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�
 ABSTRACT 

Ductal carcinoma in situ (DCIS) is a risk factor for subse-
quent invasive breast cancer (IBC). To identify events in DCIS 
that lead to invasive cancer, we performed single-cell RNA 
sequencing on DCIS lesions and matched normal breast tissue. 
Inferred copy-number variation was used to identify neo-
plastic epithelial cells from clinical specimens, which con-
tained a mixture of DCIS and normal ducts. Phylogenetic 
analysis demonstrated intratumoral clonal heterogeneity that 
was associated with significant gene expression differences. 
Classification of epithelial cells into mammary cell states 
revealed that subclones contained a mixture of cell states, 
suggesting an ongoing pattern of differentiation after neo-
plastic transformation. Cell state proportions were signifi-
cantly different based on estrogen receptor expression, with 
estrogen receptor–negative DCIS more closely resembling the 
distribution in the normal breast, particularly with respect to 
cells with basal characteristics. Specific alterations in cell state 

proportions were associated with progression to invasive 
cancer in a cohort of DCIS with longitudinal outcome. On-
going transcription of key basement membrane (BM) genes 
occurred in specific subsets of epithelial cell states, including 
basal/myoepithelial, which are diminished in DCIS. In the 
transition to IBC, the BM protein laminin, but not COL4, was 
altered in DCIS adjacent to invasion. Loss of COL4, but not 
laminin, in an in vitro DCIS model led to an invasive phe-
notype. These findings suggest that the process of invasion is a 
loss-of-function event due to an imbalance in critical cell 
populations essential for BM integrity rather than a gain of an 
invasive phenotype by neoplastic cells. 

Significance: Single-cell analyses reveal ductal carcinoma in 
situ comprises multiple genetic clones with significant phenotypic 
diversity and link alterations in epithelial cell states and basement 
membrane integrity with invasive breast cancer progression. 

Introduction 
Ductal carcinoma in situ (DCIS) of the breast is a noninvasive 

condition commonly identified through mammographic screening. 
A primary diagnosis of DCIS carries little mortality risk on its own, 
but its presence is a risk factor for subsequent clonally related in-
vasive breast cancer (IBC; refs. 1–5). DCIS is a neoplastic prolifer-
ation of mammary epithelial cells within an intact basement 
membrane (BM). These lesions share virtually all of the genomic 
alterations found in IBC, and therefore no specific genetic events 
have been associated with disease progression (6), although there 
are expression signatures that predict progression and benefit of 
radiotherapy (7–9). Mechanisms of invasion remain poorly under-
stood. Genomic analysis at the single epithelial cell level indicates 
that invasion is commonly polyclonal (10). This is consistent with 
no single genomic event being responsible for the acquisition of the 
invasive phenotype. Processes that have been proposed as mecha-
nisms of invasion include active degradation of the BM by neo-
plastic cells, loss of myoepithelial cells, which may serve as a cellular 
barrier to invasion, and mechanical pressures from the proliferative 
and expanding duct (11–15). 

Single-cell RNA sequencing (scRNA-seq) has emerged as a 
valuable tool to understand tissue composition and expression at 
single-cell and whole-transcriptome resolutions. A recent applica-
tion of this approach to DCIS concluded that significant intra-
tumoral and intertumoral heterogeneity exists (16); however, 
insights into the genesis of DCIS heterogeneity was limited by the 
lack of patient-matched normal samples. As part of the Human 
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Tumor Atlas Network (HTAN), we focused on changes in cellular 
composition and phenotypes that occur between normal breast and 
DCIS starting from scRNA-seq data generated on DCIS lesions and 
matched synchronous normal breast tissue. We observed tran-
scriptome heterogeneity, which accompanied intratumoral clonality, 
and significant alterations in epithelial cell states, including loss of 
specific epithelial cells that synthesize the BM. We extended the 
study to bulk RNA-seq data sets and analyses of DCIS and risk of 
progression to IBC in both patient data and an in vitro model. We 
find that BM loss can occur in DCIS adjacent to invasion and that 
decreasing BM components can lead to the invasive phenotype. We 
hypothesize that the altered cell composition of DCIS ducts leads to 
a loss of BM integrity and promotes subsequent invasion. 

Materials and Methods 
Institutional approval was obtained for the study (Stanford IRB- 

48262 and Duke IRB-Pro00100739). For the prospective sample set 
1, written consent was obtained for all patients. 

