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Abstract

Background: Recognition of pathogens by dendritic cells (DCs) through interaction with pattern
recognition receptors, including Toll like receptors (TLR), is crucial for the initiation of appropriate
polarized T helper (Th) cell responses. Yet, the characteristics and differences in molecular profiles
of DCs with different T cell polarizing capacities are still poorly defined. To address this issue, the
molecular profile of human monocyte derived DCs was characterized after exposure to TLR4
ligand LPS in combination with the Thl promoting bacterial extracts from Listeria monocytogenes
and Escherichia coli or the Th2 promoting helminth derived phospholipids from Schistosoma mansoni
and Ascaris lumbricoides, all with TLR2 activating capacity.

Results: With regard to the signalling pathways activated upon exposure to LPS and the TLR2
activating compounds, we find that the ratio of activated Mitogen Activated Protein Kinases
(MAPK) p-ERK/p-p38 is lower in DCs stimulated with the bacterial products compared to DCs
stimulated with the helminth products, which correlates with the Thl and Th2 polarizing capacity
of these compounds. Furthermore, analysis of the mMRNA expression levels of a set of 25 carefully
selected genes potentially involved in modulation of T cell polarization revealed that the mRNA
expression of notch ligand delta-4 and transcription factor c-fos are differentially regulated and
show a strong correlation with Thl and Th2 polarization, respectively.

Conclusion: This study shows that combined TLR2 and TLR4 activation in the context of different
antigen sources can induce very distinct molecular profiles in DCs and suggests that the Th1/Th2
polarizing capacity of compounds can be predicted with the molecular signature they induce in
DCs.
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Background

Denderitic cells (DCs) are antigen presenting cells that play
a pivotal role in the initiation of adaptive immune
responses. These cells function as sentinels in the periph-
ery where they are able to recognize and respond to stim-
uli from the environment they reside in, some of which
could be products from invading micro-organisms or
helminths. Upon such exposures DCs undergo pheno-
typic changes that allow them to effectively migrate to
lymph nodes and prime appropriate T cell responses
[1,2].

The type of compounds encountered by DCs will deter-
mine to a large extent the nature of the T cell polarization
promoted by these DCs. For this, DCs have to be able to
distinguish these different classes of molecules. To this
end, DCs express several classes of pattern recognition
receptors (PRR), such as Toll-like receptors (TLR), C-type
lectin receptors, Nod-like receptors and RIG-I like recep-
tors that are able to recognize specific pathogen derived
components, the so-called pathogen associated molecular
patterns (PAMP). Upon engagement of these receptors,
signalling cascades are initiated that involve activation of
the MAPK and Nuclear factor-xB (NF-xB), and induction
of expression of genes involved in DC maturation and the
ability to prime and skew T cell responses [3]. It is known
that intracellular organisms are primarily capable of
instructing DCs to induce Th1l responses [4], whereas
extracts of parasitic helminths have been demonstrated to
drive Th2 skewed responses [4-6].

Relatively much is known about the signalling pathways
in DCs induced after triggering of PRR [3,7-9], however,
the molecular characteristics that are different for DCs
that have been activated by Th1 or Th2 promoting PAMP
are much less understood [10,11]. We set out to address
this issue by characterizing human monocyte derived DCs
after exposure to maturation stimulus LPS, in combina-
tion with bacterial and helminth derived products. The
characterization of the DCs comprised gene expression
analysis of 25 genes that have been linked to activation
and T cell polarizing properties of DCs. These molecular
profiles of the DCs were correlated to their T cell polariz-
ing capacity. In this study we used Gram-positive heat
killed Listeria monocytogenes (HKLM) and Gram-negative
Escherichia coli, both of which stimulate TLR2 and induce
Th1 polarization. In addition, Schistosoma mansoni and
Ascaris lumbricoides derived phosphatidylserine containing
preparations (PS) were used, that also activate TLR2, but
drive Th2 responses in the presence of TLR4 ligation by
LPS [6]. We show that the signalling routes and the result-
ing mRNA expression profiles following stimulation by
the bacterial and helminth derived products are very dis-
tinct. This indicates that not all extracts that contain TLR2
activating components modulate DC programming by
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LPS in a similar fashion and in addition suggests that
there is a general molecular DC1 and DC2 signature that
can be used to predict Th1 and Th2 skewing potential of
DCs.

