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The accurate annotation of protein localization is crucial in understanding protein function in tandem
with a broad range of applications such as pathological analysis and drug design. Since most proteins
do not have experimentally-determined localization information, the computational prediction of protein
localization has been an active research area for more than two decades. In particular, recent machine-
learning advancements have fueled the development of new methods in protein localization prediction.
In this review paper, we first categorize the main features and algorithms used for protein localization
prediction. Then, we summarize a list of protein localization prediction tools in terms of their coverage,
characteristics, and accessibility to help users find suitable tools based on their needs. Next, we evaluate
some of these tools on a benchmark dataset. Finally, we provide an outlook on the future exploration of
protein localization methods.
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Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
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1. Introduction

Cells contain well-organized compartments with different pro-
tein constituents. Although most proteins are synthesized in the
cytosol, about half of them are transported into or across at least
one cellular membrane to reach their functional destination [1–
3]. The aberrant localization of proteins usually has harmful effects,
including diseases in humans and animals and poor traits in plants
[4–7]. Hence, studying the mechanism of protein localization is
essential in a broad range of applications, such as plant breeding,
pathological analysis, and the therapeutic modification of disease-
related protein mislocalization [5,8]. Protein localization is a com-
plicated biological process controlled by many factors, such as sig-
nal peptides, protein trafficking, protein–protein interactions,
folding, and alternative splicing [5,9]. Among these, protein local-
ization guided by targeting peptides is the most common mecha-
nism [10] and includes pre-sequences and internal signals
[11,12]. Pre-sequences are found at the N- or C-terminus of protein
sequenceswith enrichment of charged or hydrophobic amino acids,
while internal signals are located in the middle of a sequence. How
precursor proteins are directed to their target organelles is only
partially understood [11], and only a small number of targeting
peptides (particularly internal signals) have been experimentally
identified. According to UniProt annotation (release 2020_05), out
of the reviewed 20,394 human proteins, 7348 (36.0%) proteins have
localization annotation with experimental verification, while only
3608 (17.7%) proteins have known targeting peptides. Furthermore,
limited sub-organelle compartment localization data are available.
According to a recent search that we conducted on 16,213 human
proteins in ten human organelles, 5882 (36.3%) proteins had exper-
imentally verified organellar localization annotation, while only
3518 (21.7%) proteins had experimentally verified sub-organellar
localization annotation. Targeting peptide and sub-organelle data
for non-human species are even sparser.

Several experimental methods can be used for protein localiza-
tion analysis. Quantitative mass spectrometric readouts allow for
the identification of proteins across fractions [13–16]. Spatially
and temporally resolved proteomic maps in living cells can be
obtained by targetable peroxidase [17–19]. Techniques such as
immunofluorescence and high-resolution confocal microscopy
have enabled the visual estimation of protein localization within
a single cell [20–24]. One problem with experimental methods is
that their throughput is relatively low. In addition, experimental
protein localization identification requires a great deal of time
and resources. Importantly, experimental and computational pro-
tein localization identification approaches are complementary to
each other. Experimental annotations are typically used as true
labels for computational methods. Computational models are
trained using these ground truth data to predict the localization
of other proteins. Due to their cost-effective, automated, and
high-throughput nature, computational methods are helpful for
the large-scale characterization of protein subcellular locations.

Several papers have reviewed protein localization prediction
methods. The review of [25] focuses on methods for bacterial pro-
tein localization prediction. Other reviews [26,27] mainly cover
protein sequence features (such as targeting peptides) in localiza-
tion prediction. The methods reviewed in [28] predict protein func-
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tion taxonomies, such as the Functional Catalogue, Enzyme
Commission, or Gene Ontology, rather than specific cellular com-
ponents. Another review mainly discusses web-based prediction
tools for human protein subcellular localization [29]. General
methods and tools for protein localization prediction are intro-
duced in the reviews of [30–33], which have a scope similar to
ours. However, the most recent review in the literature [30–32]
was published in 2014. Many new methods have been proposed
since then that have greatly improved prediction accuracy, espe-
cially deep-learning methods. This review focuses on these new
methods and tools in addition to previous representative methods.
A less detailed review [33] was recently published. Compared to
[33], this review separates the introduction of features, algorithms,
and tools in greater detail so readers can better understand their
relationships. Additionally, the applicability of the tools is consid-
ered, and only actively maintained tools are listed. Users can select
the tools they need based on the information summarized and
access them through the links provided. All the aforementioned
features make this review unique and valuable. This review is orga-
nized as follows. In Sections 2 and 3, we analyze the features and
classifiers that are often associated with different methods, respec-
tively. Many of these methods provide standalone tools and/or web
services that we summarize in Section 4. For each tool, information
of target compartments, used algorithm, accessibility, etc. is given.
In Section 5, a summary is provided together with promising direc-
tions for future protein localization prediction methods. The rela-
tionship of the data, features, and models used in computational
protein localization prediction, as well as their outputs, are shown
in Fig. 1. The features and main contributions of this review are
summarized as follows:

� A systematic introduction of features, algorithms, methods, and
tools, as well as their relationships related to protein
localization.

� A comprehensive list of available protein localization prediction
tools, many of which became available in recent years.

� Extensive evaluations of localization prediction tools/methods,
providing insights on why somemethods have better prediction
performance than others.

� Significant discussion on the future direction of protein localiza-
tion studies.

2. Data and features

2.1. Sequence-based features

Protein sequences are considered the most essential source of
information for protein localization prediction, particularly termi-
nal region sequences where targeting signals are likely to be found.
Protein sequence information can be obtained from databases such
as UniProt [34]. In addition, many types of features have been pro-
posed based on protein sequences.