Sample sets 
Sample set 1 (scRNA-seq set) consisted of DCIS (n ¼ 16), IBC 

(n ¼ 2), and synchronous normal tissues (n ¼ 12) from 16 patients 
undergoing mastectomy at Duke and Stanford centers, collected 
between 2019 and 2023. Due to low sample size, the invasive 
samples were not included in these analyses. The demographic 
characteristics of patients analyzed (n ¼ 14) are provided in Sup-
plementary Table S1. Both the DCIS and normal specimens were 
bisected, with one half used for scRNA-seq, and the other half was 
formalin-fixed and paraffin-embedded (FFPE). Sections from the 
FFPE samples were used for histologic examination to confirm the 
presence and extent of DCIS and normal breast epithelium. The list 
of samples generated is provided in Supplementary Table S1. 

Sample set 2 (matched and synchronous breast specimens) con-
sisted of FFPE tissue samples from 42 patients operated on at 
Stanford Hospital with matched and synchronous areas of normal 
breast, DCIS, and IBC. The list of samples generated is provided in 
Supplementary Table S1. 

Sample set 3 (DCIS with longitudinal outcome) consisted of 
232 patients from the combined TBCRC and RAHBT cohorts in-
cluded in the DCIS HTAN (7). These samples are the subset derived 
from patients with either no recurrence (n ¼ 163) or IBC pro-
gression (n ¼ 69). The list of published sample identifiers that were 
used in this study is provided in Supplementary Table S1. 

Sample set 4 (DCIS with microinvasion) consisted of FFPE 
specimens with DCIS that exhibited areas of microinvasive cancer 
(<1 mm) collected from 13 patients at Stanford Hospital. 

scRNA-seq assay 
Fresh tissue samples were collected within 1 hour after devas-

cularization and were immediately minced on ice before suspension 
in MACS Tissue Storage Solution (Miltenyi, cat. #130-100-008) in a 
2-mL cryovial (Sarstedt, cat. #72.694.406) and stored at �80°C while 
awaiting pathologic confirmation of DCIS in the matching DCIS 
FFPE hematoxylin and eosin tissue section. Following confirmation, 
minced tissue samples were thawed in water bath and transferred to 
a gentleMACS C tube (Miltenyi, cat. #130-093-237) with enzymes 
from Miltenyi Human Tumor Dissociation Kit (130-095-929) 
according to protocol using gentleMACS Octo Dissociator with 
Heaters (130-096-427) program 37C_h_TDK_3. Cells were washed 
with 3 mL Gibco RPMI 1640 Medium (Thermo Fisher Scientific, 

cat. #11875119), strained using MACS smart strainer 70 μm, and 
counted on a Countess II cell counter (Thermo Fisher Scientific). 
Cells were resuspended in Hanks’ Balanced Salt Solution (Thermo 
Fisher Scientific, cat. #88284) to 1,200 cells/μL for immediate 
downstream processing. Genetically engineered mouse models were 
generated and barcoded using the Chromium Single Cell 30
_v3 reagents and workflow (10x Genomics) at Stanford Genome 
Sequencing Service Center as a commercial service. Libraries were 
sequenced on Illumina NovaSeq. 

Low-pass whole-genome DNA sequencing assay 
Genomic DNA was isolated from FFPE samples using PicoPure 

DNA Extraction Kit (Thermo Fisher Scientific # KIT0103). DNA 
library construction and sequencing were performed as previously 
published (7). 

Bulk RNA-seq 
The bulk RNA sequencing libraries were prepared from dissected 

areas of FFPE sections for sample sets 1, 2, and 3 as described 
previously (7) and then prepared for sequencing using the SMART- 
3SEQ protocol (17). Libraries were sequenced on an Illumina 
NextSeq 500 instrument using High Output v2.5 Reagent Kit 
(Illumina # 20024906). 

Immunofluorescence on pathology specimens 
Immunofluorescence (IF) staining was performed on paraffin- 

embedded tissue microarray sections (4 μm; sample set 4). Briefly, 
slides were deparaffinized and hydrated using a xylene–ethanol se-
ries. Antigen retrieval was carried out at 116°C for 3 minutes in a 
decloaking chamber in Antigen Unmasking Solution, citrate-based, 
pH6, at 10 mmol/L (Agilent, cat. #S236984-2) for collagen type IV 
(Sigma, cat. #AB769; 1:50) and ACTA2 (Thermo Fisher Scientific, 
cat. #53-9760-82; 1:3,000) detection. For Lamc2 (SantaCruz Biotech, 
cat. #c-28330; 1:50), proteinase K (Agilent Technologies, cat. 
#S302080-2) digestion was done. Slides were incubated with the 
primary antibody at room temperature for 45 minutes For detec-
tion, Alexa Fluor–conjugated secondary antibodies at 1:700 dilution 
were used. Counter staining was performed using ProLong Gold 
Antifade with DAPI (Thermo Fisher Scientific, cat. #P36935). Slides 
were scanned using a Leica microscope slide scanner using Ariol 
Software (Leica Biosystems). 

