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Abstract

In the last decade, plenty of biological networks are built from the large scale experimental data produced by the
rapidly developing high-throughput techniques as well as literature and other sources. But the huge amount of
network data have not been fully utilized due to the limited biological network analysis tools. As a basic and essential
bioinformatics method, biological network alignment and querying have been applied in many fields such as
predicting new protein-protein interactions (PPI). Although many algorithms were published, the network alignment
and querying problems are not solved satisfactorily. In this paper, we extended CNetQ, a novel network querying
method based on the conditional random fields model, to solve network alignment problem, by adopting an iterative
bi-directional mapping strategy. The new method, called CNetA, was compared with other four methods on fifty
simulated and three real PPI network alignment instances by using four structural and five biological measures. The
computational experiments on the simulated data, which were generated from a biological network evolutionary
model to validate the effectiveness of network alignment methods, show that CNetA gets the best accuracy in terms of
both nodes and networks. For the real data, larger biological conserved subnetworks and larger connected
subnetworks were identified, compared with the structural-dominated methods and the biological-dominated
methods, respectively, which suggests that CNetA can better balances the biological and structural similarities. Further,
CNetQ and CNetA have been implemented in a new R package Corbi (http://doc.aporc.org/wiki/Corbi), and freely
accessible and easy used web services for CNetQ and CNetA have also been constructed based on the R package.
The simulated and real datasets used in this paper are available for downloading at http://doc.aporc.org/wiki/CNetA/.

Introduction

In the systems biology era, more and more biologists
focus on the biological systems instead of individual
molecules. The biological networks such as protein-
protein interaction (PPI) networks are the most natural
and efficient approaches for studying and modeling the
complex biological systems. In the last decade, plenty of
biological networks are built from the large scale experi-
mental data produced by high-throughput techniques as
well as literature and other sources [1-7]. However, the
huge amount of network data have not been fully utilized
due to the limited biological network analysis tools. One
of the basic and important problems in the fields of
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biological network analysis is network alignment. In brief,
network alignment aims to identify biological conserved
subnetworks among two or more different biological
networks and evaluate the global or local similarity of
biological networks. A simplified version of network align-
ment is equivalent to the maximum subgraph isomor-
phism problem, which is NP-complete, i.e. there is no
efficient algorithm according to the computational com-
plexity theory. The biological network alignment may be
much harder due to the complex evolutionary events such
as gene mutations and duplications.

There are many network alignment algorithms pub-
lished in literature, e.g., Greemlin [8], MRF based
method [9], MNAligner [10], IsoRank [11,12], IsoRankN
[13], MI-GRAAL [14]. The network alignment problem
is often formulated into an optimization problem, and
solved by heuristic algorithms such as the seed extend
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algorithm [14]. The network alignment is essentially a
multi-objective optimization problem, and there are two
objectives: the biological similarity and the structural
similarity. Based on the different trade off strategies
between two objectives, we categorized the network align-
ment methods into three groups: structural-dominated,
biological-dominated, and balanced. Due to the large sizes
of biological networks, the computational complexity
becomes the most important issue for the network align-
ment methods. New models that can appropriately balance
the biological and structural similarities and algorithms that
can efficiently and effectively solve the large scale problem
are extremely demanded in the fields of systems biology.
Biological network alignment methods are usually
designed specific to different variants of the problem.
Fast algorithms are developed for network querying pro-
blem, that is, given a small and simple network, identifying
the best matched subnetworks in a large and complex
network. Pairwise and multiple large network alignment
problems are also separately considered because of the
computational complexity and the desired mapping types.
The one-to-one mapping is often used for pairwise
network alignment to find the precise matching, while
many-to-many mapping is more used in multiple network
alignment for studying the evolutional events. In a
previous work [15], we developed a network querying
method named CNetQ. By formulating the network
querying problem as a conditional random fields (CRF)
model, which is widely used in the fields of machine learn-
ing, we designed efficient algorithms specific to different
structures of query networks. In this paper, by adopting a
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novel iterative bi-directional mapping strategy, we further
extended CNetQ to the pairwise network alignment pro-
blem with one-to-one mapping, and named the new
method CNetA. In this study, four structural and five bio-
logical measures were utilized to assess the performance
of network alignment methods. CNetA was compared
with a seed-and-extend method MI-GRAAL [14], and two
simple BLAST-based methods [16] as well as CNetQ. The
computational experiments on the simulated and real data
showed that CNetA can properly balance the biological
and structural similarities and achieve more accurate
results in terms of both nodes and networks.

