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Background: The combination of deep learning methods and oncogenomics can provide
an effective diagnostic method for malignant tumors; thus, we attempted to construct a
reliable artificial neural network model as a novel diagnostic tool for Bladder cancer (BLCA).

Methods: Three expression profiling datasets (GSE61615, GSE65635, and GSE100926)
were downloaded from the Gene Expression Omnibus (GEO) database. GSE61615 and
GSE65635 were taken as the train group, while GSE100926 was set as the test group.
Differentially expressed genes (DEGs) were filtered out based on the logFC and FDR
values. We also performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses to explore the biological functions of the DEGs. Consequently,
we utilized a random forest algorithm to identify feature genes and further constructed a
neural network model. The test group was given the same procedures to validate the
reliability of the model. We also explored immune cells’ infiltration degree and correlation
coefficients through the CiberSort algorithm and corrplot R package. The qRT–PCR assay
was implemented to examine the expression level of the feature genes in vitro.

Results: A total of 265 DEGs were filtered out and significantly enriched in muscle system
processes, collagen-containing and focal adhesion signaling pathways. Based on the random
forest algorithm, we selected 14 feature genes to construct the neural networkmodel. The area
under the curve (AUC) of the training group was 0.950 (95%CI: 0.850–1.000), and the AUC of
the test group was 0.667 (95%CI: 0.333–1.000). Besides, we observed significant differences
in the content of immune infiltrating cells and the expression levels of the feature genes.

Conclusion: After repeated verification, our neural network model had clinical feasibility to
identify bladder cancer patients and provided a potential target to improve the
management of BLCA.
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INTRODUCTION

Bladder cancer ranks as the ninth most frequently diagnosed
cancer and 13th in terms of deaths; this categorization causes
more than 700,000 living cases and approximately 150,000
deaths per year worldwide (Antoni et al., 2017). Grading for
the degree of risk of BLCA depends primarily on size, number,
depth and differentiating degree of cancers (Bladder cancer,
2015). Approximately 10–34% of patients diagnosed with low-
grade non-muscle-invasive BLCA die within 5 years. A range of
factors can trigger the disease, such as occupational exposure to
aromatic amines and hydrocarbons. Smoking is the most
confirmed risk factor for bladder cancer. Bladder cancer is
usually detected from painless gross haematuria symptoms
and related imaging examinations, such as ultrasonography
and computed tomography (Tsampoulas et al., 2008; Bladder
cancer, 2015). In addition, nuclear matrix protein 22 (NMP22),
bladder tumor antigen (BTA), fluorescence in situ hybridization
(FISH) and other detection techniques have become screening
tools for bladder cancer (Brausi et al., 2011; Wood, 2014).

Artificial neural networks are a family of machine learning
models that are inspired by biological neural networks and are
employed to estimate generally unknown functions (Jaddi et al.,
2017). Related bioinformatic studies can be classified into five
main categories: input modification, input reconstruction,
saliency maps, convolution kernel analysis and attention
mechanisms (Talukder et al., 2021). The artificial neural
networks are mainly divided into three groups: feedforward
neural network, recurrent neural network, and convolutional
neural network depending on the different types of algorithms.
The learning techniques can approximate functions and
dynamics by learning from samples and have become
powerful tools of deep learning and artificial intelligence
(Kriegeskorte and Golan, 2019). In cancer genomics, neural
network models are likely to be promising tools for extracting
high-level features and learning prognostic information from

multicancer datasets (Yousefi et al., 2017; Talukder et al.,
2021). Various types of artificial neural network methods have
been widely adopted in cancer research and provide accurate
basic models for the early prediction of different cancers (Wan
et al., 2019). However, ideal models including biomarkers that
can make precise judgments with enough specificity and
sensitivity for the diagnosis, treatment, postoperative follow-up
and prognosis of BLCA are still lacking (Gofrit et al., 2006; Ng
et al., 2021).

In this study, we attempted to construct a novel predictive
artificial neural network model for the early diagnosis and
evaluation of BLCA. Three expression profiling datasets
downloaded from the GEO database were reanalyzed and
feature genes selected from DEGs based on their importance
scores were taken as candidate biomarkers. We also conducted
qRT–PCR to measure the expression levels of these genes to
demonstrate the accuracy of the model.

METHODS

Downloading of Public Data
The GEO (https://www.ncbi.nlm.nih.gov/geo/) database is
a public functional genomics data repository containing
substantive high-throughput sequencing experimental
data. Three expression profiling datasets (GSE61615,
GSE65635, GSE100926) containing BLCA samples and
normal para-tumor tissue were downloaded from the
GEO expression array, and the genes expression matrix
was organized for further statistical analysis (Zhao et al.,
2015; Borisov et al., 2018; He et al., 2018). The statistical
processing and graphic plotting were implemented using R
software (R Version 4.1.2). We divided the expression
profiling datasets into a train group containing
GSE61615 and GSE65635, and a test group containing
GSE100926.