Combined IF and RNA in situ hybridization assay 
Codetection of ACTA2 protein and COL4A1 and LAMC2 RNA 

were performed using all Bio-Techne/ACD instructions for per-
forming in situ hybridization using RNAscope 2.5 HD Detection Kit- 
RED (cat. #322360) and RNA–Protein Codetection Ancillary Kit (cat. 
#323180) IHC on FFPE tissue microarray tissue sections (sample set 
4). The following RNA probes were used: RNAscope Probe - Hs- 
COL4A1 (cat. #461881) and RNAscope Probe - Hs-LAMC2 (cat. 
#501371). IHC for ACTA2 was performed at 1:200 dilution with 
Abcam, cat. #ab5694. The Cy3 filter was used to detect RNA signals, 
and the AF647 filter was used to detect ACTA2 protein signal. 

BM continuity analysis 
To evaluate the continuity of the BM in the IF images, the BM 

location was annotated using QuPath (18). The percentage of 
continuity of the BM for each duct was determined by calculating 
the ratio of the total number of intact pixels to the total number of 
pixels in the BM. Each duct was identified by a pathologist- 
annotated mask that indicates the precise location of the duct on the 
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core. Calculations were performed for the angles of the tangential 
line to the surface of the mask for each duct in Python. This process 
aims to offer the algorithm guidance about the approximate shape 
of the duct, ensuring a comprehensive scanning of the membrane. 
With the shape of each duct established, the algorithm evaluates 
every pixel unit along the membrane to determine whether a par-
ticular location is deemed intact. This scanning process was con-
ducted within a confidence range of 250 to 500 pixel units to 
account for potential variability in annotations. 

Whole-genome DNA sequencing data processing and 
analyses 

DNA sequencing data were preprocessed using Burrows-Wheeler 
Aligner–MEM algorithm v0.7.17 for sequence alignment to the 
reference genome GRCh38/hg38 and GATK v4.1.7.0 (19–21) to 
mark duplicates and calibrate reads within the Nextflow-based 
pipeline Sarek v2.6.1 (22, 23). The recalibrated reads were further 
processed and filtered for mappability and guanine (G) and cytosine 
(C) content using the R/Bioconductor package QDNAseq v1.22.0 
(24) with R statistical environment v3.6.0. For QDNAseq, 50-kb bin 
annotations were obtained from QDNAseq.hg38 (v1.0.0, https:// 
github.com/asntech/QDNAseq.hg38). Only autosomal sequences 
were retained after filtering based on low-depth mappability and GC 
correction. The R package ACE v1.4.0 (25) was used to estimate and 
identify the maximum cellularity for different ploidies (2–4). Copy- 
number aberrations were called using CGHcall v2.48.0 (26). 

Bulk RNA-seq data processing 
The RNA sequencing libraries were preprocessed using 3SEQ-

tools (17). Read alignment was conducted using STAR v 2.7.3a (27). 
Gene level reads were obtained using featureCounts Rsubread 
package v4.0.0 (28). The reference sequence and genomic annota-
tion files were obtained from GENCODE (29). 

scRNA-seq data processing and analyses 
Preprocessing 

To process the raw scRNA-seq data into a cell by gene matrix 
with read counts, 10X Genomics Cell Ranger v6.0.1 (30) was used. 
Briefly, the mkfastq module used bcl2fastq to demultiplex the 
reads. Then the count module aligned and mapped the reads to the 
human reference genome (reference bundle version “refdata-gex- 
GRCh38-2020-A”) and then estimated read counts for each cell 
across 36,601 annotated genes. The resulting cell-by-gene count 
matrices were imported into the R v4.2.2 using the Seurat package 
v4.3.0.1 (31) to perform quality control (QC) and downstream 
analyses. 