2.1.1. Amino acid composition
The simplest feature representing a protein sequence is likely

amino acid (AA) composition [35]. Given a protein sequence P,
the AA composition of P can be expressed by



Fig. 1. Relationships among the data, features, models, and prediction outputs in
the computational prediction of protein localization. Sequence data can be
converted into different features before feeding the data to a classifier model.
Some classification models take raw data (e.g., one-hot-encoding of protein
sequences for deep learning) as input, while others use engineered features.
Localization prediction (at the sub-cellular and/or suborganellar level) is the most
common output. Some methods also provide side product predictions such as target
peptides, signal peptide cleavage sites, and mechanism interpretability at amino-
acid-level resolution (AAI). Homology-based methods are special in the sense that
they can make predictions directly based on homology-based features, such as the
GO terms of homologous proteins.
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P ¼ ½f 1f 2 � � � f 20�T ; ð1Þ
where f u u ¼ 1;2; � � � ;20ð Þ are the normalized occurrence frequen-
cies of the 20 native amino acids in protein P.

2.1.2. PseAA composition
The main shortcoming of using AA composition as a feature is

its lack of protein sequence order information [31]. The concept
of pseudo amino acid composition (PseAA) was proposed to
address this problem [36] by representing a protein as a vector P:

P ¼ ½p1p2 � � �p20p20þ1 � � � p20þk�T ; ðk < L ð2Þ
where the 20þ k components are given by

Pu ¼
f uP20

i¼1
f iþw

Pk

k¼1
sk
; 1 6 u 6 20ð Þ

wsu�20P20

i¼1
f iþw

Pk

k¼1
sk
; 20þ 1 6 u 6 20þ kð Þ

8><
>: ð3Þ

where w is a weight factor set to 0.05 in the original paper [36], and
sk is the k-th tier correlation factor, which reflects the sequence
order correlation between all of the k-th most contiguous residues
as formulated by

sk ¼ 1
L� k

XL�k

i¼1

Ji;iþk; K < Lð Þ ð4Þ

As in Eq. (2), the first 20 components are associated with the
conventional amino acid composition of P, whereas the remaining
components are the k correlation factors that reflect the first tier,
second tier, and so on up to the k-th tier sequence order correlation
patterns. These kfactors incorporate sequence order effects, and k is
a chosen hyperparameter (integer). The calculation of sk integrates
the hydrophobicity values (H1), hydrophilicity values (H2), and
side-chain masses (M) for amino acids i and i + k as

Ji;iþk ¼
1
3

½H1 Riþkð Þ � H1 Rið Þ�2 þ ½H2 Riþkð Þ � H2 Rið Þ�2þ
n

½M Riþkð Þ �M Rið Þ�2
o

ð5Þ
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Note that Eq. (5) is just one form for deriving the correlation fac-
tors. Other information, such as physicochemical distance and
amphiphilic patterns, can also derive different types of PseAA
composition.
2.1.3. Homology information
As subcellular localization tends to be evolutionarily conserved

[37], homology to a protein of known localization is often a good
indicator of actual protein localization [38]. Such information can
be derived via BLAST [39] or a more sensitive search method such
as HHblits [40] against a database of proteins with known localiza-
tion. One important source of known localization is the cellular
component of Gene Ontology (GO) [41], which has been used to
improve protein localization prediction performance [42–45].
Homology information can also be obtained through protein struc-
ture similarity, as did in C-I-Tasser [46], a template-based method
for protein structure and function prediction. In C-I-Tasser, the
function prediction of a query protein is obtained by matching its
structural model with proteins in the BioLiP function library via
structure and sequence profile comparisons. Each entry in BioLiP
contains GO terms so that the GO cellular localization of the query
protein can be inferred.
2.1.4. Evolutionary profiles
Evolutionary profiles, represented by Position-Specific Scoring

Matrices (PSSMs), etc., provide informative input for protein local-
ization prediction. PSSMs indicate the amino acid occurrence for
each position in a protein multiple sequence alignment. PSSM
scores are generally given as positive or negative values. A positive
score means that the given amino acid substitution occurs more
frequently in the alignment than expected by chance, while a neg-
ative score indicates that the substitution occurs less frequently
than expected by chance. PSSMs can be created using PSI-BLAST,
which finds similar protein sequences to a query sequence and
then constructs a PSSM from the resulting alignment.

The BLOSUM (BLOcks SUbstitution Matrix) matrix [47] is a sub-
stitution matrix used for scoring alignments between evolutionar-
ily divergent protein sequences. Several BLOSUM matrices exist
using different alignment databases, which are named with
sequence identity thresholds in the alignments. For example, BLO-
SUM62 is a matrix built using sequences with less than 62% simi-
larity (sequences with �62% identity were clustered). BLOSUM62
is the default matrix for protein BLAST and is among the best for
detecting weak protein similarities. Encoding with BLOSUM matri-
ces is fast and provides a viable alternative if acquiring a PSSM is
slow or unsuccessful [48,49].

One particular usage of a sequence profile is as the profile ker-
nel of an SVM. A key feature of the SVM optimization problem is
that it depends only on the inner products of the feature vectors
representing the input data. Several kernel functions have been
proposed to avoid the explicit transformation of input data to fea-
ture vectors, explained as follows. Let U represent a mapping from
the input space of protein sequences into a (possibly high-
dimensional) vector space called the feature space. A string kernel
is defined by K x; yð Þ ¼ hU xð Þ;U yð Þi, where x and y are sequences,
e.g., x ¼ x1x2 � � � xN from the alphabet R of amino acids ( Rj j ¼ 20,
and the length N ¼ xj j depends on the sequence). Let P xð Þ ¼
pi að Þ; a 2 Rf gNi¼1 represent a profile for sequence x, with pi að Þ denot-
ing the emission probability of amino acid a in position i andP

a2Rpi að Þ ¼ 1 for each position i; a profile kernel is defined as
K PðxÞ; PðyÞð Þ. The Fisher-SVM method [50] is a profile-kernel
method that represents each protein sequence as a vector of Fisher
scores extracted from a profile Hidden Markov Model (HMM) for a
protein family. Kuang et al. proposed profile-based string kernels
that use probabilistic profiles, such as those produced by the PSI-
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BLAST algorithm, to define position-dependent mutation neighbor-
hoods along with protein sequences for inexact matching of k-
length subsequences (‘‘k-mers”) [51]. Such profile kernels are used
in LocTree2 [52], an SVM-based method for protein localization
prediction.