Methods

Network alignment problem

A biological network is often mathematically defined as
a graph G = (V, E), where V is the set of nodes (e.g.
proteins) and E is the set of edges (e.g. interactions
between proteins). The edge can be directed or undirected.
For example, PPI networks are usually modeled as an
undirected graphs, and metabolic networks and gene
regulatory networks are usually regarded as directed
graphs. Using the graph representations, network align-
ment problem can be generally described as follows. Given
two biological networks G = (V; E) and G’ = (V’, E’),
network alignment aims to find the maximum conserved
subnetworks of G and G’. The word “conserved” means
that the corresponding nodes of two subnetworks are
biologically similar and the structures of two subnetworks
are also similar. As illustrated by a simple example in
Figure 1, the network alignment should consider the

mismatch

G1

match

function/changed

new pathway nodes

Figure 1 An example of network alignment between G; and G,. A network alignment model needs to deal with the node mutations (e.g.
insertion, deletion, duplication, mismatch, and also function changed) and the edge mutations (e.g., detachment, attachment).
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evolutional events such as node insertion/deletion and
edge attachment/detachment.

Conditional random field model

We developed a conditional random fields model
CNetQ to address the network querying problem in [15],
which is a special case of network alignment. Given a
small network (query) and a large network (target), net-
work querying is to find the subnetworks of target similar
to query. The CNetQ model is briefly described as
follows and readers can refer to [15] for more details.
Suppose a network G = (V, E) is queried in a target net-
work G’ = (V/, E'). If we consider G’ as a label set, that is,
V’ are all possible labels and E’ are the relations between
labels, the network querying problem can be relaxed to a
labeling problem, that is, to find the best label from G’
for each node in G. We defined a CRF model to assign a
conditional probability to each possible labeling solution
YcG:

1 .
Pr(Y|G) = 20 [0 G i)
v;eV
1_[ fE(Vu YJ/ G/ l/])
(i),‘,l/l‘) €E

where y; is the label in Y assigned to node vi in G, fy , f£
are called node and edge feature functions respectively,
and Z(G) is the normalization factor. The solution with
the maximum conditional probability is extracted as the
final result. Considering the node insertions/deletions, we
use the following definitions for node and edge feature
functions respectively [15]:

In@i, G, 1) = S(vi, yi),

o S y) + S, y)
feyiy;, G ij) = =L 22007

> W(yi vj)-

where S(v; y;) and W (y; y; ) are the non-negative node
and edge similarity scores respectively. The details and dis-
cussion about feature functions can be found in [15,17].

Iterative bi-directional mapping strategy

There are two key issues when applying CNetQ to the
pairwise network alignment problem. The first one is
that CNetQ allows many-to-one mapping while pairwise
biological network alignment often requires one-to-one
mapping. For network querying, it is very rare that two
nodes in the query network are matched to one node
since the query is very small. The many-to-one mapping
becomes common while the size of query network
increases. The gene duplications may result in many
functional similar proteins. The other issue is the asym-
metric results. That is, the result of querying X in Y is
different from that of querying Y in X, which is not
expected in pairwise biological alignment.
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In order to overcome these issues, we proposed a novel
network alignment method CNetA by using an iterative
bi-directional mapping strategy. At each iteration, we do
twice network querying by applying CNetQ, that is,
querying G in G’ and vise versa, and fix the common
matching pairs of two results in the rest iterations and
update the node feature function. The process is repeated
until there is no new common matching pairs. More
details of the iterative bi-directional mapping strategy
can be found in [17].

Evaluation measures

For the simulated data, network alignment results are
compared with the true alignments. But for the real bio-
logical data, the true alignments are not available. We col-
lected and improved several evaluation measures in
literature to assess the performance of network alignment
methods. In detail, we used four structural measures,
including that the number of matching pairs (MP), edge
correctness (EC) [14], edge accumulated coverage (EAC),
the size of largest common connected subgraph (LCCS)
[14], and five biological measures, that is, the fraction of
matching pairs that share GO terms (SGO) [14], GO
coverage, the number of hit pathways(HP) [8], pathway
average coverage (PAC) [8], KEGG orthologous proteins
(OP) [8]. More details and discussion of evaluation
measures can be found in [17].

