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Abstract
Objectives  An accurate and rapid diagnosis is crucial for the appropriate treatment of pulmonary tuberculosis (TB). This 
study aims to develop an artificial intelligence (AI)–based fully automated CT image analysis system for detection, diagnosis, 
and burden quantification of pulmonary TB.
Methods  From December 2007 to September 2020, 892 chest CT scans from pathogen-confirmed TB patients were retrospec-
tively included. A deep learning–based cascading framework was connected to create a processing pipeline. For training and 
validation of the model, 1921 lesions were manually labeled, classified according to six categories of critical imaging features, 
and visually scored regarding lesion involvement as the ground truth. A “TB score” was calculated based on a network-acti-
vation map to quantitively assess the disease burden. Independent testing datasets from two additional hospitals (dataset 2, n 
= 99; dataset 3, n = 86) and the NIH TB Portals (n = 171) were used to externally validate the performance of the AI model.
Results  CT scans of 526 participants (mean age, 48.5 ± 16.5 years; 206 women) were analyzed. The lung lesion detec-
tion subsystem yielded a mean average precision of the validation cohort of 0.68. The overall classification accuracy of six 
pulmonary critical imaging findings indicative of TB of the independent datasets was 81.08–91.05%. A moderate to strong 
correlation was demonstrated between the AI model–quantified TB score and the radiologist-estimated CT score.
Conclusions  The proposed end-to-end AI system based on chest CT can achieve human-level diagnostic performance for 
early detection and optimal clinical management of patients with pulmonary TB.
Key Points 
• Deep learning allows automatic detection, diagnosis, and evaluation of pulmonary tuberculosis.
• Artificial intelligence helps clinicians to assess patients with tuberculosis.
• Pulmonary tuberculosis disease activity and treatment management can be improved.
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Abbreviations
AI	� Artificial intelligence
AUC​	� Area under the curve
CNN	� Convolutional neural network
COVID-19	� Coronavirus disease 2019
CT	� Computed tomography
DL	� Deep learning

FN	� False negative
FP	� False positive
mAP	� Mean average precision
ROI	� Region of interest
TB	� Tuberculosis
TP	� True positive

Introduction

Tuberculosis (TB) is an airborne infectious disease 
caused by the bacillus Mycobacterium that rapidly 
spreads resulting in significant public health concerns 
[1, 2]. Although morbidity and mortality associated with 
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TB have continued to gradually decrease globally, the 
disease burden remains substantial in endemic countries 
[3]. Chest imaging plays a crucial role in the workup 
of patients with pulmonary TB [4]. In particular, com-
puted tomography (CT) has been used to help diagnose, 
monitor imaging changes, and evaluate the severity of 
pulmonary TB [5]. On the other hand, the radiographic 
features can be suggestive of the type and activity of 
TB [6]. Active TB demonstrates radiologic findings that 
include cavitation, consolidation, centrilobular nodules 
and tree-in-bud, or clusters of nodules, while inactive 
TB is characterized by fibronodular scarring and cal-
cified granulomas [5]. Hence, radiographic monitoring 
can support the decision making of clinicians for timely 
isolation and appropriate treatment. If the results of the 
workup are positive for active TB, initial concomitant-
drug therapy is required. However, the complexity of 
chest CT images is challenging. In countries with sub-
optimal health and surveillance systems, underdiagnosis 
and missed reporting of TB are common problems.

Artificial intelligence (AI) has gained significant atten-
tion in recent years and many applications have been pro-
posed in medical image recognition and interpretation [7]. 
Deep learning (DL), as the core technique of the increasing 
application of AI, has made great progress in medical image 
analysis, including skin disease classification [8], diabetic 
retinopathy detection [9], and lung cancer screening by chest 
CT [10]. These DL algorithms can autonomously “learn” to 
predict features from manually classified initial data. Recent 
promising advances in CT-based DL systems have demon-
strated the potential of AI-assisted radiological diagnostic 
technology [11–13]. For example, Zhang et al employed a 
ResNet-18-supervised network for the diagnosis and pre-
diction of triage of patients with coronavirus disease 2019 
(COVID-19) during the global pandemic based on CT [14]. 
Therefore, we hypothesized that end-to-end DL networks 
can be designed and established by automatic and adaptive 
feature learning to achieve human expert-level performance 
for diagnosis and follow-up.