2.1.5. Motifs
Certain sequence patternsmay correlatewith a specific subcellu-

lar localizationdue to localization signals or functional relationships
[53]. Thismotif information can be retrieved fromdatabases such as
PROSITE [54] or by data mining. One special type of motifs repre-
sents targeting peptides, i.e., short sequencesmainly present at pro-
tein termini that function like a postal code to specify an
intracellular or extracellular destination [55]. Somemethodspredict
the presence of targeting peptides as a side product in tandemwith
protein localization prediction [56,57],while othermethods use tar-
geting peptides as input features to predict protein localization [53].

A sequence pattern can also be extracted through a sliding win-
dow of a k-mer sequence. The motif length k is often set based on
specific needs or prior biological knowledge. For example, Tetra-
Mito [58] uses over-represented tetrapeptides (four continuous
amino acids believed to encode a particular structure) as features
to predict submitochondrial protein localization. A similar idea is
used for sub-Golgi protein localization prediction by SubGolgi 2.0
[59], which uses an SVM classifier trained with g-gap dipeptide
compositions (two amino acids with g residues between them).
LOCALIZER [60] is another k-mer-based method for predicting
plant and effector protein localization to chloroplasts, mitochon-
dria, and nuclei. The motif length k varies in LOCALIZER to capture
the target signals on protein sequences.

2.1.6. Physical–chemical properties
As the name suggests, this feature uses AAs’ physical and chem-

ical properties to represent protein sequences. These previously cal-
culated properties are stored in public databases. According to
Venkatarajan and Braun [61], a comprehensive list of 237 physi-
cal–chemical properties of each amino acid was compiled from
the SWISS-PROT [34] and dbGET [62] databases. They showed that
the number of properties could be reduced while retaining approx-
imately the same distribution of amino acids in the feature space.
Notably, the correlation coefficient between the original and regen-
erated distances was more than 99% using the first five eigenvectors.

2.1.7. Pre-train sequence embedding
Evolutionary information significantly benefits model predic-

tion performance; however, as the number of proteins in databases
increases, retrieving such information is often time-consuming.
Additionally, evolutionary information is less powerful for small
protein families, e.g., for proteins from the Dark Proteome [63].
One promising sequence embedding method uses the pre-train
model adopted from Natural Language Processing (NLP). The pre-
train model utilizes large, unlabeled text-corpora such as Wikipe-
dia to conceptualize syntax and semantics. Pre-train methods such
as Transformer [64], ELMo [65], Word2Vec [66], and Bert [67]
employ self-learning and predict either the next word in a sentence
given all previous words, the current word from a window of sur-
rounding context words (or using the current word to predict the
surrounding window of context words), or masked-out words
given all unmasked words. Once trained, language models can
extract features, referred to as embeddings, to use as input for sub-
sequent supervised learning (transfer-learning). A similar strategy
has been used for protein sequence embedding. SeqVec [68] uses
ELMo on UniRef50 for pre-train embedding and transfer-learning
for subcellular localization prediction. ProtTrans [69] employs dif-
ferent pre-training embedding models on UniRef and BFD data
containing 2.1 billion protein sequences, which can also be used
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for protein localization prediction. In addition, a recent study
showed that the pre-training embedding from language models
followed by an attention-based deep-learning architecture could
yield excellent performance in protein localization prediction even
without using evolutionary information [70].

2.2. Protein interactions

If two proteins interact, they are neighbors of each other in a
protein–protein-interaction (PPI) network. The localizations of the
neighbors in a PPI network carry information about the localization
of un-annotated proteins. For example, if the majority of a protein’s
neighbors share the same localization, the protein is likely localized
to the same location. The definition of protein interaction varies and
can be based on physical connections or genetic regulations. Protein
interaction data can be retrieved from databases such as MINT [71],
DIP [72], BioGRID [73], and STRING [74].

2.3. Gene/protein expression

The rationale for using gene/protein expression as a feature is
that genes/proteins in the same compartment at the organelle or
suborganelle level tend to be co-expressed to perform related func-
tions. Gene/protein expression information can be used in network
form like the aforementioned protein interaction feature [75]. For
example, an interaction is established if the expression correlation
between two genes/proteins exceeds a predefined threshold. Gene/
protein expression information can also be used to create features
such as the k-nearest-neighbor (k-NN) scores in the MU-LOC
method [76] or used as standalone features in the SLocX method
[77]. Gene/protein expression data are widely available and can
be downloaded from databases like the Gene Expression Omnibus
(GEO) [78] and The Cancer Genome Atlas (TCGA) [79].
3. Classification algorithms

3.1. Support vector machine

Support vector machines (SVMs) [80] use kernel functions to
map input vectors into high dimensional feature space and con-
struct a hyperplane that maximizes the margin between different
classes. SVMs can handle large feature spaces and effectively avoid
overfitting.