Simulated data

In the preliminary version of this paper presented in the
conference IEEE ISB 2012 [17], we only test the new
method on the real PPI data. Since the true alignment of
the real data is not unknown, it is difficult to precisely and
directly assess the performance of network alignment
methods. Therefore, in this paper, we addressed this issue
by generating the simulated network data in view of a
simple gene duplication event model [18]. We assume
that 1) the duplication of a gene induces the duplication of
relevant protein and interactions, 2) the duplicated and
the original proteins tend to interaction loss since the
redundancy, 3) the interaction loss in duplication events
are more probable than randomly interaction loss, 4)
the duplications will not occur on the duplicated nodes, 5)
the duplications will not happen twice on the same node
or on two adjacent nodes (to avoid the correlation of two
duplication events).

Based on the above assumptions, given a network G =
(V, E) and the maximum number of duplications N , the
duplicated network G’ was generated as follows:

1. Set the duplication number # = 0, the duplicated node
set D = ), the adjacent node set A = &, the remaining
node set R = V.

2. Randomly select a node v in R and generate a dupli-
cated node v’ with the same interaction pattern as v in G.



Huang et al. BMC Systems Biology 2013, 7(Suppl 2):56
http://www.biomedcentral.com/1752-0509/7/52/S6

3. Simulate interaction loss for duplication event. Ran-
domly remove a fraction p1 of edges for v’ and a fraction
p2 of edges for v, where p1 > p,.

4.Setn=n+1,D=DU{¥},;A=AUN (v),R=R\ ({v}
U N (v)), where N (v) is the neighboring nodes of v in G.

5. Repeat step 2-4 until # = N or R is empty.

6. Simulate randomly interaction loss. Randomly
remove a small fraction p3 of edges, where pl > p2 > ps.

The duplicated nodes were assigned the same
sequences of their original nodes respectively, to avoid
the effect of alignment for non-duplicated nodes as much
as possible. For more complicated model of evolutionary
gene duplication events, the probabilities of lost and
gained interactions will be related with the network
structure. Since our goal is to evaluate the network align-
ment methods, how to set up a reasonable duplication
model is beyond the scope of this paper.

Results

Comparison settings

The new method CNetA was compared with four other
methods to evaluate its performance. The first method
MI-GRAAL [14] is structural-dominated and combines
four structural similarities and one sequence similarity.
The second one is biological-dominated method named
BLASTQ, which only use the sequence similarity based
on BLAST [16]. BLASTQ simply queries each node of
G in G’ by finding the best BLAST hits. The third
method is BLASTA which further integrates BLASTQ
with the same iterative bi-directional mapping strategy
in CNetA. The last one is the network querying method
CNetQ [15]. Note that BLASTQ and CNetQ usually do
not guarantee one-to-one mapping for large network
alignments. We only extracted the one-to-one matching
pairs as the final results of CNetQ and BLASTQ. As
discussed in [17], we used the same parameters for
CNetA and CNetQ.

Results on simulated data

In this section, we compared the network alignment
results on the simulated network data. Since the true
alignments for simulated data are known, we evaluated
the alignment results by two types of accuracy which
are computed as the fractions of correctly aligned nodes
in duplicated nodes and all nodes respectively, and the
structural measures. For the node that is duplicated, it
is regarded as correctly aligned when the original node
is aligned with the corresponding one and the new node
is aligned with gap.

The original network G used for generating simulated
data is the real yeast PPI network [19], which contains
2390 proteins and 16127 interactions. The sequences of
yeast proteins were downloaded from Saccharomyces
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Genome Database (SGD, http://www.yeastgenome.org)
[20]. The parameters for simulation are set as follows. N
and p3 are fixed as 100, 0.005, respectively. To investi-
gate the effect of the parameters p; and p,, we tried five
different settings, i.e., (0.5, 0.2), (0.4, 0.2), (0.2, 0.1), (0.2,
0.05), (0.1, 0.05). Given a network G and a pair values of
(p1, p2), we randomly generated 10 simulated networks
and their true alignments with G respectively. Therefore,
there are totally fifty simulated network datasets.

To find the best combination of similarities, MI-GRAAL
need to run 31 times for each pair of networks, which is
very time-consuming. Therefore, in this study, we use all
the five similarities for fifty simulated network datasets.
Moreover, the software downloaded from the MI-GRAAL
website can not run successfully for some datasets. Only
the successful alignment results are shown and analyzed
in this section.

The results of five methods are compared in Table 1 and
Figure 2. Since the results are robust for different para-
meter settings of (py, p,), the results in Table 1 are the
mean values in all datasets. More details of the simulated
data results can be found in Additional file 1.