In this study, an AI-based fully automated CT image anal-
ysis model was developed and evaluated to provide support 
for the detection, diagnosis, and disease severity quantifica-
tion of patients with pulmonary TB.

Materials and methods

Study participants

The study protocol was approved by the institutional review 
board of Nanfang Hospital of Southern Medical University. 
Written informed consent was waived due to its retrospective 

nature. The chest CT scans of patients with suspected TB 
acquired from December 2017 to September 2020 were 
retrieved from the picture archiving and communication 
system and review. A total of 1356 CT scans of 865 patients 
(maximum of two scans per patient) were collected who met 
the following inclusion criteria (Fig. 1): (1) age ≥18 years; 
(2) CT examinations for known or suspected primary or 
secondary TB; and (3) CT slice thickness ≤ 1.5 mm. Exclu-
sion criteria were CT scans with inadequate image quality 
(n = 73), no typical imaging findings indicative of TB (n = 
215), and negative Mycobacterium tuberculosis culture from 
sputum, bronchoalveolar lavage, or lung biopsy samples (n 
= 176).

CT acquisition parameters and image 
pre‑processing

Chest CT was acquired with different CT scanners from mul-
tiple centers. The acquisition and reconstruction parameters 
are summarized in Table 1. CT images were reconstructed 
with a 512 × 512 matrix and a slice thickness of 1–1.5 mm. 
Images were preprocessed via the lung window setting (win-
dow width, 1500 HU; window level, −700 HU) and resa-
mpling the voxels to 1 × 1 × 1 mm3. A three-dimensional 
reconstruction approach was used to visualize the severity 
of TB.

Diagnosis system and network architectures

For DL algorithm development (training) and optimization 
(validation) for lesion localization and classification, data 
annotation was performed by a thoracic radiologist (J.H.) 
with 3 years of experience and verified by an expert radi-
ologist (C.Y.) with 11 years of experience. First, abnormal 
slices with typical pulmonary TB lesions and normal slices 
without pathological findings were manually marked and 
used as gold standards to train the DL network. Second, for 
each CT scan, the TB-related imaging features were judged 
according to the Fleischner Society glossary [15], and the 
center layers with the maximum areas of TB lesions were 
labeled. The bounding boxes of the above critical findings 
(average of 2.2 lesions per CT scan) were drawn with the 
open-source software ITK-SNAP (version, 3.6.0) for lesion 
detection and segmentation.

Convolutional neural network (CNN)–based cascading 
networks were automatically connected to create an end-to-
end processing pipeline (Fig. 2). The AI model first identi-
fied the abnormal CT slices based on the Attention Branch 
ResNet [16]. The Sigmoid function was used as the last acti-
vation function (Fig. 3). The top ten abnormal slices of each 
raw chest CT scan according to Sigmoid function scores were 
selected by the algorithm for subsequent analysis. Then, the 
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lung region of interest (ROI) based on the CenterNet detec-
tion framework was localized [6, 17] (Fig. S1). During the 
training phase, annotated ground truth ROIs were first con-
verted into heatmaps as input. Then, the trained CNN can 
output the location of the TB lesions and the corresponding 
segmented ROIs. CenterNet can generate a heatmap and then 
the error between the predicted and annotated heatmaps is 
optimized by the focal loss function. Mean average precision 
(mAP) was used to evaluate the lesion detection performance 
of the proposed system. To perform region-specific disease 
diagnosis, we used an 18-layer squeeze-and-excitation 

ResNet model (SeNet-ResNet-18) [18] pretrained on the 
ImageNet dataset. Images with bounding boxes as input to 
the network produced a final prediction of the categories and 
activities of TB (Fig. S2). To further estimate TB activity, 
the output prediction probability was merged by a two-class 
classification of active and inactive TB [4]. Finally, a Grad-
CAM algorithm based on the slice selection CNN described 
above [16] was used to generate an activation map to evaluate 
the disease severity. The computerized quantitative approach 
provided segmentation of the lung tissues based on thresh-
olds and adaptive region growing. A lung “TB score” was 

Fig. 1   Flowchart of the study process for the training and testing datasets
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calculated by the ratio of lesion volumetric summation to that 
of the corresponding lung lobes. Additionally, each lobe was 
visually scored by consensus of two independent radiologists. 
According to the subjective score, the patient was defined as 
severe (≥2 for any lobe) or non-severe (< 2). The detailed 
system network structure for the AI model is summarized in 
the Supplementary Materials.