FIGURE 1 | (A) The 50 DEGsmost significantly upregulated and 50most downregulated identified from datasets GSE61615 and GSE65635 were visualized in the
form of a heatmap. (B) Based on the criteria logFC ≥2 or ≤ −2 and p value <0.05, 242 ponderable DEGs were filtered out and a volcano map was drawn.
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Identification of Differentially Expressed
Genes
Bladder carcinoma and normal para-tumor tissue samples of the
train group were set as the treatment and control groups
respectively. The criteria were formulated as logFC ≥2 or ≤ −2
and p value <0.05 to filter out DEGs through the limma R package
(Version 3.30.7). Then, we drew a heatmap and a volcano map to
visualize DEGs through the pheatmap R package (Version 1.0.12)
and ggplot2 R package (Version 3.1.0).

Visualization of the Enrichment Analysis of
Gene Expression Networks
Metascape (https://metascape.org/gp/index.html) was used for
pathway and process enrichment analysis of DEGs. Based on
their membership similarities, terms with a p value <0.01, a
minimum count of three and an enrichment factor >1.5 were
collected and grouped into clusters. We performed GO (http://

www.geneontology.org/) and KEGG (http://www.genome.jp/
kegg/) pathway analyses to investigate the physiological
functions of the up- and down-regulated DEGs. We also
constructed a protein–protein interaction (PPI) network using
STRING website tools and Cytoscape software (Version 3.9.1)
(Zhou et al., 2019).

Screening and Scoring of Feature Genes
Based on the minimum point of cross-validation error in the
random forest algorithm, those genes whose importance
scores >0.30 were selected as feature genes associated with
BLCA. Then, we drew a heatmap of these characteristic genes
and scored the genes according to the following criteria. For
those genes that were upregulated in tumor samples, if their
expression levels were greater than the median value, one
point was added to the scores. For those genes that were
downregulated, one point was added to their scores when
their expression levels were less than the median level. Then,

FIGURE 2 | (A) Bar plot illustrating which functions or pathways DEGs were enriched by Metascape tools. (B) The term-enriched network was colored by cluster
ID, where nodes sharing the same cluster ID are usually close to each other.
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we obtained the scoring list of the feature genes for further
analysis.

Construction and Validation of the Neural
Network Model
The input layer of the novel neural network model was consisted of
the scores and weights of feature genes. The hidden layer was
constructed based on the feature information extracted from the
input layer. Consequently, the function of the output layer was to
judge whether the samples belonged to the control group or the
treatment group. We also plotted the receiver operating characteristic
(ROC) curve reflecting the predicted correctness rate of themodel and
calculated the area under the curve (AUC) values. We took the same
measures to acquire the scores of feature genes in the test group
(GSE100926), and a ROC curve with the AUC values was also
incorporated into the validation criteria.

Exploration of the Role of Immune
Infiltrating Cells in the Neural Network
Model
Evaluation of tumor infiltrating immune cells was calculated by
using the CIBERSORT algorithm. Consequently, the correlation
between different immune cell types was tested by Spearman
(Rho) coefficients and presented as a correlation matrix. The
results of differential analysis of immune cells between the control
and treatment groups were examined by the Wilcoxon test and
presented in the form of a violin diagram.

Verification of the Expression of Feature
Genes by qRT–PCR in Vitro
To further verify the neural network model, we performed
qRT–PCR to analyze the relative expression level of the

FIGURE 3 | (A,B) Detailed information relating to changes in the biological processes (BP), cellular components (CC) and molecular functions (MF) of DEGs in
control and treatment group through GO enrichment analysis. (C,D) Characteristic changes in up- and downregulated DEGs and their relationships with different BPs,
CCs and MFs.
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feature genes in human bladder urothelium cell (SVHUC-1)
and urinary bladder transitional cell carcinoma samples
(RT112 and T24) in vitro. RNA from Svhuc-1, RT112 and
T24 cells was extracted with TRIzol (Novabio, China).
Reverse transcription was implemented to obtain cDNA,
and an ABI 7500 Real-Time PCR system (Applied
Biosystems) was adopted to analyze the amplification of
the cDNA. All the procedures were carried out three times
independently and repeatedly.