Figure 2 shows that CRF based methods reveal correct
alignments for most duplicated nodes as well as non-
duplicated nodes. The accuracy of MI-GRAAL is very
low for both types of nodes. The BLAST based methods
completely failed for duplicated nodes but succeeds for
non-duplicated nodes. All methods show robust perfor-
mance in different parameter settings.

MI-GRAAL obtains low accuracy for the duplicated
nodes due to that the duplicated nodes are mainly biologi-
cal similar instead of structural similar and MI-GRAAL is
dominated by the structural information. On the other
hand, the BLAST based methods are completely failed for
duplicated nodes since they can not distinguish the origi-
nal nodes and duplicated nodes, and produce many-to-
one mappings. The CRF based methods achieve the best
results, which shows that the edge feature function used in
CRF based methods is helpful for utilizing the structural
information to discriminate the biological similar nodes.

It is unexpected that MI-GRAAL fails to align the non-
duplicated nodes which have both high structural and

Table 1 Simulated comparison

Method MI- CNetQ CNetA BLASTQ  BLASTA
GRAAL
MP 2390 2155 2385 2133 2133
EC 38.00% 88.60% 99.47% 72.33% 72.33%
LCCS 1559 1761 1989 1607 1607
(6013) (14001) (15737) (11301) (11301)
Accuracy 8.33% 89.57% 96.71% 0 0
DupP
Accuracy 7.78% 90.20% 97.57% 89.40% 89.40%
ALL
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Figure 2 The simulated experimental results based on yeast PPl network. Figure 2-1, the accuracy for duplicated proteins (DUP). Figure 2-2,
the accuracy for all proteins (ALL). * means that the results for MI-GRAAL are only a part of the simulated datasets since that MI-GRAAL method
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biological similarities. One of the possible reasons is that
MI-GRAAL is mislead by the network structure subtly dis-
turbed by the duplicated nodes and edges. In other words,
the structural-dominated methods such as MI-GRAAL
may be too sensitive to the network structural changes
because they do not fully exploit the biological similarity,
and may be not good at identifying biological similar nodes
with a few changes of network linkages. The BLAST based
methods achieve high accuracy on the non-duplicated
nodes since the sequences of nodes are not changed. The
CRF based methods acquire the best accuracy again, where
the node feature function makes much contribution.

As show in Table 1, CNetA gets the best results
except MP is slightly smaller than that of MI-GRAAL.
Similar with the majority vote, MI-GRAAL ignores the
node sequence similarity and overemphasizes the struc-
tural similarities. Although it matches every node in the
smaller network, it seriously overlooks the node informa-
tion and incorrectly align many nodes. On the other
hand, BLAST based methods do not utilize the structural
information and can not distinguish the true alignment
from biological similar nodes. The computational experi-
ments show that the balance between the structural and
biological similarities are very important for the biologi-
cal network alignment. CRF based methods fully exploit
both structural and biological information and obtain a
good balance between them. Furthermore, the accuracy
of CNetA is significantly improved over CNetQ which
validates the effectiveness of the iterative bi-directional
mapping strategy.

Results on real data
We further compared the network alignment methods
on three real PPI network pairs, which were initially

used in [14]. The related evaluation measures were com-
puted by using Matlab Bioinformatics Toolbox. Three GO
domains biological process, cellular component, and mole-
cular function are abbreviated as BP, CC, MF respectively.
MI-GRAAL [14] does not produce same alignment in
each run since it has a random seed procedure. The
alignment results also depend on the combinations of
similarities. For simplicity, we adopted the most stable
combinations of similarities provided in [14]. For each
instance, the alignment with the maximum EC in five
runs was chosen as its final result.
Yeast-Human PPI network alignment
The same Yeast PPI network and sequence data in simu-
lated data, and the human PPI network and sequences
from [21] were used in the first experiment. Table 2 and
Figure 3 summarized the results of five methods.
MI-GRAAL reveals the largest structural common
subnetwork (LCCS equals to 1870) due to it compels

Table 2 Yeast-human alignment results

Method  MI-GRAAL CNetQ CNetA BLASTQ BLASTA
MP 2390 1029 1694 1297 1672
EC 20.52% 15.29% 9.25% 4.81% 6.52%
LCCS 1870(2940)  205(956)  116(376) 47(141) 55(172)
GO coverage (depth > 3)
MF 12.70% 47.78% 54.61% 55.07% 56.43%
BP 9.91% 52.01% 53.97% 58.55% 58.10%
CcC 44.17% 72.20% 72.73% 76.33% 74.74%
KEGG analysis