QC 
Data quality was assessed in the following ways. Cell quality was 

assessed by examining the distribution of reads and genes detected 
per cell and the proportion of reads mapping to mitochondrial 
genes. A gene was considered to be “detected” if at least one read 
was mapped to it. Rare gene features were removed from the dataset 
by excluding genes that were detected in fewer than 10 cells per 
sample. Mitochondrial genes were identified as features whose 
corresponding HUGO symbol was prefixed by the string “MT-.” At 
a minimum, cells were assumed to be of low quality and excluded if 
they had fewer than 200 detected genes or if mitochondrial reads 
comprised more than 20% of the total reads. In addition, cells with 
extremely high numbers of reads or genes detected were filtered out 
based on sample-specific thresholds. The sample-specific thresholds 
were determined by examining their distributions and removing 
small shoulders to both sides of the major peak to remove potential 
dead cells and multiplets. 

Eight libraries (three DCIS and five normal) were excluded from 
downstream analyses due to an insufficient number of high-quality 
cells (≈1,000 or fewer), and two IBC libraries were excluded due to 
low sample size. The remaining 20 libraries (7 normal and 13 DCIS) 
containing 140,322 cells were derived from 14 patients: five patients 
with paired normal and DCIS libraries (10 libraries), seven patients 
with DCIS-only libraries (eight libraries, with two DCIS samples 
containing specimens/libraries from the same patient), and two 
patients with normal-only patient libraries (two libraries). 

Cell integration 
Quality-filtered count matrices from each library were merged into 

one dataset for downstream analyses and integrated to account for 
variation among the eight sequencing batches. Integration was per-
formed using Seurat functions (31) that involve (i) merging sample 
count matrices by batch. In addition (ii), within each batch, counts 
were log-normalized, and the top 2,000 most variable gene features 
were selected based on variance-stabilizing transformation. Next, (iii) 
variable gene features across batches, i.e., integration features, were 
selected from the union of top batch-wise variable features, and these 
were used to reduce the dimensionality of each dataset and identify 
mutual nearest neighbors, i.e., anchors. Integration returned a single 
matrix of log-normalized and batch-corrected counts for each cell and 
integration feature; hereafter, “integrated data.” 

Clustering 
To visualize cell expression profiles across all samples, the inte-

grated data were scaled, reduced in dimension using principal 
component analysis on the top 30 components, and subsequently 
reduced onto two-dimensional (2D) Uniform Manifold Approxi-
mation and Projection (UMAP) coordinates using Seurat 

Figure 1. 
Overview of workflow. A, Laboratory workflow to obtaining multimodal sequencing data from resected specimens (sample set 1) to infer cell phenotypes from 
scRNA and DNA data and infer cell fractions from specimen-matched bulk RNA data for downstream analyses. LCM, laser capture microdissection. B, UMAP 
embedding plots based on single-cell transcriptome profiles from 140,322 cells across 13 DCIS sample libraries (89,171 cells) and 7 normal breast sample libraries 
(51,151 cells) obtained from 14 patients. Data integration and dimension reduction was performed on the entire collection of cells to identify 11 primary cell types. 
After performing the embedding analysis on the latter, the cells were split depending on whether they were derived from a normal breast sample or DCIS sample 
library. The inferred cell type was used to color each coordinate. For each cell type, the ID is labeled at the median position of all cells in that category. C, A 
representative example of patient tumor-matched copy-number motifs inferred from a low-pass WGS (top) and inferred from single-cell DCIS (middle) libraries. 
A panel of seven normal libraries was used as the reference (bottom). D, Relative expression of pseudobulk samples of epithelial cells from DCIS libraries inferred 
to be either DD (17,044 cells from 12 pseudobulk samples) or DN (14,309 cells from 12 pseudobulk samples) and cells from normal samples (NN, 14,555 cells from 
seven pseudobulk samples). The top 250 upregulated and 250 downregulated differentially expressed genes (from DESeq2) ranked by adjusted P value between 
DD and NN are displayed with expression of DN pseudobulk samples shown for comparison. Color bars indicate neoplastic status (DD, DN, or NN), ER status (DD 
and DN pseudobulk samples only), patient ID, and cell count (natural log scale). 
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functions (32). Unsupervised clustering of the cells was per-
formed with Seurat functions (32) by constructing a shared 
nearest-neighbor graph based on the top 30 principal component 
analysis components and then optimizing the standard modu-
larity function based on the Louvain algorithm with the resolu-
tion parameter set to 0.5. 

