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Abstract

Purpose: To quantify long-term changes in stromal collagen ultrastructure following penetrating keratoplasty (PK), and
evaluate their possible implications for corneal biomechanics.

Methods: A pair of 16 mm post-mortem corneo-scleral buttons was obtained from a patient receiving bilateral penetrating
keratoplasty 12 (left)/28 (right) years previously. Small-angle x-ray scattering quantified collagen fibril spacing, diameter and
spatial order at 0.5 mm or 0.25 mm intervals along linear scans across the graft margin. Corresponding control data was
collected from two corneo-scleral buttons with no history of refractive surgery. Wide-angle x-ray scattering quantified
collagen fibril orientation at 0.25 mm (horizontal)60.25 mm (vertical) intervals across both PK specimens. Quantification of
orientation changes in the graft margin were verified by equivalent analysis of data from a 13 year post-operative right PK
specimen obtained from a second patient in a previous study, and comparison made with new and published data from
normal corneas.

Results: Marked changes to normal fibril alignment, in favour of tangentially oriented collagen, were observed around the
entire graft margin in all PK specimens. The total number of meridional fibrils in the wound margin was observed to
decrease by up to 40%, with the number of tangentially oriented fibrils increasing by up to 46%. As a result, in some
locations the number of fibrils aligned parallel to the wound outnumbered those spanning it by up to five times. Localised
increases in fibril spacing and diameter, with an accompanying reduction in matrix order, were also evident.

Conclusions: Abnormal collagen fibril size and spatial order within the PK graft margin are indicative of incomplete stromal
wound remodelling and the long term persistence of fibrotic scar tissue. Lasting changes in collagen fibril orientation in and
around PK wounds may alter corneal biomechanics and compromise the integrity of the graft-host interface in the long
term.
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Introduction

The biomechanical properties of the cornea are influenced

significantly by the organization of collagen fibrils that form the

bulk of the corneal stroma [1]. Alterations in the alignment [2,3,4],

diameter [5,6,7] and spatial order [5,6] of stromal fibrils occurs

after penetrating injury, and there is evidence that some of these

changes persist long-term in and around the wound margin

following some types of corneal surgery [3,8,9]. Some of these

findings may be related to the observation that the mechanical

strength of corneal scar tissue never fully reaches uninjured levels

[10]. A number of investigators have examined the appearance of

the graft margin following penetrating keratoplasty (PK)

[3,9,11,12,13,14,15]. All of these studies reported significant

demarcation or abnormalities in the stroma at the graft-host

interface, suggesting a limited stromal healing response. However,

the majority of this literature featured either histological or

confocal microscopic findings, while quantitative, ultrastructural

studies of collagen architecture following penetrating corneal

wounds remain scarce.

Here we have used x-ray scattering to quantify stromal collagen

ultrastructure in a pair of post-mortem human eyes from a patient

who underwent bilateral PK for keratoconus 12 (left eye) and 28

(right eye) years previously, and a 8.5 mm post-operative corneal

button from the right eye of a second patient who required re-graft

13 years after originally undergoing PK. The availability of tissue
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of this kind is extremely limited. This study therefore afforded us a

rare opportunity to investigate the long-term effects of penetrating

injury on corneal ultrastructure by carrying out the first

quantitative study of collagen organisation across whole corneal

specimens featuring PK wounds.

Methods

The research presented in this manuscript was approved by the

Human Science Ethical Committee (School of Optometry and

Vision Sciences, Cardiff University, UK) and the South East

Wales Research Ethics Committee (Cardiff, UK). The institutional

review board approved the use of all corneas described in this

study; a waiver of consent was given for the donor corneas. All

tissue used in this study was obtained in accordance with the tenets

of the Declaration of Helsinki, and local ethical rules were adhered

to throughout. All experimental procedures were performed in

accordance with the Declaration of Helsinki.

PK Patient 1 Tissue Details
A pair of post-mortem eyes with history of bilateral PK for

keratoconus was obtained from The Danish Cornea Bank, Aarhus

University Hospital (Aarhus, Denmark). The age of the PK

recipient at death was 79 yrs. The donors’ ages were not available.