Performance of the AI model in external validation 
datasets

The performance of the model was tested independently at 
three datasets: dataset 2 (Yanling Hospital, n = 99), dataset 3 
(Haikou Hospital, n = 86), and dataset 4 (National Institutes 
of Health [NIH] TB Portal dataset at https://​tbpor​tals.​niaid.​

nih.​gov/, n = 171). The model output was probabilities for 
six critical imaging findings and activities, and the consen-
sus categories, as determined by two radiologists (C.Y., J.H.) 
were considered as ground truths.

Statistical analysis

A confusion matrix was calculated to estimate multiclass 
classifiers, whereas recall, precision, and a more balanced 
F1_score were used to measure the performance by class. 
Spearman correlation analysis was performed to assess 
the correlations between the radiologist-estimated CT 
score and TB score as determined by the algorithm. The 
correlation was defined as mild (r < 0.3), moderate (0.3 
≤ r < 0.5), good (0.5 ≤ r < 0.8), or strong (r ≥ 0.8). Also, 
the interobserver reliability of the subjective CT score 
rated from 30 randomly chosen cases was calculated as 

Table 1   Chest CT acquisition parameters of different datasets

* Scanning parameters from the NIH open-source dataset are not available

CT scanners Development dataset Test dataset (Yan-
ling)*

Test dataset (Hainan)

Philips Brilliance iCT Siemens SOMATOM 
Definition

GE Revolution Siemens Emotion 16 Philips Brilliance iCT

Scan number 519 336 37 99 86
Tube voltage 120 kVp 110–120 kVp 100 kVp 130 kVp 120 kVp
Tube current Automatic mA modu-

lation
Automatic mA modu-

lation
Automatic mA modu-

lation
184 mA Automatic mA modu-

lation
Pitch 0.991 1.2 0.992 1.2 0.993
Detector configuration 128 × 0.625 mm 192 × 0.6 mm 128 × 0.625 mm 192 × 0.6 mm 128 × 0.625 mm
Resolution 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512
Section thickness 1 mm 1–1.5 mm 1.25 mm 1.5 mm 5 mm

Fig. 2   Illustration of the proposed cascading AI pipeline. The AI 
diagnostic system consists of four subsystems, which provides con-
sistent visual descriptions: (1) screening to distinguish between nor-

mal and abnormal CT images, (2) object detection and localization of 
pulmonary infectious lesions, (3) diagnostic assessment of radiologi-
cal features (6 types) and TB activity, and (4) severity assessment
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an interclass correlation coefficient. Student’s t-test was 
used to compare the TB scores of severe and non-severe 
patients. All statistical analyses were performed using 
IBM SPSS Statistics for Windows, version 23.0. (IBM 
Corporation). A probability (p) value of < 0.05 was con-
sidered statistically significant.

Results

Patient characteristics

The development dataset included 892 scans of 526 patients 
(320 men and 206 women; mean age, 48.5 ± 16.5 years; age 
range, 18–92 years) with clinically diagnosed TB.

Performance of the AI model

The AI cascading models consisted of four subsystems, 
which provide consistent visual descriptions: (1) screening 
to distinguish between normal and abnormal CT images, (2) 
object detection and localization of pulmonary infectious 
lesions, (3) diagnostic assessment of radiological features (6 
types) and TB activity, and (4) evaluation of disease severity.

Slice selection

Slice-level analysis was performed to select the top 10 posi-
tive slices according to the predicted probability for each CT 

scan. The average accuracy of the training and validation 
cohort was 99.6% and 99.8%, respectively.