OpP 24 331 556 583 719
HP 9 26 27 27 27
PAC 9.961% 21.80% 32.35% 31.66% 35.06%
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that the result is a complete matching for the smaller
network. However, the biological similarity of matching
nodes is not so good. As shown in Figure, less than 55%
and 15% matching pairs share at least one or three com-
mon GO terms respectively, while the fractions of other
methods are larger than 80% and 60%. MI-GRAAL per-
forms poor in other biological measures, too. For exam-
ple, only 9 pathways from total 30 KEGG pathways with
the same definition in two species are hit with PAC
9.961%, while other methods hit at least 26 pathways
with PAC larger than 20%. On the other side, BLASTQ
and BLASTA outperform other methods in terms of all
biological measures, whereas, with the worst scores of
structural measures. CNetQ and CNetA achieve better
trade-off between the biological and structural similarity.
They find the alignments with much higher biological
similarity at the cost of slightly lower structural similarity
than MI-GRAAL, while the biological similarity scores
are even comparable to the BLAST based methods.

The power of iterative bi-directional mapping strategy
is exhibited by the improvements of BLASTA over
BLASTQ in almost all the measures except the compar-
able GO coverage. Similarly, CNetA hits one more path-
way with larger PAC and more orthologous protein
pairs than CNetQ. CNetA also finds more functional
conserved matching pairs based on GO coverage and
SGO. These results indicate that the iterative bi-direc-
tional mapping strategy is not only useful to identify
one-to-one mappings, but also helpful to reveal more
functional conserved alignments.

Campylobacter jejuni-Escherichia coli PPl network
alignment

Next, C. jejuni PPI network with 1091 proteins and
2966 interactions [22], and E. coli PPI network with

1873 proteins and 3803 interactions [23] were aligned
by five methods. The network data are slightly different
from [14]. Table 3 and Figure 4 show the results of five
methods.

The performance of five methods is similar to that in
the first experiment. CNetA and BLASTA hit 11 path-
ways with PAC larger than 29% in total 12 KEGG path-
ways. CNetQ and BLASTQ are a little worse, while MI-
GRAAL gives the worst scores. Again, CNetA and
BLASTA get significant improvement over CNetQ and
BLASTQ respectively. We note that CNetA gets much
lower structural scores than MI-GRAAL. It is possibly
because that the PPI networks are not complete and
consist of many disconnected subnetworks.
Mesorhizobium-Synechocystis PPl network alignment
The last experiment, we aligned Mesorhizobium loti PPI
network with 1804 proteins and 3094 interactions [24]
to Symechocystis sp. PCC6803 PPI network with 1920

Table 3 C. jejuni-E. coli alignment results

Method MI-GRAAL CNetQ CNetA BLASTQ BLASTA
MP 1091 444 677 533 711
EC 21.48% 1.69% 1.21% 0.37% 0.84%
LCCS 513(544) 7(6) 7(6) 3(2) 403)
GO coverage (depth > 3)
MF 6.94% 27.70% 30.58% 30.96% 32.21%
BP 4.32% 23.87% 26.44% 2833% 30.38%
CcC 544% 12.39% 14.33% 13.88% 14.35%
KEGG analysis

OP 11 95 146 152 206
HP 4 10 Ihl 10 Il
PAC 10.23% 15.40% 29.61% 2191% 36.68%
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proteins and 3102 interactions [25]. Table 4 and Figure 5
give the results of five methods, which is similar to the
above experiments. Due to lack of adequate annotated
orthologous proteins in KEGG database, OP are not cal-
culated for all methods. The low structural scores of
CNetA may caused by the incomplete and noisy network
data of Mesorhizobium and Synechocystis.

Software and web services

We implemented CNetQ and CNetA in a new R package
Corbi (http://doc.aporc.org/wiki/Corbi). The latest ver-
sion of Corbi can be downloaded and installed directly by
typing the following command within R: install.packages
("Corbi”, repos="http://R-Forge.R-project.org®)

There are two functions net.align and net.query for
network alignment and querying respectively. A simple
usage of two methods is as follows:

library(Corbi)

Table 4 Mesorhizobium-Synechocystis alignment results

Method MI-GRAAL CNetQ CNetA BLASTQ BLASTA
MP 1803 414 744 414 764
EC 41.37% 2.52% 1.55% 0% 0.097%