The method proposed in [81] is an early SVM-based protein
localization prediction approach. To deal with a multi-class classi-
fication problem, it uses AA composition as a feature to train SVM
classifiers in a one-versus-rest fashion. pSLIP [82] employs the SVM
method in conjunction with multiple physicochemical properties
of amino acids to predict protein subcellular localization in eukary-
otes across six different localizations. The Density-induced Support
Vector Data Description (D-SVDD) is an extension of Conventional
Support Vector Data Description (C-SVDD) that was introduced for
a one-class classification task inspired by SVMs [83]. PLPD [84]
uses AA-based and motif features to modify the D-SVDD for
multi-class multi-label protein localization prediction, mainly from
imbalanced training datasets. A two-level SVM system to predict
protein localization is described in [85]. The first level consists of
multiple SVMs using distinct AA-based features (AA composition
and physical–chemical properties), and the SVM at the second
level makes the final prediction. SLocX [77] uses an SVM to predict
the subcellular localization of Arabidopsis proteins using gene
expression and AA composition as features.

Recent SVM-based methods include SubMitoPred [86], which
uses Pfam domain information to predict mitochondrial proteins
and their sub-mitochondrial localization. ERPred [87] predicts ER-



Y. Jiang, D. Wang, W. Wang et al. Computational and Structural Biotechnology Journal 19 (2021) 5834–5844
resident proteins by training an SVM with a combination of amino
acid compositions from different parts of proteins. SubNucPred [88]
predicts protein localization for 10 sub-nuclear locations sequen-
tially by combining the presence or absence of a unique Pfam
domain and an amino acid composition-based SVM model. CEL-
LO2GO [89] combines an SVM-based localization predictionmethod
with BLAST homology search. When homologous proteins with
known localizations are available, their GO terms are used as possi-
ble functional annotations for a queried protein. Otherwise, the
SVM classifier provides localization prediction. MultiP-SChlo [90]
is another SVM-based method that predicts subchloroplast protein
localization with multiple labels based on features such as PseAAC
and AA properties. MKLoc [91] is an SVM-based method for
multi-label protein localization prediction where protein sequences
are represented by a 30-dimensional feature vector consisting of
PseAAC, physical–chemical properties, motifs from PROSITE, and
GO annotations. LocTree3 [42] improves upon LocTree2 [52] by
including information about homologs, if available, through a PSI-
BLAST search. MitoFates [92] is a prediction method for cleavable
N-terminal mitochondrial targeting signals and their cleavage sites.
Besides classical features such as AA composition, sequence profiles,
and physical–chemical properties, MitoFates introduces novel
sequence features, including positively charged amphiphilicity
and presequence motifs, and trains an SVM classifier using these
features. SChloro [93] converts a protein sequence into a PSSM pro-
file and Kyte-Doolittle scale (average hydrophobicity). Two layers of
SVMs are designed to predict targeting signal and membrane pro-
tein information. The final output predicts six sub-chloroplastic
localizations by integrating the predictions from previous layers.

3.2. Probabilistic methods

3.2.1. Bayes method
Probabilistic models, specifically Bayesian methods such as the

Bayes Optimal Classifier or Bayesian Networks, make the most
probable prediction for a new example. Bayesian methods use
the Bayes Theorem [94] for calculating a conditional probability.
They are also closely related to the Maximum a Posteriori (MAP),
a probabilistic framework that finds the most probable hypothesis
for a training dataset. In large real-world applications, the Bayes
method usually assumes that different features are independent
of each other, known as Naïve Bayes.

PSORT-B [53] and subsequent versions of it [95,96] (with higher
prediction coverage and refined subcategories), construct six ana-
lytical modules based on features including homology, motifs,
and signal peptides. A query protein undergoes each of the six
analyses and the results are combined using a Bayesian Network
to generate a final probability value for each localization site.

3.2.2. Kernel-based logistic regression
When determining the probability of a protein to be localized at

a specific location given a PPI network, kernel-based logistic
regression (KLR) considers the localization information of all the
proteins in the network. The KLR model can be formulated as fol-
lows [97]. Given a protein–protein interaction network with N pro-
teins X1; � � � ;XN , some of which have unknown localization, let

X �i½ � ¼ ðX1; � � � ;Xi�1;Xiþ1; � � � ;XNÞ ð6Þ
represent the protein set excluding protein i. Let

ML ið Þ ¼
X

j–i;xjknown

K i; jð ÞI xj ¼ L
� � ð7Þ

represent the summed distances of protein i to proteins target-
ing localization L, where K i; jð Þ is the kernel function for calculating
the distances between two proteins in the network. Then, the KLR
model is given by 20þ 1 6 u 6 20þ kð Þ
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log
PrðXi ¼ LjX �i½ �; hÞ

1� PrðXi ¼ LjX �i½ �; hÞ ¼ cþ dM!L ið Þ þ gML ið Þ ð8Þ

which means that the logit of PrðXi ¼ LjX �i½ �; hÞ, and the probability
of protein i targeting location L is linear based on the summed dis-
tances of proteins targeting L or another location. Then, we have

Pr Xi ¼ LjX �i½ �; h
� � ¼ 1

1þ e�ðcþdM!L ið ÞþgML ið ÞÞ ð9Þ

Note that the probability of being in each localization is calcu-
lated separately as a binary classification problem.

NetLoc [75] applies KLR to protein networks based on different
relationships, including physical PPI, genetic PPI, and coexpression.
In NetLoc, networks with high connectivity and a high percentage
of interacting protein pairs targeting the same location lead to bet-
ter prediction performance.