Object detection and localization

An advanced real-time object detection algorithm based 
on the CenterNet detection framework was used to local-
ize lesions, which yielded a mAP of 0.68 for the vali-
dation cohort. In test dataset 2, 563 candidate regions 
were detected by the AI model, which included 518 true 
positives (TPs), 45 false positives (FPs), and 26 false 
negatives (FNs). In test dataset 3, 502 candidate regions 
were detected with 440 TPs, 62 FPs, and 23 FNs. In the 
test dataset 4, 931 candidate regions were detected with 
869 TPs, 62 FPs, and 37 FNs.

Classification and diagnosis

The classification CNN demonstrated a training accu-
racy of 99.6 ± 1.0% (1531/1537 patches) across six 
critical imaging findings indicative of TB. For the 20 
iterations, the average model accuracy for overall classi-
fication of six-way lesion types in the validation cohort 
was 87.37% (346/396). The recall rate of individual 
lesion types ranged from 83.87% (52/62) for clusters of 
nodules to 90.00% (90/100) for calcified granulomas. 
The classification results per lesion are summarized 
as a confusion matrix for the critical imaging findings 
predicted by the AI model (Fig. 4a). In the validation 
cohort, the DL model showed good discriminative 

Fig. 3   CNN architecture of a deep learning system for slice selection 
and disease evaluation. The neural network architecture of the subsys-
tem is based on Attention Branch ResNet and Grad-CAM. The con-

volution (Conv) layers are used to filter the input full CT scan and 
extract effective features
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performance for each independent critical finding (area 
under the curve = 0.959–0.983, Fig. S3). The classi-
fication results of the AI model by class are shown in 
Table S1.

To validate the general applicability of the proposed 
AI system, CT images were obtained from the NIH 
open-source dataset and additional data from our col-
laborators. In the independent test cohorts (datasets 2, 

3, and 4), the overall classification accuracy rates of the 
six pulmonary infiltrate types were 91.50% (474/518), 
87.65% (440/502), and 86.08% (748/869), respectively. 
The confusion matrix for each testing dataset is shown 
in Fig. 4a–d. The predictive performances of the cor-
responding recall, precision, and F1 score by class are 
listed in Table 2.

a

b

c

d

Fig. 4   a–g Performance of the AI system for classification. a Normal-
ized confusion matrices of multiclass critical imaging feature clas-
sification for the validation and test datasets. b Normalized confu-

sion matrices of disease activity prediction for the test datasets. The 
shaded cells indicate the correct results obtained by the AI system
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Fig. 4   (continued)

Table 2   Performance of the AI model for classification and diagnosis in the testing phase

Note. Data in brackets are 95% confidence interval
AI artificial intelligence

Test set (dataset 2) Test set (dataset 3) Test set (dataset 4)

Recall (%) Precision (%) F1 score Recall (%) Precision (%) F1 score Recall (%) Precision (%) F1 score

Cavitation 88.89% 100.00% 94.12% 86.85% 100.00% 92.96% 86.08% 95.77% 90.67%
Consolidation 80.77% 87.50% 84.00% 89.55% 87.50% 88.51% 88.89% 72.73% 80.00%
Centrilobular and tree-in-bud 94.95% 91.59% 93.24% 87.96% 91.59% 89.74% 83.76% 92.65% 87.98%
Clusters of nodules 82.14% 69.70% 75.41% 86.67% 69.70% 77.26% 81.32% 67.27% 73.63%
Fibronodular scarring 84.44% 97.44% 90.48% 86.35% 97.44% 91.56% 89.55% 70.59% 78.95%
Calcified granulomas 92.19% 94.15% 93.16% 88.07% 94.15% 91.01% 88.14% 94.49% 91.20%
Active/Inactive 100.00% 92.68% 96.20% 94.87% 94.87% 94.87% 97.87% 98.98% 98.42%
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For binary decisions, the CNN model achieved an 
accuracy of 96.97%, 95.35%, and 98.25% for predicting 
participant-wise activity of the independent test cohorts 
(dataset 2, 3, and 4), respectively (Fig. 4e–g), while the 
corresponding recall rate was 100%, 94.87%, and 97.87%, 
and the precision was 95.08%, 94.87%, and 98.70%, 
respectively.