Cell type inference 
To infer a cell type classification for each cell based on gene 

expression, the R package scSorter v0.0.2 (33) was used along with a 
curated set of signature genes (Supplementary Table S2). The cu-
rated signature gene set consisted of genes to profile the 10 major 
cell types in normal breast tissue, including basal/myoepithelial 
(basal/myoep) cells, luminal secretory (LumSec) cells, luminal 
hormone-responsive (LumHR) cells, B cells, fibroblasts, lymphatic 
cells, myeloid cells, perivascular cells, T cells, and vascular cells (see 
Supplementary Table S3 from Kumar and colleagues, ref. 34), and 
11 epithelial cell substates, including basal/myoep, LumSec-basal, 
LumSec-HLA, LumSec-KIT, LumSec-lac, LumSec-major, LumSec- 
myo, LumSec-prolif, LumHR-active, LumHR-major, and LumHR- 
SCGB (see Supplementary Table S10 from Kumar and colleagues, 
ref. 34). Specifically, the signature genes for the three major 
epithelial cell states in the former set were replaced by the sig-
nature genes for the 11 epithelial cell substates in the latter set. 
Cell type inference was performed using the top 2,000 most 
variable genes, excluding rarely expressed genes that are detected 
in ≤10% of cells. Counts were log-normalized, and a scSorter 
(33) tuning parameter α of 0.2 was selected to allow for unknown 
cells and represent the most common composition of cell types 
across a range of α values. 

MCF10A analysis 
The MCF10A cell line scRNA-seq (35) was processed using the 

same workflow above as sample set 1. Briefly, the raw scRNA-seq 
count matrix was obtained from GSE200981. The same set of QC 
metrics used on our study data were applied to filter out low-quality 
cells. Untreated cells at time point 0 (T0) were subset for dimen-
sionality reduction and UMAP coordinates. Cell type for each cell 
was inferred using the same method used for our study set but with 
a reduced cell type set, focusing only on three major cell types, 
basal/myoep, LumSec, and LumHR, excluding the seven immune 
cell types. 

Copy-number variation inference 
We distinguished the DCIS cells in DCIS libraries (“DD,” DCIS 

samples, DCIS cells) from the nonneoplastic epithelial cells in DCIS 
libraries (“DN,” DCIS samples, normal cells) based on their RNA 
expression–inferred copy-number variation (CNV) profile. The 
inferCNV package v1.10.1 was used to infer the copy-number states 
of cells from DCIS samples using scRNA-seq data. To this end, a 
panel of 51,151 normal epithelial cells from the seven normal 
scRNA-seq libraries was constructed to estimate the diploid state as 

a reference. A cutoff of 0.1 for the minimum average read counts per 
gene among reference cells, default settings for the Hidden Markov 
Model, and denoising filters were used. In addition, the analysis 
mode of “subclusters” was used to predict CNV at the levels of 
subpopulations. 

Whole-genome sequencing (WGS) CNV profiles were available 
for eight of the DCIS samples in the final analysis data set. The CNV 
profiles were initially assessed through a manual review process 
based on investigators’ knowledge. During this process, specific 
DNA-inferred CNV regions were identified to serve as decision 
rules for classifying each individual cell as either a neoplastic or 
nonneoplastic cell. For a given cell within a scRNA-seq sample, if 
the number of RNA-inferred CNV regions aligning with the deci-
sion rule exceeded a sample-specific threshold, the cell was desig-
nated as a neoplastic cell. In cases in which scRNA-seq samples 
lacked a colocated DNA-inferred CNV profile, the set of decision 
rule regions was derived from the CNV profile of the scRNA-seq 
sample itself. In total, 17,044 DD and 14,309 DN cells were iden-
tified in 13 DCIS libraries, and 14,555 NN (Normal samples, Nor-
mal cells) cells were identified in seven normal libraries. The 
decision rules and CNV profiles for the DCIS samples are provided 
in Supplementary Table S3. 