RESULTS

Acquisition and Grouping of Raw
Expression Profiling Data
We downloaded three expression profiling datasets
(GSE61615, GSE65635, GSE100926) from the GEO human
gene expression array. The numbers of bladder tumor
samples that the three datasets contained were,
respectively, 2, 8, and 3, and the numbers of normal para-

carcinoma tissue samples were, respectively, 2, 4, and 3.
GSE61615 and GSE65635 were merged as a unified train
group, and 17,891 genes expressed in their samples were
incorporated into the subsequent analysis.

Identification of Differentially Expressed
Genes
Differential genes were screened according to the edgeR filter
criteria (log2|fold change| > 2, FDR <0.05), and 242 ponderable
DEGs between BLCA samples and normal para-carcinoma tissue
samples were subsequently filtered out. Afterward, the 50 genes
most significantly up- and down-regulated were visualized in the
form of a heatmap (Figure 1A). We also drew a volcano map to
present all filtered DEGs (Figure 1B).

Visual Enrichment Analysis of Gene
Expression Networks
A network diagram (Figure 2A) and a bar diagram
(Figure 2B) were drawn to show the results of the

FIGURE 4 | (A,B) Detailed information relating to changes in the functional pathways in the control and treatment group through KEGG pathway analysis. (C,D)
characteristic changes in up- and downregulated DEGs and their relationships with different functional pathways.
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Metascape analysis. According to GO enrichment analysis,
DEGs were significantly enriched in various biological
processes, such as actin filament organization, extracellular
structure organization, extracellular matrix organization and
muscle cell development (Figures 3A–D). The results of the
KEGG pathway analysis revealed that the DEGs were
significantly enriched in pathways associated with vascular
smooth muscle contraction, focal adhesion, ECM−receptor
interaction and hypertrophic cardiomyopathy (Figures
4A–D). Afterward, we constructed a protein–protein
interaction network to elucidate the intricate relevance of
DEG-associated proteins (Figure 5).

Screening and Scoring of Feature Genes
Fourteen feature genes whose importance score was >0.30 were
filtered out based on the minimum point of cross-validation error
in the random forest model (Figure 6A). They were STON1, INA,
SGCA, GHR, ANTXR2, ANGPTL2, CAV1, MSRB3, CPXM2,
ZCCHC24, MARCKSL1, FNBP1, MAP1A, and FXYD6
(Figure 6B). Differences in the expression levels of the 14
feature genes between the control group and the treatment
group were presented as a heatmap (Figure 6C).

Construction and Verification of the Neural
Network Model
Based on the scores and weights of the feature gene list, we
constructed a novel neural network model to predict whether the
sample belonged to the control group or the treatment group
(Figure 7A). All six samples in the control group were predicted
correctly, and nine of the 10 samples in the treatment group were
forecasted accurately. Afterward, we calculated the AUC value of the
ROC curve, which was 0.950 (95%CI: 0.850–1.000) (Figure 7B). For
further verification of the predictive accuracy of the model, the same
measures were taken to acquire the scores of feature genes in the Test
group (GSE100926). Two of three samples from both the control
and treatment groups were predicted correctly, and the AUC value
was 0.667 (95% CI: 0.333–1.000) (Figure 7C).

Exploration of the Role of Immune
Infiltrating Cells in the Neural Network
Model
We analyzed the contents of 22 kinds of immune infiltrating
cells in the samples with a threshold p value <0.05 (Figure 8A)

FIGURE 5 | The protein–protein interaction (PPI) network of DEGs was constructed by the STRING website tools and modified by Cytoscape Software.
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and further adapted a bar graph to visualize the positive and
negative correlations between immune infiltrating cells
(Figure 8B). According to differential analysis of immune
cells between the control and treatment groups, we concluded
that the content of follicular helper T cells was higher in the
treatment group while resting mast cells was higher in the
control group (Figure 8C).

Verification of the Relative Expression Level
of Feature Genes by qRT–PCR
We adopted qRT–PCR to analyze the relative differential
expression of these feature genes in vitro. The expression
levels of a portion of feature genes, such as ANGPTL2, CAV1,
FNBP1, FXD6, MAP1A, and ZCCHC24 were significantly
decreased in bladder tumor cell lines (Figures 9A–F).

FIGURE 6 | (A) A random forest map emphasizing the minimum point of cross-validation error in the process of filtering feature genes. The X-axis represented the
number of trees and the Y-axis represented the error of cross-validation. The green curve represented the error of the treatment group. The red curve represented the
error of the control group. The black curve represented the error of all samples. (B) Fourteen feature genes whose importance score was >0.30 were filtered out. (C) A
heatmap illustrating the differences in the expression profiles of 14 feature genes between the control and treatment groups.
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Interestingly, we also found that a small portion of genes was not
consistently expressed in different tumor cell lines, such as GHR
and MSRB3. Their expression levels were decreased in the RT112
cell line but increased in the T24 cell line (Figures 9G,H).