LCCS 1153(1158) 31(35) 10(9) 1(0) 2(1)
GO coverage (depth > 3)
MF 5.67% 26.52% 33.60% 28.16% 38.24%
BP 3.97% 23.84% 24.56% 24.76% 31.67%
CcC 1.70% 8.52% 823% 9.22% 9.72%
KEGG analysis
HP 1 1 2 1 2
PAC 1.76% 1.06% 343% 0.82% 5.45%

Note: The three real experiment results of MI-GRAAL method in corresponding
Tables and Figures are a little different with the results in our previous paper
[17] since that we found a bug in the MI-GRAAL Runner script file during
preparing this paper, fixed it and computed results again.

net.align(netl, net2, nodesim)

net.query(querynet, targetnet, nodesim)

where netl, net2, querynet and targetnet are the file-
names of the network files and nodesim is the filename
of the node similarity file. The parameters of two meth-
ods can also be tuned through the optional arguments
of two functions. More details about the usage of two
methods and the format of input files can be found in
the help documentation of Corbi.

As shown in Figure 6, freely accessible and easy used
web services for CNetQ and CNetA have also been con-
structed at http://app.aporc.org/CNetQ/ and http://app.
aporc.org/CNetA/, respectively. The web services are
implemented based on the R package Corbi. The input
for the web services includes two network files and one
node similarity file. The alignment results will be shown
and can be downloaded from the web server. For each
submitted alignment job, the server will assign a job ID.
Users can download their results later by the job IDs
instead of waiting the program finishes. The input and
result files of three experiments on real data in this
paper are provided for downloading from the web server
directly as the example data. In our web server, these
example data run in less than ten minutes.

Conclusion and discussion

In this paper, we further extended our network querying
method to the network alignment problem. The net-
work querying method based on the conditional random
fields model does not consider the many-to-one map-
ping issue which rarely happens in network querying.
However, the many-to-one mapping problem becomes
serious in network alignment. In order to guarantee
one-to-one mapping, a novel iterative bi-directional
mapping strategy was proposed. Moreover, the new
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Figure 5 EAC and SGO curves for comparing Mesorhizobium and Synechocystis PPl networks. The legends are the same as Figure 3.
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strategy improves the biological meanings of alignment
results. The CRF based network alignment and querying
methods were implemented in R package as well as
easily used web services.

Fifty simulated networks were generated from real PPI
network for comparing network alignment methods. For
the noisy or incomplete networks such as Mesorhizobium
and Synechocystis PPI networks, CNetA got much lower
structural scores than MI-GRAAL. However, when we
compare these methods on the simulated data, CNetA
achieves much better structural scores without loss of the
biological accuracy. In other words, CNetA well balances
the biological and structural information, and is not dis-
turbed by the noisy or incomplete network data, which is
very important for downstream systems biology analysis.

Many methods were developed to address network
alignment problem. However, there is no well established

benchmarks and measures to evaluate network alignment
methods. An important reason is lack of the datasets
with known optimal alignments. In this paper, we gener-
ated a simulated data from an evolutionary model for
which the true alignments are available. This may be a
promising approach to establish an ideal benchmark
databases for network alignment. On the other hand,
when using the real data to evaluate network alignment
methods, the data quality and completeness of real biolo-
gical networks should be considered. For example, as
shown in this paper, the structural measures may be
biased if the networks are not complete. Finally, since the
network alignment is essentially a multiple objectives
problem and there is a trade-off between the biological
and structural similarities, the measures for evaluating
network alignment methods need to be carefully
designed and selected.

o

= n ag

Network ali based on Conditi Random Fields

Figure 6 The interface of web server for CNetQ and CNetA. Fig 6-1, the interface of CNetQ. Fig 6-2, the interface of CNetA. CNetQ and
CNetA are designed as public tools for biological network querying and alignment. Users can upload the networks in an edge based format
and the node similarity file directly. The web server will give an alignment result file in a text file and also support downloading the result by
job ID later.
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Abbreviation

MP: Matching pairs; EC: edge correctness; LCCS: Largest
common connected subgraph; MF: Molecular function;
BP: Biological process; CC: Cellular component; OP:
Orthologous proteins; HP: Hit pathways; PAC: Pathway
average coverage. The numbers in LCCS are the number
of nodes and edges of LCCS respectively. DUP: duplicated
nodes. ALL: all the nodes in the alignment networks.

Additional material

Additional file 1: Comparison on simulated data. Figures for the
detail comparison of network alignment methods on the simulated data.
For the fifty simulated datasets, we further computed the MP, EC, LCCS
for the five given parameter settings of (p, p,) as described in Section
“Results on simulated data”.
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