analysis and to samples of FSCD and 
COGA for the replication analysis. The results are summa-
rized in Table 6. Based on the initial dataset COGEND, the 
analysis identified two SNPs, rs10508649 and rs2491397, 
joint associated with three ND-related phenotypes, with a 
nominal P-value of 3.79e-13. By using permutation, the em-
pirical p-value of the association reached the significance 
level of 0.001. This association remained to be significant in 
both FSCD (P-value=2.37e-05) and COGA (P-value=7.46e-
05).
 For comparison purposes, we also conducted single-
phenotype analyses by using forward U-test. The findings of 
single-phenotype analyses varied among three phenotypes. 

Based on the initial dataset of COGEND, 1) the analysis of 
the lifetime FTND score (ftnd_total) identified the same two 
SNPs with the multi-phenotype analyses; 2) the analysis of 
the number of cigarettes smoked per day (ftnd_4) revealed a 
different SNP, rs2036527; 3) the analysis of the number of 
nicotine symptoms endorsed (nic_sx_tot) found two SNPs, 
rs10508649 and rs7517376, one of which overlapped with 
the SNPs identified from the multi-phenotype analyses. All 
of the findings from single-phenotype analyses showed sig-
nificant associations in the initial data COGEND. However, 
these associations could not be replicated in either FSCD or 
COGA. This result indicated that the proposed multi-
phenotype strategy might improve the testing power and 
obtain more robust findings over its single-phenotype alter-
native.

4. DISCUSSION 

 Complex diseases are thought to be influenced by the 
interplay of hundreds or even thousands genetic variants 
through complex mechanisms [32]. Multi-locus methods, 
taking genetic interactions into account, could have im-
proved power to detect disease-susceptibility genetic vari-
ants. Furthermore, complex phenotypes, such as nicotine 
dependence, are commonly assessed by multiple measures 
that are complementary to each other [33-37]. For example, 
the two gold-standard measures of nicotine dependence, the 
FTND score and the Diagnostic and Statistical Manual of 
Mental Disorders (DSM), were found to have a relatively 
low concordance with a Kappa estimate of 0.2. [35, 38] It 
was suggested that the FTND and DSM measurements em-
phasis on physical symptoms and psychiatric symptoms, 
respectively, each of which reflects a unique aspect of ND 
development. Other studies have also pointed out that ND 
can be assessed through various aspects, including physical, 
behavioral and psychological components [36]. While it re-
mains challenging to define a single comprehensive meas-
urement for better characterizing complex phenotypes, such 
as ND, new statistical methods can be used to facilitate the 
genetic discovery process by taking advantage of currently 
available multiple phenotypes in the analysis.  
 In this article, we proposed a stepwise U-test for testing 
the joint association between multiple loci and multiple phe-
notypes. Similar to the forward U-test developed for single-
phenotype analyses, the proposed method is entirely non-
parametric, which makes no assumption of the phenotype 
distribution and the underlying disease mechanisms (i.e. 

Table 5. Performance of multi-phenotype analysis with varying number of noise phenotypes 

Disease Model  2 Pheno +1 noise +2 noise +3 noise 

1 1 3 1

2 2 3 2

0.2 0.2 �
0.2 0.2 �

y x x

y x x

= + +�
�

= + +�

Power
Sensitivity A 
Sensitivity B 
Specificity

0.927
0.371
0.916
0.971

0.922
0.348
0.896
0.963

0.906
0.344
0.892
0.956

0.852
0.339
0.881
0.950

1 1 2 1 2 1

2 1 2 2

0.1 0.1 0.05 �
0.3 ( 0) ( 0) �

y x x x x

y I x I x

= + + +�
�

= � > > +�

Power
Sensitivity
Specificity

0.722
0.744
0.953

0.716
0.676
0.965

0.653
0.663
0.951

0.570
0.638
0.938
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modes of inheritance). We conducted simulation studies to 
compare the performance of two testing strategies: single-
phenotype analysis and multi-phenotype analysis. Our simu-
lation results demonstrated that multi-phenotype analysis 
could have better performance than single-phenotype analy-
sis, especially when phenotypes of interest have similar un-
derlying genetic etiologies (e.g., share part of causal genetic 
variants). The better performance of multi-phenotype analy-
sis can be explained by its capacity of capturing collective 
effect of genetic variants over all relevant phenotypes. When 
there are a significant number of shared SNPs contributed to 
these phenotypes, multi-phenotype analysis is expect to out-
perform single-phenotype analysis.
 In the article, we have focused on the association analysis 
of multiple quantitative phenotypes, by using a kernel func-
tion to measure the phenotype difference between two sub-
jects. For dichotomous phenotypes, extension can be made 
by using a different kernel function [39]: 