Results

TLR2 activating components that induce Thl or Th2
polarization via DCs

To study the molecular characteristics of DCs exposed to
compounds that engage TLR2 and 4, yet lead to differen-
tial skewing of immune responses in terms of Th1 and
Th2 induction, different pathogen derived products from
bacterial or helminth origin with a known Th1 and Th2
inducing capacity were chosen and combined with LPS, as
a reference maturation stimulus [6]. For this study Gram-
negative E. coli and Gram-positive heat killed L. monocy-
togenes (HKLM) were used as bacterial stimuli that induce
Th1 responses. A schistosome (a trematode) derived
phosphatidylserine containing lipid preparation (schPS)
and a similar preparation from the nematode worm A.
lumbricoides (ascPS), both containing mainly phosphati-
dylserine species with two attached acyl chains and some
lysophosphatidylserine species (with only a single
attached acyl chain) (fig 1A and 1B, respectively), were
chosen as Th2 inducing compounds [6]. Stimulation of
HEK cells transfected with TLR showed that all stimuli
could activate TLR2, with additional weak and potent
TLR4 stimulation by the helminth lipids and E. coli,
respectively (fig. 1C). IFN-y and schistosome derived sol-
uble egg antigen (SEA), stimuli that do not show TLR2
activating capacity in our experiments (fig. 1C), and
induce Th1 and Th2 responses, respectively, were used as
controls [6]. To assess the T cell polarizing capacity of DCs
exposed to these compounds, stimulated human mono-
cyte derived DCs were co-cultured for two weeks with all-
ogeneic naive CD4+ T cells and IL-4 as well as IFN-y
production was determined by intracellular staining upon
T cell restimulation (fig. 1D). DCs were stimulated with
the different compounds in the presence of LPS, to ensure
equal maturation and to rule out potential effects on
polarization due to differences in maturation status of the
DCs. We found that in all conditions expression of matu-
ration markers was significantly higher than levels meas-
ured on immature DCs and more similar to the levels
induced by LPS alone (data not shown). As expected, E.
coli induced a strong Th1 response comparable to DCs
stimulated with IFN-y, while HKLM induced a moderately
polarized Th1 response. Conversely, the helminth derived
compounds, as shown before for schPS [6], and SEA [4,6],
but also the A. Ilumbricoides derived phospholipids
instructed DCs to drive Th2 skewed responses with the
strongest polarization induced by SEA (fig. 1D). Based on
intracellular IL-17 staining there was no sign of Th17
induction by the differently conditioned DCs, which is in
agreement with other studies [12,13].
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Figure | (see previous page)

TLR activation and T-cell polarization by the different compounds. Mass spectrometry analysis of schPS (A) and
ascPS (B). Samples were analysed by LC/MSMS in the negative mode. Neutral loss scans of 87 amu, corresponding to the loss
of serine from the phospholipid were obtained. The relative intensity is shown of the detected phosphatidylserine species (indi-
cated by their distinct m/z ratios). C. Activation of TLR2 and TLR4 transfected HEK293 cells. HEK cells were stimulated and
IL-8 production in response to activation is shown. CD 14 transfected HEK cells were used as negative controls (not shown).
One representative experiment out of at least two independent experiments is shown, based on triplicate wells. # > 40.000 pg/
ml. | a.u. is referring to lipids derived from 2 worm pairs/ml or 12 mg of worm/ml for SchPS and AscPS, respectively. D. T cell
polarization was determined by measuring the percentages of cells with intracellular IFN-y and IL-4 production by FACS analy-
sis. T-cell polarization after LPS stimulation alone (4,6 * 3,5% IL-4 and 33,9 + 15,1% IFN-y producing T cells, respectively) was
set to 100% (indicated by the bold lines). Relative amounts of IFN-y and IL-4 positive T cells induced by the stimuli in the pres-
ence of LPS are given. Dark gray (left); IL-4, Light grey (right); IFN-y. Error bars represent SD of the mean of at least 4 inde-
pendent experiments where cytokines produced in T cells of single wells of cocultures were measured. Significant differences
in IL-4/IFN-y ratio for the different conditions relative to the LPS control are depicted on the right side of the graph. * p < 0.05,