3.2.3. Random Fields
Given a probability space, a random field T(x) defined in Rn is a

function such that for every fixed x 2 Rn, T(x) is a random variable
on the probability space [98]. Markov Random Fields (MRFs) and
Conditional Random Fields (CRFs) have been used for protein local-
ization prediction [56,99]. An MRF of a graph G is a set of random
variables corresponding to the nodes in G (random field) with a
joint distribution that is Markov-constrained for G. In other words,
the joint probability distribution associated with the MRF is sub-
ject to the Markov constraint given by G: for any two variables,
Vi and Vj, the value of Vi is conditionally independent of Vj given
its neighbors Bi. In this case, the joint probability distribution
Pð Vif gÞ factorizes according to G. In contrast, we can describe a
CRF for a graph G as a set of random variables corresponding to
the nodes in G, a subset Xif gni¼1 of which are assumed always to
be observed, and remaining variables Yif gmi¼1 with a conditional
distribution Pð Yif gmi¼1j Xif gni¼1Þ that is Markov-constrained for G.
Both MRFs and CRFs typically fit a model that can be used for con-
ditional inference in diverse settings. The main difference is that an
MRF has no consistently designated ‘‘observed variables” and
requires a joint distribution over all variables that adhere to the
Markov constraints of G.

CRFs are used for signal peptide cleavage site prediction in
DeepSig [99] and specific signal peptide prediction in SignalP 5.0
[56]. A tissue-specific subcellular localization prediction method
is proposed in [100] using multi-label MRF. A tissue-specific net-
work was constructed from generic physical PPI networks and
tissue-specific functional associations, and tissue-specific localiza-
tion annotations were obtained from HPA [101].

3.3. Distance-based methods

3.3.1. k-nearest Neighbors (k-NN) classification
The k-NN algorithm is a nonparametric method used for classi-

fication and regression [102]. In both cases, the input consists of
the k closest training examples in the data set. The output depends
on whether the k-NN model is used for classification or regression.
In k-NN classification, the output is class membership. An object is
classified by a plurality vote of its neighbors, and assigned to the
most common class of its k nearest neighbors (k is typically a small
positive integer). If k = 1, then the object is simply assigned to the
class of the single nearest neighbor.

WoLF PSORT [103] converts protein amino acid sequences into
numerical localization features such as targeting signals, amino
acid composition, and functional motifs. After conversion, a k-NN
classifier is used for prediction. An idea similar to k-NN is used
in [104], where a physical interaction network was obtained from
BioGRID [73], and GO Cellular Component annotation was mapped
onto the network, if available, for the corresponding protein
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(node). For a query protein, the percentage of its interactors asso-
ciated with each target localization is calculated. The top two local-
izations are then reported as the prediction.

3.3.2. Covariant discriminant algorithm based on Mahalanobis
distance

The Mahalanobis distance [105] is a measure of the distance
between a point P and a distribution D. It is essentially a multidi-
mensional generalization to measure how many standard devia-
tions away P is from the mean of D. This distance is zero if P is
at the mean of D and grows as P moves away from the mean along
each principal component axis. If each of these axes is re-scaled to
have unit variance, then the Mahalanobis distance corresponds to
the standard Euclidean distance in the transformed space. The
Mahalanobis distance is thus unitless and scale-invariant and takes
the correlations in a data set into account.

The Mahalanobis distance of an observation x!¼
ðx1; x2; x3; � � � ; xNÞT from a set of observations with mean l!¼
ðl1;l2;l3; � � � ;lNÞT and covariance matrix S is defined as:

DM x!
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x!� l!

� �T
S�1ð x!� l!Þ

r
ð10Þ

The similarity between standard vector X
�
n (normalized occurrence

frequencies of the 20 AA from class n) and protein X is characterized
by the covariant discriminant, as defined by Liu and Chou in [106]:

F X;X
�
n

� �
¼ D2 X;X

�
n

� �
þ lnðkn2kn3kn4 � � � kn20Þ ð11Þ

where the first term is the squared Mahalanobis distance, and kni is
the i-th eigenvalue of covariance matrix S.

The covariant discriminant algorithm is used in general protein
localization prediction in [106], as well as in apoptosis protein
localization prediction [107] and Golgi protein subtype prediction
[108]. The features used in these methods are AA composition or
Pseudo AAC.

3.4. Neural network/deep learning

An artificial neural network (ANN) is based on a collection of con-
nected units or nodes called artificial neurons that looselymodel the
neurons in a biological brain. Each connection, like the synapses in a
biological brain, can transmit a signal to other neurons. Each artificial
neuron receives a signal and processes it, and the output of each neu-
ron is computed by a non-linear function of the sum of its inputs.
Increased GPU computing power and distributed computing allow
the use of larger networks, which is known as ‘‘deep learning”
[109]. Deep learning has become the hottest field in machine learn-
ing, and different architectures have been proposed, such as deep
neural networks (DNNs) [110], convolutional neural networks
(CNNs) [109], recurrent neural networks (RNNs) [111,112], and
attention mechanisms [113]. These deep learning methods, as well
as traditional ANNs, have been applied in protein localization predic-
tion.Due to the abstract featureextraction capabilityofdeep learning
models, artificial feature engineering is sometimes not required. Raw
protein sequences can be given as inputs for many deep learning
localization prediction methods [114,115]. Among different deep
learning architectures, RNNs are inherently suitable for processing
protein sequences. Notably, a widely-adopted implementation of
RNN, Long Short-Term Memory (LSTM), captures long-distance
dependencies well [116]. LSTMs have been successfully applied in
machine translation [117–119] and speech recognition [120,121].
The methods used for these tasks can be applied to protein localiza-
tion prediction by considering protein sequences as sentences and
amino acids as words. CNNs are most commonly applied to analyze
visual imagery [122]. A CNN uses shared-weight convolution kernels
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to slide along input features and provide feature maps for down-
stream calculations. The pooling operation reduces data dimension
by combining the outputs of neuron clusters at one layer into a single
neuron in the next layer. It is often desirable to apply CNNs to long
protein sequences at the cost of losing single residue resolution for
improved computational efficiency [48,49,123]. Moreover, CNN fil-
ters can be used to build position-weight matrices (PWMs) of
sequence motifs, which can improve model interpretability [123].
The attention mechanism technique mimics cognitive attention
[113] as it enhances the essential parts of input data and fades out
the rest. This increases the signal-to-noise ratio and elucidates the
contribution of features to the final prediction [48,124], e.g., determi-
nes which amino acids are responsible for protein localization.