16 mm diameter corneo-scleral buttons were excised and the

orientation within the eye marked with a scleral suture. The

specimens were then immediately wrapped in polyvinylidene

chloride film to prevent dehydration, frozen and stored at 280uC
until the time of x-ray experiments. Inspection of the PK tissue

using light microscopy prior to the x-ray experiments disclosed

that both specimens displayed prominent regions of opacity in the

peripheral cornea, located on the temporal side in the left eye and

inferior/superior in the right, and that the graft margins were still

visibly demarcated (Fig. 1A,C). Additionally, a marked disconti-

nuity of the wound edge was visible on the temporal side of the

right eye (Fig. 1C). Left eye history: Underwent 8.2 mm/8.0 mm PK

for keratoconus 12 years previously. The apex was thinned and

located inferior/temporal. However, thinning and astigmatism

could not be accurately quantified due to irregularity of the

corneal surface. 5 months after PK there was vascularization into

the donor cornea as far as the sutures. The sutures (superior: 5

loops parallel to the suture, inferior: 4 loops) were removed after

12 months, and at 14 months there were no reported complica-

tions. Right eye history: Underwent PK for keratoconus 28 years

previously. No further information was available.

PK Patient 2 Tissue Details
A 8.5 mm diameter post-operative corneal button from a 51

year old patient who required re-graft following suspected

recurrence of keratoconus 13 years after initial 7.5 mm/

7.25 mm PK surgery. A detailed structural examination of this

specimen was published by our lab previously and concluded that

corneal ectasia at 13 years may have recurred due to a mechanical

failure of the graft rather than keratoconus recurrence [3]. In the

current study, a portion of the raw x-ray scatter data was re-

analysed in order to verify results from patient 1.

Control Tissue Details
Two post-mortem corneo-scleral buttons from donors aged

71 yrs (Control 1) and 47 yrs (Control 2), with no history of

keratoconus or refractive surgery, were obtained from Bristol Eye

Hospital (Bristol, UK). The specimens were wrapped in poly-

vinylidene chloride film, frozen and stored at 280uC until the time

of x-ray experiments. Further control results were obtained via re-

analysis of raw x-ray data from a normal cornea (Control 3)

examined in detail in a previous publication by our lab [16].

Small-angle x-ray Scattering
Small-angle x-ray scattering [17] (SAXS) was performed on

Beamline I22 at the Diamond Light Source (Didcot, UK), using an

x-ray beam (wavelength: 0.1 nm) with a cross-sectional diameter

of 0.25 mm. Each film-wrapped specimen was thawed and placed

into sealed PerspexH (Lucite Group Ltd, Southampton, UK)

chambers with MylarH (DuPont-Teijin, Middlesbrough, UK)

windows. The incident x-ray beam was directed towards the

anterior specimen surface, perpendicular to the corneal apex, and

the specimens were allowed to retain their natural curvature.

Specimen alignment was achieved by an initial exposure of x-ray

sensitive film placed in the specimen chamber to locate the

position of the incident beam. SAXS patterns, each resulting from

an x-ray exposure of 10 s, were collected along multiple linear

scans across the graft-host interface of each specimen at, 0.25 mm

(PK left) or 0.5 mm (PK right) sampling intervals (Fig. 1B,D), and

recorded electronically on an x-ray detector placed 6 m behind

the specimen position. Equivalent data from corresponding

locations on the control specimens were also collected (Fig. 1E).

Specimen translation between exposures was achieved using a

motorized stage integrated with the x-ray camera shutter. Analysis

of corneal SAXS patterns allows quantification of the average

separation, diameter and index of spatial order of collagen fibrils

in the stromal volume sampled by the x-ray beam [17].

Measurements of all three collagen parameters were obtained at

each sampled point in the specimens, as described previously

[18,19,20].