# p < 0,01, % p < 0.001.

MAPK activation

To obtain a better understanding of the molecular proc-
esses in DCs that could underlie the observed differences
in T cell polarizing capacity of these helminth- and bacte-
ria-derived compounds, we set out to investigate in more
detail the molecular characteristics of DCs exposed to the
different stimuli. To study the intracellular signalling
routes activated upon exposure to the helminth and bac-
terial derived products, we analysed the activation of the
MAPK. ERK (ERK1/2) and p38 are two effector kinases of
the MAPK family and are known to play an important role
in shaping of immune responses [14]. p38 has been
shown to regulate DC maturation and pro-inflammatory
responses, while activation of ERK has been related to
anti-inflammatory and Th2 responses [15]. As has been
described before [16], exposure of DCs to LPS alone led to
preferential phosphorylation of p38 (fig. 2A, B). The Th1
promoting stimuli IFN-y and E. coli even further increased
the activation of this MAPK resulting in a reduced p-ERK/
p-p38 ratio, 20 minutes after stimulation (fig 2B, C),
whereas for HKLM this ratio did not change. In contrast,
the Th2 inducing compounds PS and SEA increased this
ratio. Interestingly, the high p-ERK/p-p38 ratio induced by
these Th2 polarizing stimuli was the result of different
activation profiles for SEA versus the lipid preparations:
SEA significantly induced phosphorylation of ERK,
whereas the helminth derived lipids impaired p38 activa-
tion, but showed no effect on ERK activation (fig 2D and
2E). The p-ERK/p-p38 ratio showed a positive correlation
with Th2, and negative correlation with Th1 polarization
(R2=0.36 and -0.47, respectively, figure 2F and 2G). In
conclusion, for all components tested, the p-ERK/p-p38
ratio only 20 minutes after DC stimulation can be used to
predict the outcome of the T cell response with regard to
Th1l and Th2 polarization. This shows that very early
events in DC activation already determine the fate of the
DCs in terms of their T cell polarizing capacity.

Gene expression analysis

To further characterize the molecular profile of the differ-
entially stimulated DCs we performed mRNA expression
analysis, using real-time PCR, on a selected set of genes
involved in TLR signalling and T cell polarization (table
1[4,15,17-48], Figure 3A). Upon maturation with LPS, the
expression of most genes was increased (data not shown).
All data shown are relative to what is seen in mature DCs
without any polarizing agents added, i.e. DCs stimulated
with LPS. Stimulation of DCs from different individuals
with the same stimulus showed very consistent profiles
(data not shown). Clustering analysis revealed that the
gene expression profiles of Th1 and Th2 polarizing agents
clustered in separate groups (top of figure 3A). Within the
Th1 stimuli, DCs exposed to bacterial products derived of
L. monocytogenes and E. coli had a remarkably similar pro-
file that was different from the profile induced by IFN-y.
For the Th2 stimuli, both helminth derived lipid prepara-
tions showed a very comparable profile, which resembled
the expression profile induced by SEA for most of the
genes (fig 3A). However, expression levels in PS pulsed
DCs were generally lower than in SEA stimulated DCs
which is in accordance with the less pronounced effects
on activation of the MAPK by the PS preparations.