Several neural network/deep learning-based methods have
been proposed for protein localization prediction. SCLpred [114]
is an N-to-1 neural network for protein localization prediction cap-
able of mapping a whole sequence into fixed-length properties so
that no predefined feature is needed. A similar method was later
used in SCLpred-EMS [125] to predict proteins in the endomem-
brane system and secretory pathway. DeepLoc [49] applies the
CNN method, bidirectional LSTM [112], and the attention mecha-
nism for predicting localization and detecting the regions in a pro-
tein sequence that contribute to localization prediction. The length
of the embedding is the same as the input sequence, while the
attention weight of each amino acid is a combination of several
CNN filters of different receptive fields. This reduces the interpre-
tation resolution of the model. The researchers also apply different
embedding methods and illustrate that PSSM achieves significantly
better performance than BLOSUM62 at the cost of increased com-
puting time. MU-LOC [76] provides two models (SVM and DNN) to
predict mitochondrial protein in plants. The features used include
AA composition, PSSM, and gene expression. MULocDeep [48],
developed from the same group that developed MU-LOC, is a
recently developed deep learning method that extends target
localization coverage to 10 main subcellular compartments and
their suborganellar compartments with 44 localization classes in
total. Its deep learning model consists of a bidirectional LSTM
and a multi-head self-attention mechanism [124]. In addition to
protein localization prediction, it sheds light on the mechanism
of localization by highlighting regions on protein sequences as
likely targeting peptides. DeepMito [126] is another deep learning
method for sub-mitochondrial localization prediction using CNNs.
Its features include physical–chemical properties and PSSM in
addition to the one-hot encoding of raw sequences.

Some methods do not predict localization directly; rather, they
predict the presence and location of targeting peptides from which
the localization of corresponding proteins can be roughly inferred.
For example, DeepSig [99] and SignalP 5.0 [56] predict signal pep-
tides and their cleavage sites using deep-learning methods. Deep-
Sig uses a CNN, while SignalP 5.0 applies a CNN, bidirectional
LSTM, and a CRF for specific signal peptide prediction. TargetP
2.0 [57] is a deep learning model constructed by bidirectional LSTM
and a multi-attention mechanism to predict N-terminal targeting
signals that direct proteins to the secretory pathways, mitochon-
dria, and chloroplasts, or other plastids. One attention head was
assigned to each target class and trained as the second loss func-
tion to focus on the peptide cleavage site.

3.5. Decision tree-based methods

For prediction problems involving large-scale labeled data, neu-
ral networks tend to outperform other algorithms or frameworks.
However, when it comes to small- to medium-sized data, decision
tree-based algorithms are often considered optimal. A decision tree
is a flowchart-like structure in which each internal node represents
a ‘‘test” on an attribute, where each branch represents the outcome
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of the test, and each leaf node represents a class label. Decision
tree-based methods have evolved over the years. For example, bag-
ging (bootstrap aggregating) combines the predictions of multiple
decision trees through a majority voting mechanism, random for-
ests select only a subset of features at random to build a forest of
decision trees, and boosting is achieved by sequentially minimiz-
ing the errors of previous models. Gradient boosting employs the
gradient descent algorithm to minimize errors in sequential mod-
els. XGBoost [127] optimizes gradient boosting through parallel
processing, tree-pruning, handling missing values, and regulariza-
tion to avoid overfitting.

Decision-tree-based methods have also been applied to protein
localization problems. Pang et al. developed a CNN-XGBoost model
[128] to predict protein subcellular localization. A CNN acts as a
feature extractor to automatically obtain features from a protein
sequence, and an XGBoost classifier functions as a recognizer based
on the output of the CNN. SubMito-XGBoost [129] extracts protein
sequence-based features including g-gap dipeptide composition,
PseAAC, and PSSM as feature vectors for boosting to predict protein
submitochondrial localization. A similar study [130] extracts fea-
ture vectors of protein sequences using PSSM for a random forest
model. Both [129] and [130] apply the synthetic minority oversam-
pling technique (SMOTE) to balance samples [131].
4. Tools

Many of the aforementioned methods mention web servers or
standalone tools, but some of these are inaccessible due to lack
of maintenance. We summarize a list of available protein localiza-
tion prediction tools regarding their coverage, algorithms, accessi-
bility, and other characteristics. These localization prediction tools
(at the subcellular or suborganellar level) are shown in Table 1.
Note that the BUSCA [132] and SubCons [133] tools are web servers
that integrate different computational tools for protein subcellular
localization prediction. The localization coverage of some tools,
e.g., DeepSig and SignalP 2.0, is marked as SP (secretory pathway)
in Table 1 because they are signal peptide prediction tools. Signal
peptides direct proteins toward the secretory pathway, where
the proteins are either located inside certain organelles (the endo-
plasmic reticulum, Golgi, or endosomes), secreted from the cell, or
inserted into cellular membranes. Thus, the specific localization of
these proteins is not unique. Some tools consider the secretory
pathway as a low-resolution localization. For example, TargetP
2.0 predicts the presence of signal peptides and also predicts the
targeting peptide for mitochondrial proteins and plastid proteins
where unique protein localization can be inferred.