Wide-angle x-ray Scattering
Following SAXS experiments, the PK specimens were imme-

diately placed in 4% paraformaldehyde and stored at 4uC for

subsequent characterization using wide-angle x-ray scattering

(WAXS). Our previous work has established that this mild fixation

method does not affect corneal/scleral collagen parameters as

measured by WAXS [16]. Diamond Beamline I02 was used to

record WAXS patterns across the whole of each PK specimen at

0.25 mm (horizontal)60.25 mm (vertical) intervals, using an x-ray

beam of wavelength 0.098 nm and a cross-sectional diameter of

0.2 mm. For data collection each specimen was mounted in the

same way as for SAXS, such that the incident x-ray beam was

directed at the anterior surface and perpendicular to the corneal

apex, and the tissue’s natural curvature was retained. Initial

specimen alignment was achieved via an in-line microscope

directed along the incident x-ray beam direction. WAXS patterns,

each resulting from an x-ray exposure of 8 s, were recorded

electronically on a CCD detector (ADSC, Poway, USA) placed

550 mm behind the specimen position. Specimen translation was

achieved using integrated motor stages.

Analysis of corneal/scleral WAXS patterns provides a quanti-

tative measure of bulk collagen fibril orientation, as an average

value within the stromal volume sampled by the x-ray beam [21].

For every sampled location in the PK specimens, we obtained

three measurements: 1) the relative number of fibrils preferentially

aligned at a given angle within the tissue plane (over and above the

population of fibrils that are arranged isotropically), 2) the total x-

ray scatter integral (a measure of the total mass of fibrous

collagen), 3) the aligned x-ray scatter integral (a measure of the

mass of preferentially aligned collagen). A detailed account of the

data analysis may be found in a previous publication [21].

Corneal Structure after Penetrating Keratoplasty
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Results

Collagen Spatial Organisation
Fig. 2 shows SAXS results from two linear scans across the graft-

host interface of the left PK specimen of Patient 1. Similar to

previous findings in normal human corneas using transmission

electron microscopy [22] and SAXS [18,23], average fibril spacing

and diameter generally displayed minimum values in the central

cornea and increased with proximity to the limbus, with fibril

order index displaying the opposite trend. However, notably,

additional local elevations in fibril spacing and decreased levels of

fibril spatial order were also consistently observed in the region of

the graft margin. In some scans, these alterations were also

accompanied by corresponding increases in fibril diameter. Fig. 2

also presents corresponding data from two scans across the graft

margin of the right PK specimen from the same patient, in which

similar observations were noted. Analysis of the control data

confirmed that the localised alterations in fibril ultrastructure

noted in the graft margin of both PK specimens were not present

in corresponding regions of unwounded corneas (Fig. 2), consistent

with previous studies of normal human tissue [18,22,23].

Collagen Orientation and Mass Distribution
Fig. 3 presents a map of predominant collagen fibril alignment

across the left PK specimen, determined using WAXS. Each

Figure 1. Appearance of specimens and SAXS sampling locations. A) Left and C) right PK specimens from Patient 1. Red rectangle in C)
shows discontinuity of the wound edge in the right eye. B–E) SAXS scans performed on the PK and control specimens.
doi:10.1371/journal.pone.0068166.g001
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sampled point is represented by an individual polar vector plot, in

which the distance from the plot centre to periphery in a given

direction represents the relative amount of preferentially aligned

collagen lying in that direction [21]. The same technique has been

used extensively to map collagen orientation across normal human

corneas [16,24]. This previous work has shown that, centrally, the

normal cornea is characterised by a preponderance of fibrils

oriented along the superior-inferior and nasal-temporal meridians,

while towards the periphery these preferred directions gradually

alter to become predominantly tangential at the limbus [16,24].

Reference to Fig. 3 shows that this overall pattern was also evident

in the left PK specimen. However several additional features, not

present in normal tissue, were also noted.