Next, we related expression levels of individual genes to
the T cell polarizing capacities of the DCs, to identify
potential mechanisms through which different pathogen
derived compounds induce differential T cell polariza-
tion. Members of the IL-12 cytokine family are well
known for driving Th1 polarization [1]. Indeed the
expression of both IL-12 p40 and p35, but also IL-23 p19
were shown to be upregulated in DCs stimulated with Th1
inducing stimuli and reduced in DCs stimulated with
helminth derived compounds (fig. 3A). This was con-
firmed at the protein level when IL-12 and IL-23 produc-
tion by DCs were measured by ELISA (Fig 3B, C).
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Figure 2

MAPK activation in DCs. Representative histograms of (A) ERK and (B) p38 phosphorylation in DCs 20 minutes after stim-
ulation. C-E. Ratios of p-ERK/p-p38 (C), phosphorylation of ERK (D) and p38 (E) 20 minutes after stimulation in the presence
of LPS. Expression induced by LPS (MFI of 49 £ 12 for p-ERK and 16 * 9 for p-p38) was set to 100% (dashed line). Relative
expression levels or ratios are shown. * P < 0.05 compared to LPS stimulation. F and G. Correlation of p-ERK/p-p38 ratio and

IL-4 (F) or IFN-y (G) production by T-cells. All data are relative to stimulation with LPS only and combined results from 4 inde-
pendent experiments are shown.
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Figure 3

Distinct mMRNA expression levels after stimulation of immature DCs with Thl and Th2 inducing compounds.
A. mRNA expression levels of the different genes compared to LPS (representing a value of 1). Green and red colours repre-
sent expression levels higher and lower, respectively, relative to LPS pulsed DCs. Expression was determined by real-time PCR
with TAF-1 as housekeeping gene. Stimuli were clustered hierarchically according to expression profiles (top of figure). B and
C. Amount of IL-12 p70 and IL-23 present in the supernatant of DCs 48 hours after stimulation, relative to the amount pro-
duced in the presence of LPS only (2518 + 1733 pg/ml IL-12 & 230 £ 195 pg/ml IL-23). ND: not detectable, * p < 0.05, ** p <
0.01 compared to LPS stimulation only. D and E. Association of delta-4 (D) and c-fos (E) mRNA expression levels with T cell
polarization for TLR2 activating stimuli. Diamonds represent HKLM or E. coli, circles the helminth derived lipids. Relative
expression levels to LPS control condition (set to |) from at least 3 independent experiments are shown.
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Table I: Description of genes

Gene Function References
Cytokines & chemokines IL-12 p35 Together with p40 forms the cytokine IL-12 involved  [4,22]

in Thl polarization

IL-12 p40 Together with p35 forms the cytokine IL-12 involved  [4,22]
in Thl polarization

IL-23 p19 Together with p40 forms cytokine IL-23 in DCs [26,32,36]
which augments Thl and Th17 responses

TNF-a General pro-inflammatory cytokine mediating local [17]
inflammation. Its expression is dependent on NF-kf3
signalling

CXCL-10 (IP-10) Chemotactic factor for T cells. Its expression is [35,45]
dependent on the IFN-responsive gene pathway

CCL22 Chemokine involved in recruitment of Th2 effector [27]
cells

TGF-B Cytokine with anti-inflammatory properties, by [34,42]
inhibiting activity and function of both T cells and DCs

IL-10 Cytokine that potently suppresses immune responses  [34,37]

and in particular DCs and T cell responses, by
downregulating pro-inflammatory effectors

Toll like receptor signalling TLR2 Receptor of innate immunity for recognition of mainly  [19,43]

lipid containing compounds

TLR4 Receptor of innate immunity for recognition of LPS [19,43]

MyD88 Proximal, most common adaptor of TLR signalling, [24,43]
shared by all TLR except TLR3

NOD2 Intracellular peptidoglycan receptor implicated in [31,38,44]
activation of NF-kB but also in inhibition of TLR2
signalling

TRIF (TICAMI)  TLR3 and TLR4 specific adaptor which mediates the  [30,46]
MyD88-independent pathway preferentially leading to
induction of IFN-responsive genes
Tollip Inhibitor of IRAK activity and thereby TLR signalling  [48]
SOCS-1 Inhibitor of LPS-TLR4 signalling pathway as well as [20,47]
TLR induced JAK/STAT signalling. Potential negative
regulator of Thl responses
SOCS-3 Inhibitor of JAK/STAT signalling but also positive [20,47]
regulator of APC function by suppression of STAT3,
which normally inhibits TLR signalling.