DISCUSSION

BLCA ranks ninth among all cancer deaths in China and accounts
for 14% of cancer deaths worldwide, although various diagnostic
and therapeutic methods have developed rapidly (Liu et al., 2019).
Timely and accurate identification of BLCA will hopefully
improve therapeutic effects, recurrence rates and patient
outcomes (Jordan and Meeks, 2019). Reliable biomarkers for
the pristine diagnosis and prognosis assessment of BLCA are
profoundly meaningful but still absent (Kim et al., 2014).

Identified CDC20 and ASPM as potential immunotherapeutic
targets for BLCA, but their study lacked profiling datasets used to
verify the screening results Xu et al. (2020). Kong DB et al.
constructed a prognostic model for BLCA based on NFAT2, but
reliable experiments to verify the model remained to be
supplemented (Dai et al., 2021). In our study, we constructed
a neural network model containing 14 feature genes to provide
novel assistance for the early diagnosis and evaluation of BLCA.

In this study, DEGs were first identified from expression
profiling datasets downloaded from the GEO public functional
genomics database. Through the visualization of GO and KECG
enrichment analyses, we observed that DEGs were markedly
associated with muscle system processes and
collagen−containing and focal adhesion signaling pathways.
Focal adhesions are types of integrin adhesions and are linked
to contractile bundles made of F-actin and the motor protein

FIGURE 7 | (A) The neural network model included three layers: input layer, hidden layer, and output layer. the scores and weights of feature genes. (B) The ROC
curve of the train group including GSE61615 and GSE65635; the AUC was 0.950 (95% CI: 0.850–1.000). (C) The ROC curve of the test group including GSE100926;
the AUC was 0.667 (95% CI: 0.667–1.000).
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myosin II (Revach et al., 2020). Focal adhesions influence smooth
muscle cell contraction and are indispensable for mechanical
stability. Focal adhesion signaling contributes to the genesis of a
variety of smooth muscle cell phenotypes and has potential
implications for mechanical homeostasis beyond calcium
mechanisms (Ribeiro-Silva et al., 2021). Multiple prosurvival
signaling molecules, such as integrins, growth factor receptors
and intracellular molecules, are included in focal adhesion
signaling hubs and serve as potential tumor targets (Eke and
Cordes, 2015). Verified that focal adhesion kinases crucially
regulate TGFβ-induced migration and invasion of BLCA cells
Kong et al. (2017). Our algorithm enabled us to filter out 14
feature genes that subsequently were endowed with different
scores and worked as input factors to construct a neural
network model. These genes included STON1, INA, SGCA,
GHR, ANTXR2, ANGPTL2, CAV1, MSRB3, CPXM2,
ZCCHC24, MARCKSL1, FNBP1, MAP1A, and FXYD6.
Previous studies have identified discrepant biomarkers in
proliferating bladder carcinoma cells, and a portion of these
feature genes are related to tumorigenesis and development.

MARCKS-related protein (MARCKSL1) is a widespread, highly
conserved membrane-associated protein whose hyperexpression
promotes cell proliferation via the ErbB2-mediated signalling
pathway and facilitates angiogenesis and growth in carcinoma
cells in vivo (Weimer et al., 2009; Chen et al., 2021). Our study
also illustrated the upregulation of MARCKSL1 in BLCA cells. In
some cancer contexts, abundant expression of ANGPTL2 is highly

related to the frequencies of carcinogenesis and metastasis and
shortened survival periods (Endo et al., 2014; Kadomatsu et al.,
2014; Gao et al., 2015). A recent study discovered that host
ANGPTL2 also shows tumor-suppressive activity by enhancing
dendritic cell-mediated CD8+ T-cell antitumor immune responses
inmurine syngeneicmodels (Horiguchi et al., 2021). In our study, we
found that the expression levels of ANGPTL2 in T24 and RT112
cells were lower than those in normal bladder urothelium Svhuc-1
cells. Established animal models have demonstrated that mice
lacking SGCA developed cancer-associated mutation of p53 and
mutation or altered splicing of Mdm2 (Fernandez et al., 2010).
CAV1 is an integral membrane that works not only as a tumor
promotor but also as a suppressor (Carver and Schnitzer, 2003). It
has been reported that low expression of CAV1 favors tumor
progression by promoting cell proliferation, angiogenesis, and
metastasis, although re-expression of CAV1 can be detected in
later tumor stages (Senetta et al., 2013; Nwosu et al., 2016;
Ketteler and Klein, 2018). Low CAV1 expression levels in bladder
transitional carcinoma cells were detected in our PCR experiments.