Firstly, the circumferential collagen which characterises the

normal human limbus and perilimbal sclera had extended into the

peripheral cornea on the temporal side, corresponding in location

Figure 2. SAXS data across the graft-host interface of the PK specimens from Patient 1, showing measurements of collagen fibril
spacing (circles), spatial order index (squares) and diameter (triangles) along the scans indicated in Fig. 1. Corresponding data is also
shown for control specimens. Arrows indicate scan positions lying on the PK graft margin and their equivalent positions on the controls. Note local
increase in fibril spacing and diameter, and accompanying decrease in spatial order, in the graft margin for the PK specimens.
doi:10.1371/journal.pone.0068166.g002

Figure 3. Polar vector map of preferential collagen fibril alignment across the left PK specimen of Patient 1, determined using
WAXS. The larger plots (indicative of greater fibril alignment) have been scaled down for montage display by factors indicated in the colour key.
Broken circle: limbus. Arrow: tangential fibril alignment along the graft margin. Arrowhead: abnormal inward extension of tangential limbal fibrils into
the peripheral cornea, corresponding to region of prominent corneal opacity. Solid line: superior tag. Inset: location of noted features on actual
specimen.
doi:10.1371/journal.pone.0068166.g003
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with the region of prominent corneal opacity (Fig. 3 - arrowhead).

This region was also notable for displaying elevated collagen mass

in comparison with the nasal side of the eye (Fig. 4A–C -

arrowheads), an increase which was proportionately greater for

aligned, compared to total, collagen. Secondly, along the majority

of the graft margin there were marked alterations to normal

collagen orientation, characterised by fibrils aligned predominant-

ly tangential to the wound edge (Fig. 3 - arrow). In this region an

approximately two-fold local increase in total collagen scatter was

measured (Fig. 4A - arrow), consistent with an overlap of the

donor button and host bed. Aligned collagen scatter in this region

showed a proportionately greater elevation, measuring up to four-

fold higher than in adjacent regions inside and outside of the graft

Figure 4. Distribution maps of A,D) total and B,E) preferentially aligned collagen across the PK specimens from Patient 1,
determined using WAXS (arbitrary units). Arrows: local elevation in collagen mass at the graft margin. Arrowheads: abnormal elevation of
collagen mass in the peripheral cornea, corresponding to the prominent regions of corneal opacity. Solid circles: limbus. Solid lines: superior tag.
Rectangles: Elevated collagen mass delineates the separated wound edges of the right PK specimen, with a reduction in the intervening tissue. C,F)
Location of noted features on actual specimens.
doi:10.1371/journal.pone.0068166.g004
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margin (Fig. 4B - arrow), indicating considerable reinforcement of

aligned collagen around the wound edge.

In order to quantify further the change in normal alignment of

collagen across the graft margin, we compared the relative

proportions of collagen oriented transversely and parallel to the

wound edge. This was done by calculating from the WAXS

patterns [25] the proportion (relative to total collagen) of fibrils

oriented within 45u sectors of the horizontal (i.e. transverse) and

vertical (i.e. parallel) directions, when approaching the wound

along a horizontal corneal semi-meridian (Fig. 5A - inset). These

results are shown in Fig. 5A, and compared to equivalent data

from a normal human cornea (Control 3) examined in a previous

WAXS study [16] in Fig. 5B. The measurements disclose an

abrupt 15% increase in the proportion of collagen aligned parallel

to wound edge, and an accompanying 11% decrease in the

proportion of transversely oriented collagen, at this particular

location on the graft margin, resulting in approximately five times

as much fibrous collagen edging the wound as that spanning it.

Inspection of the corresponding raw x-ray scatter intensity values

confirmed that this effect arose from a combination of a 46%

absolute increase in parallel collagen and a 40% absolute decrease

in transverse collagen (data not shown). A similar trend was

confirmed at a corresponding location on the PK graft margin of

Patient 2, in which the number of collagen fibrils edging the

wound was approximately 3-fold higher than those spanning it

(Fig. 5C).

Figs. 6 and 4D,E present maps of preferential collagen

orientation and collagen mass distribution, respectively, across

the right PK specimen. Within the donor button, two orthogonal

dominant directions of collagen were again evident (Fig. 6).

However, unlike the donor button of the left PK specimen (Fig. 3),

and the central cornea of normal human eyes [16,24,26], these

preferred directions did not correspond to the superior-inferior

and nasal-temporal meridians of the recipient eye (Fig. 6),

suggesting that in this case the donor button was grafted obliquely.