DCIS copy-number state phylogenies 
To investigate tumor heterogeneity, we examined cell subpopula-

tions within each DCIS sample with different CNV profiles as iden-
tified by Leiden clustering (36) implemented within the inferCNV 
“subcluster” mode. The cell populations, hereafter “CNV subclones,” 
were characterized by neoplastic status and cell state composition. To 
show the relationship between CNV subclones and infer alteration 
histories within a DCIS sample, a phylogenetic tree for each sample 
was constructed by calculating the Euclidean distance between sub-
clones based on gene-level–predicted CNV states, building a 
neighbor-joining tree, and then rooting the tree using an outgroup 
with no copy-number alterations. The R packages ape v5.7.1 (37) and 
those within treedataverse v0.0.1 were used for tree-building and vi-
sualization. For each patient, differential expression (DE) analysis was 
performed to compare each DD subclone against all the other DD 
subclones using the FindConservedMarkers function from Seurat 
package v4.3.0.1 (31) in R. For gene set enrichment analysis (GSEA), 
all genes were preranked by the log fold change of the average ex-
pression from the Seurat results prior to the enrichment analysis of 
hallmark pathways using the fgsea package v1.24.0. The collection of 
pathways was acquired from MSigDB (38, 39) via the msigdbr 
package v7.5.1. All P values were adjusted to control for multiple 
testing using the Benjamini–Hochberg procedure. 

Pseudotime trajectory inference 
The Monocle package v2.26.0 (40–42) was used to infer the 

pseudotime trajectory of epithelial cell expression for each patient 
individually. To prepare the data, the raw read count matrix of the 
epithelial cells was filtered to exclude rarely expressed genes 

Figure 2. 
Heterogeneity of CNV profiles in DCIS. A, Phylogenetic trees constructed using inferred subclone CNVs show the relationship between subclones that were 
assigned neoplastic status classifications (DD vs. DN) as shown by tree tips and subclone label colors. The number of cells, cell type compositions (states and 
substates), and inferred CNV regions by subclone are shown in the bar charts and tile plots. B, GSEA results for a given DCIS subclone as compared with others 
in the same sample are shown. NES, normalized enrichment score. C, Subclone states overlayed onto trajectory maps. Cells in the left column are colored by 
pseudotime, in the right column are colored by subclone states. D, Log-normalized expression of ESR1 gene by subclone states. The percentages above the 
x-axis represent the percentage of cells expressing ESR1 (log-normalized expression greater than 0) in each subclone. Difference in ESR1 expression between DD 
subclones was tested using the Kruskal–Wallis test within each patient. 
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(i.e., genes found in 5% or fewer cells or with an expression value 
below 0.1). Following Monocle’s unsupervised procedure of identi-
fying cell-ordering genes, t-distributed stochastic neighbor embedding 
(t-SNE) was first applied on the top 15 principal components of the 
filtered data to project them into two dimensions, and clusters were 
identified by the densityPeak algorithm (43) to detect genes that differ 
between the clusters, which were subsequently used as ordering genes. 
The Discriminative Dimensionality Reduction with Trees (40) algo-
rithm was applied on the filtered data to reconstruct a trajectory, with 
cells ordered using the top 1,000 significant genes that differ across 
the Monocle-inferred clusters. The root point of the trajectory was 
selected arbitrarily by Monocle. 

Pseudobulk analysis 
To identify differentially expressed genes, raw cell-level counts 

were summed from each patient, cell state, cell substate, and sub-
clone, and then DE and GSEA analyses were performed for various 
comparisons. DE analysis was performed using the DESeq2 package 
v1.38.3 (44) in R. For GSEA, all genes were preranked by the Wald 
statistics from the DESeq2 results prior to the enrichment analysis 
of hallmark pathways using the fgsea package v1.24.0. All P values 
were adjusted to control for multiple testing using the Benjamini– 
Hochberg procedure. 

Cell type abundance imputation 
The CIBERSORTx tool (45) was used to infer the cell type 

composition within bulk RNA-seq data sets (sample sets 1–3), using 
a published single-cell data set (34). For each bulk data set, its raw 
gene count matrix was used as the input, whereas the external 
scRNA-seq count matrix with original cell assignments was used to 
construct the cell type signature matrix. The matrix was randomly 
downsampled to include a maximum of 3,000 cells per cell type for 
the purpose of computing efficiency. The fraction of cells with 
identical identities showing evidence of gene expression was set to 0. 
To ensure robust analysis, 100 permutations were performed for P 
value calculation. S-mode batch correction, designed specifically for 
scRNA-seq–derived signature matrices, was applied to correct for 
cross-platform batch effects. The raw imputed cell fractions were 
then used to calculate the fraction of each epithelial cell type relative 
to the total fraction of all epithelial cell types. 