The GHR signaling pathway plays a huge role in growth,
metabolism, cell cycle control, and immunity, and its dysfunction
enhances the sensitivity to sorafenib through the inactivation of
the PI3K/AKT/ERK1/2 signaling pathway (Gao et al., 2020;
Strous et al., 2020). MsrB3 is a protein repair enzyme that acts
as an antioxidant to eliminate cellular reactive oxygen species
(Lee et al., 2014). Concluded that MsrB3 deficiency contributed to
the downregulation of p53 and the disturbance of calcium

FIGURE 8 | (A) A histogram showing the contents of 22 kinds of infiltrating immune cells in the samples with a threshold p value <0.05. (B) The heatmap showed
the correlations between immune infiltrating cells. Red represented positively related while blue represented negatively related. (C) The differential analysis of immune
cells was presented in the form of a violin diagram. The Y-axis represented the fractions of immune infiltrating cells.
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homeostasis in cancer cells Kwak and Kim (2017). Interestingly,
we found that the two abovementioned genes were expressed at
lower levels in RT112 cells and higher levels in T24 cells. The
contradictory expression profiles could be understood for the
following reasons: the tumor cells were at different stages of
growth, the tumor cells originated from different positions or the
tumor cells varied in degree of malignancy. Generally, the results
of our experiments are in accordance with previous studies and
further enhance the reliability of the model.

Furthermore, increasing evidence has linked cancer to
inflammation and immune system activation, and immune-
related genes can potentially carry prognostic and therapeutic
value (Soria and Shariat, 2018; Soria et al., 2019). T follicular
helper cells (Tfh) characteristically express CXCR5 and can
provide the critical function of B-cell help (Vinuesa et al.,
2016). Tfh cells are strongly associated with B cells and
promote antitumor CD8 T-cell responses through the B cell-
TFH cell-IL21 axis (Cui et al., 2021). B cells promote the
differentiation of tumor-specific CD4 Tfh cells depending on
neoantigens, strengthen CD8 T-cell effector abilities by
producing IL-21 and finally promote antitumor immunity. We
discovered a high content of Tfh cells in bladder tumor tissues, as
previous studies have illustrated. Tfh cells have the potential to
serve as a novel prognostic and immunotherapeutic signature
that could guide clinical management and personalized
immunotherapy.

Considering that not all feature genes were linked to the
pathological process of BLCA, further validation of the model
was our follow-up research step. To calculate the reliability of our
model, a ROC curve was drawn to present the specificity and
sensitivity of the neural network model, and its AUC value was
0.950 (95% CI: 0.850–1.000). In addition, GSE100926 was
subjected to the same procedures for further verification of the
predictive accuracy of the model, and the ultimate AUC value was
0.667 (95% CI: 0.667–1.000).

In addition, several previous studies contributed to predicting
BLCA using artificial intelligence and machine learning
algorithms with gene expression profiling. Applied genetic
programming algorithm to evolve classifier mathematical
models including 21 genes for outcome prediction Bartsch
et al. (2016). The Random Forest algorithm was formulated by
Breiman (2001) and the random forest was an ensemble of
multiple decision trees. Based on decision trees, a Random
Forest can serve as a classifier by aggregating individual tree
predictors which have been built using randomly sampled
bootstrap observations from the original data and provide
valuable information on variable importance (Sampson et al.,
2011). The advantages of the random forest included good
performance, little tuning and variable importance measures,
which make the algorithm a powerful tool with appealing
characteristics for use on quantitative bioinformatical data
(Epifanio, 2017). In our study, the smaller number of key

FIGURE 9 | (A–H) The relative expression levels of the feature genes in Svhuc-1, RT112, and T24 cells were detected by qRT–PCR. (*p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001).
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genes and the implementation of a random forest algorithm were
the unique advantages.

Nevertheless, there were some limitations in our study. The
experimental genomics data were all downloaded from the GEO
database. Single data sources might somewhat limit the
effectiveness of forecasting operations, and sufficient validation
datasets from another unrelative database were necessarily
replenished. In addition, not all feature genes had reliable
research to substantiate their association with tumorigenesis
development in BLCA. The lack of external validation of
molecular experiments might also be the flaw of our study.

CONCLUSION

We constructed a 14-feature-gene-based neural networkmodel to
furnish novel diagnosis and evaluation tools for BLCA. After
repeated validation, although our study still needed further
verification, the model was found to be competent to make
early accurate diagnosis decisions for patients with BLCA.
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