The graft margin was again notable for the presence of markedly

reinforced collagen aligned tangential to the wound edge (Figs. 6

and 4D–F - arrows). Furthermore, the visible discontinuity of the

wound margin on the temporal side was clearly reflected in the

pattern of collagen organisation in this region, with dominant fibril

orientation and elevated collagen mass delineating the separated

graft margin, and fibrillar distortion and reduction of collagen

mass in the tissue between the separated wound edges (Figs. 6 and

4D–F - rectangles). The prominent regions of corneal opacity in

the inferior and superior peripheral cornea were again charac-

terised by an abnormal inward extension of the highly aligned

circumferential limbal/perilimbal scleral collagen (Figs. 6 and 4D–

F - arrowheads).

Discussion

Although PK is a highly successful long-term treatment option

in cases of severe corneal scarring and advanced pathology, late-

onset complications can present in a minority of patients. In the

case of PK for advanced keratoconus, the indication presented by

the patients studied herein, graft failure occurs in around 6% of

cases at a mean time of 13 years post-op [27]. To what extent, if

any, collagen structural changes contribute to the mechanisms

underlying graft failure remains to be established. However, there

is a large body of evidence to suggest that normal stromal

architecture may never be fully recovered in full-thickness graft

wounds [3,9,11,12,13,14,15,28,29]. The current results align well

with this view, demonstrating extensive long-term abnormalities in

collagen fibril orientation and spatial organisation around the

entire graft margin following PK. Firstly, we noted that collagen

orientation was predominantly tangential to the wound edge,

consistent with findings reported in previous long-term PK follow-

ups [3,9]. It is possible that this observation could be partly a

legacy of a mechanical distortion of existing collagen during

Figure 5. Proportion of total collagen oriented within 456
sectors of the horizontal (transverse to the wound edge) and
vertical (parallel to the wound edge) directions as a function of
distance from the corneal centre in A) Patient 1, left PK
specimen (sampling interval: 0.25 mm), B) normal control
cornea (sampling interval 0.4 mm) and C) Patient 2, right PK
specimen (sampling interval: 0.25 mm). Note marked increase/
decrease in collagen oriented parallel/transverse to the wound edges in
A) and C).
doi:10.1371/journal.pone.0068166.g005
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trephination [2], likely augmented by new collagen secreted by

infiltrating activated host keratocytes aligning with the donor

button edge via contact guidance [30].

Significant changes in collagen alignment around the wound

margin could impact on the mechanical stability of the graft-host

interface. Specifically, at the examined location in the left PK graft

margin of Patient 1, our measurements indicated that only around

10% of the total collagen was aligned transversely to the wound

edge. Such a relative lack of meridional fibrils spanning the graft

margin might be reasonably expected to encourage a wound

under tension to reopen. In contrast, over 50% of the collagen at

this point was aligned parallel to the wound edge. Notably, a

predominantly circumferential arrangement of fibrils is predicted,

from biomechanical considerations, to maximise out-of-plane

corneal deformation under intraocular pressure [31]. This could

potentially exacerbate the tendency of an already weakened

donor-host tissue interface to separate. With this in mind, it is

relevant to note that traumatic wound dehiscence has been

reported up to 19 years after PK [11,29], while stress analysis

experiments have indicated that the graft-host interface remains

weak even after the tissue appears fully healed [28].