Statistical analyses 
To compare imputed cell type abundance across sample types in 

bulk datasets and to compare the cell type fractions across sample 
types in scRNA-seq data, the Wilcoxon rank-sum test was used. In the 
case in which bulk data had a patient-matched design (sample set 1), 
the Wilcoxon signed-rank test was used instead. To account for 

multiple testing arising from various cell types, the resulting P values 
were corrected using the Benjamini–Hochberg method. The Fisher 
exact test was used to compare the overall fractions of cells of each 
contrast group within each cell type. The Pearson correlation test was 
used to evaluate the correlation between the cell type abundance 
estimated from the scRNA-seq data and the corresponding bulk data 
(sample set 1) on a per-sample basis. The Kruskal–Wallis test was 
used to test whether there are any differences in ESR1 expression 
between DD subclones within each patient. 

Outcome analysis 
Patients in sample set 3 were divided into “high” and “low” cell 

fraction groups based on the median of each respective cell substate. 
Associations with time to IBC recurrence were quantified using a 
Cox proportional hazards model (46). Kaplan–Meier plots as 
implemented in the R packages survival v3.3-1 and survminer 
v0.4.9 were used to visualize outcome differences. 

In vitro invasion assay 
Cell culture 

MCF10A human mammary epithelial cells (ATCC) were cultured 
in DMEM/Nutrient Mixture F-12 (DMEM/F12) medium (Thermo 
Fisher Scientific) supplemented with 5% horse serum (Thermo 
Fisher Scientific), 20 ng/mL EGF (Peprotech, Inc.), 0.5 μg/mL 
hydrocortisone (Sigma), 100 ng/mL cholera toxin (Sigma), 10 μg/ 
mL insulin (Sigma), and 1% penicillin/streptomycin (Thermo Fisher 
Scientific). Cells were passaged every 3 to 4 days with 0.05% trypsin/ 
EDTA and cultured in a standard humidified incubator at 37°C and 
5% CO2. 

Acini formation 
Mammary acini using MCF10A mammary epithelial cells were 

generated as previously described (47). Briefly, single-cell suspensions 
of MCF10A cells were seeded onto reconstituted BM (rBM) in 2 mL 
of growth media supplemented with 2% rBM (48). After 4 days, the 
media was replenished with rBM-supplemented media. On day 5, 
acini were extracted by treatment with 50 mmol/L EDTA in PBS 
followed by cell scrapping. After 20 minutes of incubation on ice, the 
acini-containing EDTA mixture was spun down for 5 minutes at 
500 g at 4°C, resuspended in the growth media, and centrifuged at 
500 g for another 5 minutes. After centrifugation, the supernatant was 
aspirated, and acini were resuspended in DMEM/F12 media. 

Alginate preparation and acini encapsulation in hydrogels 
High–molecular weight sodium alginate was synthesized and 

used to develop interpenetrating hydrogels with specific mechanical 

Figure 3. 
Identification and comparison of epithelial subtypes. A, UMAP embedding plots based on 45,908 epithelial cells (left, 28,864 DNNN; right, 17,044 DD) colored by 
the three major epithelial cell states found in the normal breast. Data integration and dimension reduction was performed on epithelial cells prior to UMAP 
embedding. B, Relative cell fractions of three major epithelial cell states at the pseudobulk level for each sample for DN/NN, DD ER�, and DD ER+. Variation in 
cell fraction by group was tested using the Wilcoxon rank-sum test, and P values were adjusted using the Benjamini–Hochberg method to account for multiple 
comparisons. The results with an adjusted P value of less than 0.05 are shown. C, Corresponding relative frequencies for the cell state compositions within DN, 
NN, DD ER+, and DD ER� groups are summarized as stacked bars, with text showing the percentage of cells. The dot grid shows the resulting odds of cell state 
membership based on CNV and ER status. The color of the dots indicates the log OR, and the size indicates significance. D, Selected significant pathways from 
GSEA differentially enriched between pseudobulk samples from DN/NN and DD of three major cell states in ER� DCIS and ER+ DCIS, analyzed separately. The 
color of the dots indicates the normalized enrichment score (NES), and the size indicates significance measured as the negative log10-adjusted P value. E–H 
present results at finer resolution, in which 11 epithelial cell substates are considered instead of the three major states. They correspond to panels A–D, 
respectively. I, Cell trajectory analysis based on DN/NN, DD ER�, and DD ER+ for selected patients 01 and 15. Cells in the left column are colored by the three 
major epithelial cell states, and cells in the right column are colored by the 11 epithelial cell substates. 
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stiffness (2.4 kPa) for acini culture, as described previously (47). 
Briefly, alginate was first mixed with rBM matrix (Matrigel, Corn-
ing) on ice. Next, MCF10A acini were added to this solution. Fi-
nally, the polymer solution containing acini was mixed with calcium 
cross-linker, and the mixture was placed in an incubator to allow the 
interpenetrating polymer network (IPN) hydrogel to form. After 
1 hour, cell culture media were added to the gels. 