Modulators of T cell Intracellular DUSP2 Phosphatase modulating MAP kinase signalling balance [33]
activation & polarization
IDO Enzyme that catabolizes tryptophan to kynurenines, [28]
which are able to induce T cell apoptosis and
inhibition of proliferation. Expression induced by IFN-
Y
c-Fos Transcription factor activated by MAP kinases which  [15,18]
induces IL-10 production and is involved in DC
mediated Th2/anti-inflammatory responses

Membrane bound PD-LI (B7-HI) Costimulatory molecule and ligand for PD-1 on T- [25,29,40]

cells. It has inhibitory function in T cell proliferation
and cytokine production. Might be stimulatory for
Th2 response

PD-L2 (B7-DC)  Costimulatory molecule and ligand for PD-1 on T- [25,29,40]
cells. Reported to have synergic activity with other
costimulatory molecules as well as inhibitory activity
on T cell activation

LIR-7 (ILT-1) Receptor with unknown ligand(s) with possible [23,41]
immune suppressive properties, but also implicated in
immune activation

Jagged-2 Ligand for notch-receptor on T cells; influences T cell  [21]
skewing
Delta-4 Ligand for notch-receptor on T cells; influences T cell  [21,39]
skewing
Delta-1 Ligand for notch-receptor on T cells; influences T cell  [21]
skewing
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With respect to T cell polarization, other genes of interest
are the notch ligand family members delta-1, delta-4 and
jagged-2, since expression of delta and jagged on DCs has
been associated with induction of Th1 and Th2 responses,
respectively [21]. For jagged-2 and delta-1 no significant
differences were found between the stimuli (figure 3A).
However, delta-4 was upregulated by the bacterial Th1
inducing stimuli, and downregulated by the Th2 inducing
lipids. Moreover, expression levels of delta-4 correlated
with the IL-4/IFN-y cytokine ratio produced by the T cells
of the stimuli that activate TLR2 (R2 = -0.87, figure 3D).
Yet, in SEA and IFN-y stimulated DCs delta-4 expression
was not altered. Therefore, Delta-4 seems to associate with
T helper cell polarization only when TLR2 is also engaged.

Conversely, we found higher c-fos mRNA levels in PS and
SEA pulsed DCs compared to HKLM and E. coli stimulated
DCs. c-fos has been shown before to mediate SEA induced
repression of IL-12 secretion by DCs [15]. Indeed, correla-
tion analysis revealed that in DCs stimulated with bacte-
rial products or helminth-derived lipids, mRNA levels of
c-fos were positively correlated with Th2 induction (R2 =
0.667, fig 3E).

Discussion

DCs express a range of PRR that allow them to recognize
different pathogens and initiate appropriate adaptive
immune responses. Pivotal to this process is the proper
integration of PRR derived signals into a molecular activa-
tion profile of DCs that leads to a particular T cell polariz-
ing capacity. This study demonstrates that combined TLR2
and TLR4 activation in the context of different bacterial
and helminth derived extracts can lead to very distinct
molecular activation profiles of human DCs which corre-
late with their T cell polarizing capacity in terms of Th1
and Th2 skewing.

One of the major signalling cascades triggered upon
engagement of TLR is the MAPK pathway. Differential
activation of MAPK p38 and ERK in DCs has been associ-
ated with different level of maturation and cytokine pro-
duction whereby p38 is thought to be important in
mediating DC maturation and pro-inflammatory T cell
responses, whereas ERK activation has more often been
associated with anti-inflammatory and Th2 responses
[49]. Earlier studies in human DCs have primarily focused
on the role of different MAPK in DC activation, such as
maturation and cytokine production [49]. We extended
these studies, by analyzing for the first time the correla-
tion between p-ERK/p-p38 ratios in human DCs and the
degree of skewing of T cell responses by using various Th1
and Th2 inducing pathogen derived extracts. At 20 min-
utes after stimulation, we observed decreased p-ERK/p-
p38 ratios in the Th1 promoting DCs. Of the two Thl
polarizing agents, E. coli induced more p38 activation,