Although neither eye of Patient 1 examined herein suffered a

reported failure, the wound margin of the patient’s right eye did

display a prominent visible separation on the temporal side, which

was confirmed by the collagen orientation pattern in this region. It

may be significant that this graft was performed earlier and hence

had been in the eye some 16 years longer than the fellow eye,

which showed no such changes. Moreover, we also noted a

distortion of the collagen in the tissue between the separated

wound edges, in which fibrils had aligned radially, i.e. along the

direction of the apparent outward migration of the wound edge

and perpendicular to the edge itself. The altered collagen

alignment here may not have resulted in a significant local

mechanical effect because the degree of anisotropy was generally

Figure 6. Polar vector map of preferential collagen fibril alignment across the right PK specimen of Patient 1, determined using
WAXS. The larger plots (indicative of greater fibril alignment) have been scaled down for montage display by factors indicated in
the colour key. Broken circle: limbus. Arrow: tangential fibril alignment along the graft margin. Arrowhead: abnormal inward extension of tangential
limbal fibrils into the peripheral cornea, corresponding to regions of prominent corneal opacity. Rectangle: fibril alignment delineates separated
wound edges and is disturbed in intervening tissue. Solid line: superior tag. Inset: location of noted features on actual specimen.
doi:10.1371/journal.pone.0068166.g006
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low (indicated by the orange color coding of the vector plots).

However, interestingly a similar pattern of radial collagen

alignment abutting the wound edge was previously noted by the

same technique in the specimen from Patient 2, in which an

initially successful PK graft had seemingly mechanically failed

after 13 years [3]. With respect to these observations, it is

unfortunate that no follow-up ophthalmic records were available

for the right eye of Patient 1.

The long-term persistence of circumferential collagen in the

graft margin we report here is compatible with the general view of

stromal collagen after penetrating corneal injury having a limited

capacity to remodel following initial wound repair, and this is

further supported by our observation of altered collagen spatial

organisation in the graft margin of Patient 1. Specifically, we noted

localised increases in collagen spacing and diameter, and a

reduced level of spatial order, observations which are all consistent

with the presence of fibrotic scar tissue deposited early in wound

healing [5,6,20]. This could be a contributing factor to the visible

opacity of the wound margin in these specimens [32], and may

also be expected to further alter the biomechanical properties of

the tissue in this region [18].

A final observation of the current study of potential importance

to corneal biomechanics is that, with reference to the dominant

fibril directions of the donor and host collagen, the right PK donor

button appeared to have been grafted obliquely. It has been

suggested that the superior-inferior and nasal-temporal preferred

collagen orientation in the central human cornea may reflect a

mechanical adaptation of the tissue to forces imposed by the

extraocular muscles [25,26,33,34]. In this context, it is interesting

that the orthogonal fibril directions in the right PK specimen of

Patient 1 examined herein had remained oblique to the rectus

muscle insertions, with apparently no significant re-alignment after

28 years as may have been expected on the basis of the

abovementioned criteria. This may reflect the extremely slow

rates of collagen turnover in the quiescent stroma [35]. Alterna-

tively, it could be linked to the observation that the inflation

behaviour of the cornea under normal conditions has been shown

to be insensitive to the collagen structure of the central region [36].

A further interpretation could be that any new collagen deposited

during wound healing has been laid down mainly in register with

the donor lamellae, possibly indicating that infiltrating cells have

taken their directional cues largely from the existing collagen

scaffold irrespective of mechanical stimuli.

The peripheral (keratoconic) tissue of both eyes of Patient 1

displayed prominent peripheral corneal opacity, located tempo-

rally in the left eye and inferior/superior in the right. The WAXS

data from this these regions revealed abnormal levels of highly

aligned tangential collagen, resembling that normally restricted to

the limbus and perilimbal sclera [16,24]. Taken together with the

physical appearance of the tissue, this suggests peripheral

scleralization had occurred. To our knowledge there is no specific

documented association of corneal scleralization and keratoconus.

Therefore we contend that this may be a case of isolated

peripheral sclerocornea which, as is the case here, usually presents

bilaterally and asymmetrically [37], as opposed to an abnormality

linked directly to the keratoconus itself.

In summary, this paper documents the first quantitative, long-

term follow-up of collagen organisation across whole transplanted

corneas. In principle, the changes noted in and around the graft

margin could affect corneal biomechanical behaviour and graft

stability. However further research, possibly focussing on the

application of structural data in numerical simulation of corneal

biomechanics, may help to establish any definitive link that may

exist between the ultrastructural changes presented herein and the

instances of PK graft dehiscence and mechanical failure

documented in the clinical literature.
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