Severity evaluation

A Grad-CAM framework to automatically highlight pulmo-
nary lesions was used to assess the extent of the disease. The 
intraclass correlation coefficient for agreement between the 
subjective scores of the two radiologists was strong (0.92, 
95% confidence interval = 0.90–0.95). As displayed in the 
attention heatmap obtained by fusion (Fig. 5a), the AI-dis-
covered suspicious infectious areas matched highly with the 
actual pulmonary TB lesions. Spearman correlation analyses 
demonstrated a moderate to good correlation between the AI 
model–quantified TB score and the radiologist-estimated CT 
score (r = 0.545–0.713) in the validation cohort. The cor-
relation results are summarized in Table 3. The TB scores 
per lobe were significantly higher in patients with severe 
disease than non-severe disease in the validation and testing 
sets (all p < 0.05; Fig. 5b). Some examples of TB and the 
corresponding prediction results are shown in Fig. 6.

Discussion

In this retrospective, multicohort, diagnostic study, an AI 
cascading model for fully automated diagnosis and triage 
of pulmonary TB was developed and evaluated based on 
chest CT images. The results confirmed that the model was 
useful for detection and classification of critical imaging 
features and achieved an overall accuracy of 0.86–0.92 with 
the use of external datasets. Moreover, an attention heat-
map highlighted infectious areas for evaluation of TB bur-
den with human-level accuracy. The AI system succeeded 
to stratify patients into severe and non-severe groups by TB 
scores quantified by the algorithm. Furthermore, the DL sys-
tem allowed for accurate detection, diagnosis, and severity 

a

b

Fig. 5   a AI-identified suspicious infectious areas on images of severe and non-severe disease. Pseudocolor map represents the three-dimensional 
reconstruction of the lesion. b Boxplots comparing TB scores per lobe between severe and non-severe patients for the validation and test datasets

Table 3   Correlation coefficient (r) of AI quantified TB score and 
radiologist-estimated subjective scores of the lung lobes

AI artificial intelligence, LUL left upper lobe, LLL left lower lobe, 
RUL right upper lobe, RML left middle lobe, RLL right lower lobe, 
TB tuberculosis

Validation set Test set (Yan-
ling)

Test set (Hai-
kou)

Test set (NIH)

LUL 0.713 0.655 0.652 0.762
LLL 0.649 0.582 0.579 0.692
RUL 0.723 0.542 0.660 0.564
RML 0.624 0.531 0.600 0.402
RLL 0.545 0.534 0.580 0.503
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assessment of TB lesions. The proposed AI system can assist 
clinicians with the significant demands for pulmonary TB 
screening, diagnosis, and follow-up in daily clinical practice.

TB accounts for an estimated 1.4 million deaths annu-
ally worldwide [19]. Although the incidence has continued 
to gradually decrease over the past decade, TB remains an 
enormous burden globally [3, 20]. Prompt detection, timely 
treatment, and routine follow-up are priorities to prevent TB-
related morbidity and spread to the unaffected. Although 
sputum and blood assays are standard for the diagnosis of 
TB, these tests are inadequate to assess smears negative for 
TB and the results can take up to several days [2]. Lung 
biopsy provides a proven diagnosis pathologically, but the 
procedure is invasive with significant risks for comorbidities 
[21]. Chest radiography is a widely available imaging tool 
for screening and diagnosis of TB [22]. Experimental results 
have shown that CT scans can aid radiologists in the diagno-
sis of suspected TB cases when chest radiographs are incon-
clusive [23]. Furthermore, CT imaging features (including 
centrilobular nodules, tree-in-bud, consolidation, and cavita-
tion) are reported strongly correlated with the positivity and 
grading of sputum microbiology results [24].

AI has become state of the art for image analysis [25] 
and plays a role in supporting clinical decision making with 
respect to diagnosis and risk stratification [7, 26]. Lakhani 
et al [27] recently reported a DL with CNN system to rapidly 
and accurately classify TB on chest radiographs with a sen-
sitivity of 97.3% and specificity of 100.0%. When evaluat-
ing a three-dimensional CT scan, abnormal slices in the full 
series of images must be initially identified. To reduce the 
computation burden of the proposed AI model, a pretrained 
network was used to select key slices with the top 10 confi-
dence to represent a complete CT scan, which achieved simi-
lar accuracy of 99.80% as the BConvLSTM U-Net method 
for image selection [16]. However, there is a tradeoff with 
this strategy due to missing diagnostic information from the 
slices for further analysis.