http://www.biomedcentral.com/1471-2172/10/9

compared to HKLM, which is in agreement with the
stronger Th1 polarization of the T cells (fig 1D). In con-
trast, all helminth-derived stimuli increased the p-ERK/p-
p38 ratio in the DCs. Comparison of the MAPK activation
profile induced by the helminth-derived lipids with the
one induced by SEA, revealed that SEA, like other
helminth derived antigens such as LNFPIII [50] and ES-62
[51], induces a higher p-ERK/p-p38 ratio by increasing
activation of ERK. On the other hand, the lipids influ-
enced the p-ERK/p-p38 ratio by specifically impairing p38
phosphorylation. Thus, although the lipids share the
capacity with other helminth antigens described so far to
condition DCs for Th2 priming, they appear to achieve
this differently exemplified by a different modulation of
the MAP kinase signalling pathway. Taken together, the p-
ERK/p-p38 ratio appears to be an important characteristic
of antigen presenting cells exposed to pathogen derived
compounds that skew responses towards Th2 or Th1.

Comparison of the mRNA expression profiles of TLR acti-
vating bacterial and helminth derived compounds
revealed that, unlike the Th2 inducing phospholipids,
exposure of DCs to Th1 promoting stimuli preferentially
led to the induction of the pro-inflammatory cytokines IL-
12 and IL-23, both at the mRNA and the protein level. The
degree of p38 activation, known to drive pro-inflamma-
tory gene expression by these stimuli, was reflected by the
level of expression of these cytokines. The higher expres-
sion levels of IL-12 and IL-23 in the E. coli and IFN-y stim-
ulated DCs compared to HKLM pulsed DCs, probably
contributes to the stronger Th1 induction seen with the
former two stimuli.

While the immunological processes resulting in Th1
polarization have been extensively characterized, it is still
poorly understood how exactly Th2 responses are initi-
ated. One of the genes that was found to be positively
associated with Th2 inducing DCs was the transcription
factor c-fos. c-Fos has been shown to mediate IL-12 sup-
pression in SEA pulsed DCs, which is generally thought to
be a prerequisite for Th2 induction [15,18]. In addition,
the observation that c-fos mRNA expression levels were
strongly correlated with Th2 induction not only for SEA,
but also for PS, further supports the notion that this tran-
scription factor plays a role in the promotion of helminth
antigen dependent Th2 skewing. However, analysis of c-
fos at the protein level revealed that in PS pulsed DCs the
increase of c-fos was lower and more transient, compared
to SEA stimulated DCs (Everts et al unpublished data).
Therefore, it remains to be established whether c-fos plays
a similar role in PS pulsed DCs as has been shown for DCs
modulated by SEA.

Notch ligands have been reported to play a role in Th1/
Th2 polarization by DCs [21]. While jagged-2 expression
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was initially implicated in DC mediated Th2 differentia-
tion [21] more recent studies [52] show that jagged-2 has
no role in Th2 induction by SEA activated DCs. Our find-
ings are in accordance with these latter studies, since we
did not observe any increased jagged-2 mRNA expression
in our helminth derived stimulated DCs. Interestingly,
another Notch ligand delta-4 was found to be upregulated
in DCs cocultured with bacterial compounds, while
helminth derived compounds showed a decreased delta-4
expression. This in agreement with studies that show that
delta-4 is involved in Th1 skewing [21], as well as inhibi-
tion of Th2 development [53].

Several studies have shown that TLR2 activation alone
may lead to different outcomes; Th2 [18,54], Treg [55] as
well as Th1 [56]. The variety of outcomes possible in the
presence of TLR2 activation have been suggested to be the
result of heterodimerization of TLR2 with different recep-
tors, such as TLR1 or TLR6 [57,58], or associations with
other receptors including Nod-like receptors and C-type
lectins [11,59]. In our study, the compounds used from
helminths or bacteria are mixtures of antigens that would
be expected to signal via additional receptors besides
TLR2. E. coli has been shown to activate TLR4 and NOD1
[60,61], whereas resistance to Listeria infection was related
to the presence of functional NOD2 [62], indicating that
this receptor is engaged by HKLM. Relatively little is
known about Th2 skewing by the helminth derived com-
pounds, but in a previous study of schistosomal lipids it
was shown that TLR2 activation was not needed for Th2,
but rather for regulatory responses [6]. Therefore, it is
important to study the engagement of additional PRR
along with TLR2 and TLR4 to fully understand the mech-
anisms that play a role in conditioning DCs for priming of
Th2 responses [62,63].