To assess prediction tools, competitions can provide large-scale
blind tests for objective evaluation. A well-known example is the
CASP [134] in the protein structure prediction field. For protein
localization prediction, the Critical Assessment of protein Function
Annotation algorithms (CAFA) [135] is a good platform for such a
purpose. CAFA requires a method to provide prediction in the form
of cellular component ontology (CCO) terms. However, most meth-
ods reviewed in this paper predict UniProt’s localization annota-
tions rather than the CCO terms, and hence may not be assessed
at CAFA directly. DeepLoc is a state-of-the-art method, and their
dataset is often used by new methods for training and testing, as
well as method comparison. Here, we used the DeepLoc dataset
as a benchmark to evaluate some of the tools. The DeepLoc dataset
was extracted from the UniProt database, release 2016_04. The
protein dataset was filtered using the following criteria: eukary-
otic, complete protein, encoded in the nucleus, longer than 40
amino acids, and experimentally verified (ECO:0000269) single
localization annotation. Similar locations or subclasses of the same
location were mapped to 10 main locations to increase the number
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of proteins per compartment (refer to Table 1 in [49] for details
regarding the class distribution). A total of 13,858 proteins were
obtained after the filtering process. PSI-CD-HIT [137] was used to
cluster proteins with 30% identity or a 10�6 E-value cutoff, and
the alignment was required to cover 80% of the shorter sequences,
resulting in 8410 clusters for the whole dataset. The five-fold data-
sets generated had approximately the same number of proteins at
each location. Four of the datasets were used for training and val-
idation, and one was held out for testing. In this way, the redun-
dancy between the training and testing datasets was reduced.

The DeepLoc, MULocDeep, SeqVec, ProtVec, and ProtTrans
methods were stringently trained and tested using the training
and testing samples in the DeepLoc dataset. LocTree2, MultiLoc2,
CELLO, WoLF PSORT, YLoc, SherLoc2, and iLoc-Euk were run on
the testing samples in the DeepLoc dataset. Thus, their perfor-
mance is potentially overestimated because redundancy control
was not performed. All the evaluated methods could be applied
to proteins in eukaryotic cells. In the cases where a method pre-
dicted more than ten locations, the predicted locations were
mapped onto the ten locations in the DeepLoc dataset. Overall
accuracy is used as the evaluation criterion. The evaluation perfor-
mance is directly cited from [48,49,68–70]. As shown in Fig. 2, the
deep learning-based methods (DeepLoc, MULocDeep, ProtTrans,
and SeqVec) have overall better performance than the other meth-
ods, except for ProtVec [138], which uses Word2Vec, a context-
independent embedding method. DeepLoc_PSSM achieves better
performance than DeepLoc_BLOSUM, indicating that evolutionary
information enhances localization prediction. By comparing the
performance of pre-trained methods (ProtTrans and SeqVec) with
other deep learning methods (DeepLoc and MULocDeep), we find
that a simple deep learning architecture with pre-train embedding
can achieve competitive or even better performance than deli-
cately designed deep-learning models using evolutionary profile
features.
5. Discussion and outlook

The computational prediction of protein localization has signif-
icantly improved prediction accuracy and localization mechanism
studies over past two decades, especially with deep learning. How-
ever, the current methods still have limitations. For example, an
80% overall prediction accuracy shown in Fig. 2 does not mean that
the localization prediction problem is 80% solved. In particular,
many suborganellar localizations do not have sufficient data to
build reliable prediction models. In this section, we discuss several
areas for future exploration of localization analysis methods.

Protein localization problems have several biological character-
istics. Many proteins can localize to more than one compartment.
Some proteins are tissue-/cell type-specific, meaning their localiza-
tion varies between different tissues or cell types. Proteins
expressed at the correct location but with altered efficiency or con-
centration can also lead to illness. Thus, quantitively measuring or
predicting protein localization in different tissues or cell types are
in great demand. Additionally, proteins may be mislocalized due to
mutations, which may have disease consequences [5]. Predicting
mislocalization due to mutations is also challenging because it
requires more sensitive methods with individual residue
resolution.

Researchers could also pay more attention to biological inter-
pretability when designing future localization analysis models.
The mechanism of protein localization is complicated. In addition
to targeting peptides, which are considered in some existing meth-
ods, other phenomena can affect/control protein localization. The
trafficking machinery in cells controls the transport of molecules
across membranes of organelles. Dysregulation of the protein traf-



Table 1
Summary of protein localization prediction tools.

Tool Cov_lv1 Cov_lv2 Species
kingdom

Algorithm Metrics Year Web server Standalone

BUSCA [132] 1–4,7,11–14 Eu,Pro Integrated method F1, MCC 2018 http://busca.biocomp.unibo.it/
CELLO2GO [89] 1–6,8–11,15 Eu,Pro,V SVM and homology

search
Acc 2014 http://cello.life.nctu.edu.

tw/cello2go/
MULocDeep [48] 1–10 1–10 Eu LSTM + attention Acc, MCC, Rec, Prec,

ROC_AUC, P&R_AUC
2021 http://mu-loc.org/

p

DeepLoc [49] 1–10 Eu CNN + LSTM + attention Acc, MCC, Gorodkin
measure

2017 https://services.healthtech.dtu.dk/
service.php?DeepLoc-1.0

TargetP 2.0 [57] SP,4,7 Eu,Pro LSTM + attention Prec, Rec, F1, MCC 2019 https://services.healthtech.dtu.dk/
service.php?TargetP-2.0

MU-LOC [76] 4 P SVM and neural
network

Acc, Prec, F1, MCC 2018 http://136.32.161.178/
p

LocTree3 [42] 1–4,6–11 Eu,Pro SVM and homology
search

Acc, Std 2014 https://rostlab.org/services/
loctree3/

MitoFates [92] 4 Eu SVM Prec, Rec, MCC,
ROC_AUC

2015 http://mitf.cbrc.jp/MitoFates/cgi-
bin/top.cgi

p

LOCALIZER [60] 1,4,7 P SVM SN, SP, PPV, MCC,
Acc

2017 http://localizer.csiro.au/
p

SignalP 5.0 [56] SP Eu,Pro CNN, bidirectional
LSTM, and CRF

MCC, Rec, Prec 2019 http://www.cbs.dtu.dk/services/
SignalP/

p

DeepSig [99] SP Eu,Bac CNN and CRF MCC, FPR, F1 2018 https://deepsig.biocomp.unibo.it/
welcome/default/index

p

PSORTb 3.0 [96] 2,3,14–16 Bac SVM and homology
search

Prec, Rec, Acc, MCC 2010 https://www.psort.org/psortb/
p

WoLF PSORT
[103]