Several previous studies have explored the detection and 
classification of pulmonary infections, especially during the 
recent COVID-19 pandemic [16, 28–31]. Jaeger et al [32] uti-
lized the simple, but effective, one-stage Retina U-Net model 
for lesion detection and localization, which achieved a mAP 
of 0.50. In the present study, a CNN based on the Center-
Net detection framework managed to automatically identify 

Fig. 6   Example of chest CT images of patients with pulmonary TB and performance of our AI model
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suspected regions that were strongly indicative of TB with a 
mAP of 0.68. More recently, Li and colleagues [33] reported 
a state-of-the-art three-dimensional DL model to annotate 
the spatial location of lesions and classify five critical CT 
imaging types of TB disease (miliary, infiltrative, caseous, 
tuberculoma, and cavitary), with a classification precision 
rate at 90.9%. The overall accuracy of the proposed model 
was similar (0.86–0.92 vs. 0.91) for six typical CT imaging 
findings. Another novel feature of the AI model is the ability 
to analyze imaging features and simultaneously predict dis-
ease activity. The increased accuracy of participant-wise pre-
diction (98% compared with region-wise accuracy of 90%) is 
rational. Errors in region-wise predictions are minimized for 
the prediction of active TB, which could facilitate more effec-
tive identification, intervention, and isolation of active cases.

Further to this, various computer-aided CT image analy-
sis tools were recently developed for the diagnosis and eval-
uation of the disease burden of coronavirus-positive patients, 
which can help to predict the progression to critical illness 
[14]. Similarly, Shan et al [30] reported a CT-based DL sys-
tem automatically focused on segmentation and quantifica-
tion of regions of infection, which can identify suspicious 
abnormal areas of the bilateral lungs as a slice-based “heat 
map.” This system allows automatic delineation and pre-
diction of disease severity consistently and quantitatively. 
The results of the present study demonstrated that the pro-
posed TB score corresponds to disease severity. The lesion 
percentage determined by the AI model was moderate to 
well correlated to that of the radiologists (r = 0.453–0.761). 
Furthermore, the AI model demonstrated significant differ-
ences in the TB scores between the severe and non-severe 
groups in the testing datasets (all p < 0.05). Therefore, such 
a TB score provides a potential quantitative tool for patient 
follow-up and management to monitor progression and 
regression of findings. More importantly, unlike prior super-
vised algorithms based on slice-level analysis, the proposed 
approach can search an entire CT study without human guid-
ance. Then, the exported quantitative report, including over-
all TB infection probability, imaging features with spatial 
coordinates, activity, and severity prediction may serve as 
an effective reference for clinicians to make decisions, which 
is well-suited in real-life health services.

There were several limitations to this study that should 
be addressed. First, the sample size was relatively small 
and the insufficiency of data for training the AI networks 
may have limited the performance of the model. Second, 
the CT data from different centers were rather heterogene-
ous regarding the scanning parameters and slice thicknesses. 
However, such heterogeneous data may allow the results to 
be more generalizable. As demonstrated in the independ-
ent test cohorts, the proposed AI model is robust regarding 
slice thickness and lesion distribution. Third, this study only 

focused on the six typical types of pulmonary infiltrates, 
while ignoring other rare signs of primary TB, including 
pleural effusion and enlarged lymph nodes. The sample size 
of the rare imaging features was insufficient for training. 
In the future, the AI system must be trained with a larger 
dataset with nontypical imaging manifestations to be more 
suitable for clinical needs. Lastly, overfitting is problematic 
with complex deep learning models. The external validation 
datasets used in this study had inherent differences, as the 
cohorts consisted of patients with different disease burdens, 
which may explain the slight drop in performance in the 
testing phase of this study.

In conclusion, the DL cascading model based on chest CT 
images can be clinically applicable for accurate detection, 
diagnosis, and triage of pulmonary TB. This fully automated 
AI system has great potential in clinical practice for rapid 
assessment of disease activity and guidance of treatment and 
management of pulmonary TB.
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