Conclusion

In conclusion, the study presented here indicates that
TLR4 ligation on monocyte derived DCs in the context of
TLR2 stimulating bacterial or helminth derived extracts
leads to profoundly different outcomes in terms of activa-
tion or expression of various markers at the level of MAPK
phosphorylation, mRNA expression and protein up- or
downregulation. We show for the first time in human DCs
that the levels of a selected number of molecular markers
are strongly correlated with the T cell polarizing capacity
of DCs. This not only gives us new insights about the proc-
esses involved in Th1 and Th2 polarization but it also sug-
gests that there is a common molecular Th1 and Th2
signature in human DCs that can be used to predict the
strength of induced Th skewing in terms of the Th1/Th2
balance.

http://www.biomedcentral.com/1471-2172/10/9

Methods

Antigen preparation

Phosphatidylserine containing preparations (PS) were
extracted from 4 gram of A. lumbricoides worms (expelled
from infected humans) or from schistosomal worms, col-
lected from golden hamsters 45-48 days after infection
with S. mansoni, as described before [6]. Mass spectrome-
try was used to confirm the presence and composition of
PS species in both lipid preparations, as described before
[64]. Schistosomal egg antigen (SEA) was prepared from
schistosomal eggs, collected from trypsin treated liver
homogenate of the S. mansoni infected hamsters. E. coli
(ATCC 11775) and L. monocytogenes (kind gift of J. van
Dissel, LUMC, Leiden, The Netherlands) were grown at
37°C for 18 h in Brain Heart Infusion (BHI) bouillon
(Biomerieux). Cultures were washed with PBS, quantified,
and frozen in aliquots. In addition L. monocytogenes was
heat inactivated for 2 hours and 45 minutes at 80°C
before storage.

TLR transfected HEK cell activation

HEK-293-CD14, HEK-293-CD14/TLR2 and HEK-293-
CD14/TLR4 cells (a gift from Dr. E. Latz, University of
Massachusetts) were maintained in DMEM culture
medium, supplemented with 10% FCS, 10 pg/ml cipro-
floxacin and 5 pg/ml puromycin. For stimulation experi-
ments, cells were seeded at 3.5 x 104 cells/well in 96-well
flatbottom plates and were stimulated the next day. For
stimulation of HEK-293-CD14/TLR4 cells, 12.5% super-
natant of MD-2 transfected cells was added. IL-8 produc-
tion was measured in supernatants after 22 hours using a
commercial kit (Sanquin, Amsterdam, The Netherlands),
by following the manufacturer's recommendations.