1–4,7,11 Eu k-NN classifier Acc 2007 https://wolfpsort.hgc.jp/

SubCons [133] 1–4,6,8–11 Hum Integrated method F1, MCC 2017 https://subcons.bioinfo.se/
TPpred 3.0 [136] 4,7 Eu Integrated method MCC, Prec, Rec 2015 https://tppred3.biocomp.unibo.it/

tppred3

p

MultiLoc2 [44] 1–4,6–11 Eu SVM SN, SP, MCC 2009 https://abi-services.informatik.uni-
tuebingen.de/multiloc2/webloc.cgi

p

YLoc [45] 1–4,6–11 Eu Naïve Bayes and
entropy-based
discretization

F1, Acc 2010 https://abi-services.informatik.uni-
tuebingen.de/yloc/webloc.cgi

p

SCLpred-EMS SP Eu Neural network SP, SN, FPR, MCC 2020 http://distilldeep.ucd.ie/SCLpred2/
ERPred [87] 6 Eu SVM Acc, SN, SP, MCC 2017 http://proteininformatics.org/

mkumar/erpred/index.html

p

SeqVec[68] 1–10 Eu Language Model + FNN Acc, MCC, FPR 2019 https://embed.protein.properties/
p

ProtTrans [69] 1–10 Eu Language Model + FNN Acc 2020 https://embed.protein.properties/
p

LA [70] 1–10 Eu Language
Model + attention

Acc 2021 https://embed.protein.properties/
p

DeepMito [126] 4 Eu CNN MCC, GCC 2019 http://busca.biocomp.unibo.it/
deepmito/

p

SubGolgi v2 [59] 8 8 Eu SVM SN, Acc, MCC 2013 http://lin-group.cn/
server/subGolgi2

TetraMito [58] 4 Eu SVM SN, Acc, MCC 2013 http://lin-group.cn/server/
TetraMito

Schloro [93] 7 P SVM Acc, Rec, Prec, F1,
ROC_AUC, MCC

2017 https://schloro.biocomp.unibo.it/
welcome/default/index

p

SubMitoPred
[86]

4 4 Eu SVM Acc 2017 http://proteininformatics.org/
mkumar/submitopred/

p

SubNucPred [88] 1 Eu SVM Acc, SN, SP, MCC 2014 http://proteininformatics.org/
mkumar/subnucpred/index.html

p

The localization coverage codes are: 1. nucleus; 2. cytoplasm; 3. extracellular; 4. mitochondrion; 5. cell membrane; 6. endoplasmic reticulum; 7. plastid/chloroplast; 8. Golgi
apparatus; 9. lysosome/vacuole; 10. peroxisome; 11. plasma membrane; 12. organelle membrane; 13. endomembrane system; 14. outer membrane; 15. periplasmic; 16. cell
wall; SP. secretory pathway.
Cov_lv1 represents subcellular localization coverage, and Cov_lv2 indicates that suborganellar localization predictions are provided for the organelle.
The species kingdom codes are: Eu (Eukaryota, including animal, plant, and fungi); Pro (Prokaryota, including Bacteria and Archaea); V (Virus); P (Plant); Bac (Bacteria); Hum
(Human).
The metrics codes are: MCC (Matthews correlation coefficient), Acc (accuracy), SN (sensitivity), SP (specificity), Prec (precision), Rec (recall), ROC_AUC (area under receiver
operating characteristic curve), P&R_AUC (area under precision & recall curve), GCC (Generalized Correlation Coefficient), PPV (positive predictive value), FPR (false positive
rate).
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ficking machinery can have dramatic effects on general protein
transport processes [139]. For example, the homozygous mutation
R391H in the nucleoporin NUP155 has been shown to reduce
nuclear envelope permeability and affect the export of Hsp70
mRNA and import of HSP70 protein [140]. Another fairly common
method that affects protein localization involves binding partners
that carry bound proteins between compartments. This mecha-
nism allows for indirect control of protein localization by regulat-
ing the localization and concentration levels of binding partners,
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similar to the role of import receptors [9]. However, the prediction
of protein localization changes affected by other proteins has not
been explored. Furthermore, some localization signals are not con-
tained within the linear peptide sequence of a cargo protein but are
formed by the arrangement of amino acid residues on its surface.
One advantage of such an arrangement is that conformational
changes induced by allosteric events can disrupt or reform the
localization signal transiently in response to the state of the pro-
tein [9]. Making protein localization analysis methods inter-

http://busca.biocomp.unibo.it/
http://cello.life.nctu.edu.tw/cello2go/
http://cello.life.nctu.edu.tw/cello2go/
http://mu-loc.org/
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Fig. 2. Evaluations of protein localization methods/tools. The criterion is the overall prediction accuracy for 10 main localizations. DeepLoc_PSSM and DeepLoc_BLOSUM are
DeepLoc methods with PSSM and BLOSUM62 embedding, respectively. ProtT5_MLP and ProtBert_MLP are simple feed-forward neural networks in the ProtTrans method but
using pre-train embeddings by T5 and Bert, respectively. ProtT5_LA and ProtBert_LA use the same two pre-trained models as above but are followed by an attention-based
neural network.
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pretable would allow us to answer ‘‘how” besides ‘‘where” a pro-
tein localizes, which has implications in pathology and drug
design. The corresponding training data for such methods is cur-
rently lacking but may become available in the near future.
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