1  ( ) ( )

[ ( ), ( )] 0.5  ( ) ( )

0  ( ) ( )

j i

i j j i

j i

if LR G LR G

� LR G LR G if LR G LR G

if LR G LR G

� <

�
= =�

�
>

� ; 

where ( | 1)
( )

( | 0)

P G y
LR G

P G y

=
=

=

 is the likelihood ratio of a par-

ticular genotype group. 
 Similar to forward U-test for the analysis of single phe-
notype, stepwise U-test also adopted a forward search strate-
gy to select disease-associated SNPs. Therefore, it is compu-
tationally feasible to apply stepwise U-test to a relatively 
large number of SNPs. The computational time will depend 
on various factors, such as the number of variants, the num-
ber of phenotypes and sample size. Under our simulation 
setting with 2 phenotypes, 10 SNPs and 1,000 samples, it 
took an average computation time of 128.4 (SD=71.6) se-

conds to run each replicate on a desktop with a single core of 
2.90 GHz and 8 GB RAM.
 In the real data application, we identified and replicated 
the joint association of two SNPs, rs10508649 and 
rs2491397, with three ND phenotypes based on three inde-
pendent datasets. The two SNPs are located in two genes, 
PIP4K2A and GABBR2, respectively. Gene GABAB2, known 
as Gamma-aminobutyric acid (GABA) B receptor 2, is a G-
protein coupled receptor subunit that mediates inhibitory 
neurotransmitter in the central nervous system [40]. SNP 
rs2491397 was reported to be associated with the develop-
ment of ND through haplotypes in the GABAR2 gene, [41] 
which was found to be associated with a number of meas-
urements of ND, including the smoking quantity (SQ), the 
heaviness of smoking index (HSI), and the FTND score [42-
44]. GABAB2 was also reported to be interacting with other 
genes, such as GABAB1, for a joint association with ND 
[45]. Moreover, PIP4K2A was found to be associated with 
other psychiatric disorders, such as schizophrenia [46-49]. 
SNP rs10508649 is located within PIP4K2A, and was found 
to be associated with ND outcome measured by FTND score 
[50]. In our study, the results also indicated that this SNP 
was potentially associated with other ND measurements, 
such as the number of symptoms endorsed. While it is bio-
logically plausible that these two identified SNPs may be 
involved in a number of manifestations of ND, further stud-
ies are still needed to replicate the findings and investigate 
their effects on ND development.
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APPENDIX

EMPIRICAL ESTIMATION OF THE VARIANCE-COVARIANCE MATRIX OF U 

 Suppose we have a study population of N subjects, each measured with T phenotypes, 
1( ...... )TY y y= . We assume the 

subjects are independent, and denote 2
( ) �t tVar y = ,

1 2 1 2,( , ) �t t t tCov y y = , where 
1 21 , ,t t t T� � . The proposed multivari-

ate U-Statistic has a form of (1) ( )
( , ......, )

TU U U= . For simplicity, we denote ( ) ( ) ( )

, ,

1

�t t t

l l l l

l l L

U U
� �

�� < �
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, , ,
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( , )
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l l i t j t
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U � y y
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= � , 1 t T� � .

a) Variance of univariate U-Statistic for each phenotype  

For any t, 1 t T� � , the derivation of ( )
( )

tVar U was detailed elsewhere [23]. Following the same notation, we have
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The covariance, 
1 1 2 2
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, ,( , )
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l l l lCov U U
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, can be estimated according to different scenarios:  
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, ,( , ) 0
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=
; 

2) when 1 2l l l= =
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b) Covariance of the univariate U-Statistics of two phenotypes 
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Further, the co-variance can be estimated according to different scenarios: 
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4) for others, 
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