Dendritic cell culture and ndive T cell polarization

Monocytes were isolated and immature DCs were cul-
tured as described before [6]. At day 6 or 7 immature DCs
were matured with LPS (ultrapure, E. coli 0111 B4 strain,
Invivogen) (100 ng/ml) in the presence of IFN-y (1000 U/
ml), heat killed L. monocytogenes (HKLM; 108/ml), E. coli
(107/ml), SEA (50 pg/ml), PS lipid extract derived from
ascaris worms (an equivalent of 120 pg of worm per ml)
or PS lipid extract derived from schistosomal worms (an
equivalent of 20 worm-pairs per ml). For RNA isolation,
DCs were harvested 16 hours after stimulation, as pilot
experiments in our lab indicated that the expression levels
of most genes had changed at this time point. DCs were
snap-frozen in liquid nitrogen and kept at -80°C until
RNA isolation. For measuring cytokine production by
DCs and for co-culture with naive T cells, DCs were
matured for 48 hours after stimulation, after which
secreted cytokines were measured in the harvested super-
natant. Levels of IL12p70 were determined by ELISA using
monoclonal antibodies 20C2 and biotinylated mouse-
anti-human IL-12 C8.6 (both Becton Dickinson) as coat-
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ing and detection antibodies, respectively. Levels of 1L-23
were determined by ELISA using monoclonal antibodies
ebio473p19 and biotinylated mouse-anti-human IL-12
C8.6 (both Becton Dickinson) as coating and detection
antibodies, respectively. To determine T cell polarization,
5 x 103 mature DCs were cocultured with 2 x 104 naive T
cells that were purified using a human CD4+/CD45RO-
column kit (R&D, Minneapolis, MN) in the presence of
SEB (100 pg/ml; Sigma) in 96-well flat-bottom plates
(Costar). On day 5, rhulL-2 (10 U/ml, Cetus Corp., Emer-
yville, CA) was added and the cultures were expanded for
another 5-9 days. To measure the frequency of IL-4- and
IFN-y-producing T cells, Th cells were restimulated with
PMA and ionomycin in the presence of brefeldinA (all
Sigma) during 6 hours and stained with anti-hu-IL-4-PE
and anti-hu-IFN-y-FITC (both BD Biosciences).

RNA isolation, DNase treatment and cDNA synthesis
RNA isolation was performed using Trizol reagent (Invit-
rogen, Breda, The Netherlands) according to the manufac-
turers' instructions, with a minor modification: 3 ul of
glycogen (Invitrogen) was added to all samples after they
were homogenized in Trizol for a few minutes at room
temperature. DNAse treatment and cDNA synthesis were
performed following standard procedures.

Analysis of gene expression levels

Primers and Tagman probes were provided as a Tagman
gene expression kit (Applied Biosystems, Foster City, Cal-
ifornia) or designed using Primer Express (Applied Biosys-
tems) and synthesized by Biolegio (Malden, The
Netherlands) and Eurogentec (Seraing, Belgium), respec-
tively (sequences available upon request). Real time qPCR
was performed using Eurogentec PCR reagents, in a vol-
ume of 25 pl on an ABI PRISM 7700 Sequence Detection
System (SDS, Applied Biosystems), using the following
program: 10 minutes at 95°C, 40 cycles of 15 seconds
denaturation at 95°C and 60 seconds annealing and
amplification at 60°C. Results were monitored and ana-
lysed with SDS software (Applied Biosystems).

Gene expression was normalized to the housekeeping
gene TAF-1 and calculations were performed as described
using the 2-4AC, method [65]. Analysis of the expression of
6 different housekeeping genes in a subset of the samples
indicated that TAF-1 was the most stable housekeeping
gene in our samples upon stimulation. Spotfire software
http://spotfire.tibco.com was used to generate a heatmap
and perform hierarchical clustering of the genes.

MAPK activation analysis

20 and 60 minutes after stimulation of immature DCs
(day 6), cells were fixed for 10 minutes with 4% ultrapure
formaldehyde (Polysciences) directly in the plate. Cells
were harvested and washed twice in PBS/0.5% BSA. Sub-

http://www.biomedcentral.com/1471-2172/10/9

sequently, the DCs were permeabilized in 700 pl ice-cold
90% methanol in PBS in and left on ice for 30 minutes.
Following two wash steps in PBS/0.5%BSA intracellular
staining was performed for 2 hours at room temperature
in the dark with anti-phospho-p44/42 MAPK AF-488
(T202/Y204) and anti-phospho-p38 MAPK AF-647
(T180/Y182), (Cell Signalling Technology). After one
wash in PBS/0.5%BSA MAPK activation was determined
by flow cytometry using a Becton Dickinson FACSCalibur
flowcytometer (BD Biosciences) and analysed using
FlowJo analysis software (Tree Star).

Statistical analysis

Data were analysed using SPSS (v14.0) and GraphPad
Prism4. Differences among stimuli were analysed by a
Mann-Whitney test. Differences relative to LPS stimula-
tion were determined using a one sample t-test. Correla-
tions between expression of genes and/or T-cell responses
were calculated by a two-tailed Spearman's-rho test. Dif-
ferences were considered significant when P-values were
below 0.05.
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