IF of acini 
Acini were fixed in 4% paraformaldehyde in serum-free DMEM/ 

F12 at room temperature. After fixation, acini were washed 
twice in PBS for 15 minutes and stained with antibodies. The 
following antibodies were used for detection: Alexa Fluor 488– 
conjugated anti–laminin-5 antibody, clone D4B5 (Millipore 
Sigma, MAB19562X, 1:200 dilution), anti–collagen-IV mouse 
antibody (Sigma, #SAB4500369, 1:200) and Alexa Fluor 690 goat 
anti-mouse antibody (#A21240, 1:1,000), and nuclear stain 
Hoechst 33342 (#H3570, 1:1,000). 

Hepsin and collagenase IV treatment 
Hepsin (R&D Systems #4776SE010) was reconstituted to a stock 

concentration of 100 μg/mL in an assay buffer as per the manu-
facturer’s instructions. The stock solution was further diluted to 
10 μg/mL in MCF10A growth media, and acini were incubated in 
the diluted solution overnight. Collagenase IV powder (Sigma 
#17104019) was reconstituted in Hank’s Balanced Salt Solution to a 
stock concentration of 25 U/mL, and acini were treated with a 
1:1,000 dilution for 1 hour. For the acini treated with hepsin and 
collagenase, the acini were initially incubated with hepsin overnight 
and then treated with collagenase IV for 1 hour. Acini were en-
capsulated in hydrogels immediately after treatment. 

Measurement of COL4 thickness 
From the confocal images of COL4, the distance from the inner 

surface to the outer surface of COL4 was measured at three random 
locations in the equatorial cross-section, and an average of these 
measurements was taken to obtain the average thickness for each 
acinus in the experiment. 

Measurement of BM breaching, invasive acini, and circularity 
BM breaching was defined by the ratio of the BM-enclosed area 

to the acini area in the plane of invasion, with lower ratio corre-
sponding to increased breaching. The BM-enclosed area and the 
acini area in the plane of invasion were computed in ImageJ by 
drawing a manual outline around the BM and the acini, respectively. 
Invasive acini were identified manually as those structures in which 
a group of cells had migrated out of the originally circular footprint 
of the acini in a 2D field of view. The percentage was calculated 
based on the number of such invasive acini compared with the total 
number of acini in a field of view. The acini invasion was further 
quantified by measuring the acini circularity in ImageJ, in which 
decreased circularity corresponds to increased invasion. 

Confocal microscopy 
Microscope imaging was performed using a laser-scanning Leica 

SP8 confocal microscope or a Nikon Ti2-E inverted microscope, both 
fitted with a temperature and incubator control suitable for live imaging 
(37°C, 5% CO2). For capturing fluorescent images, the Leica microscope 
used a 25� NA 0.91 water objective. For capturing phase-contrast im-
ages of acini, the Nikon microscope used a 10� NA 0.45 dry objective. 

Data availability 
The datasets generated in this study, namely sample sets 1 and 2, 

have been deposited in the HTAN database (https:// 
humantumoratlas.org) under the HTAN study phs002371. The 
publicly available dataset, sample set 3, is also available in this re-
pository. Access to the raw sequencing data requires database of 
Genotypes and Phenotypes (dbGaP) approval, which can be 
requested at the dbGaP study page, https://www.ncbi.nlm.nih.gov/ 
projects/gap/cgi-bin/study.cgi?study_id¼phs002371. Dataset mapping 
IDs are provided in Supplementary Table S1. Publicly available data 
generated by others used by the authors include the following: (i) 
hallmark pathway gene sets that were acquired from MSigDB (38, 39) 
via the msigdbr package v7.5.1, (ii) the processed scRNA-seq data 
object for all cells from Kumar and colleagues (34), which was ob-
tained from CZ CELLxGENE Discover at https://cellxgene.cziscience. 
com/collections/4195ab4c-20bd-4cd3-8b3d-65601277e731, and (iii) 
the processed scRNA-seq data matrix for the MCF10A cell line from 
Paul and colleagues (35), which was obtained from the Gene Ex-
pression Omnibus database at GSE200981. All other raw data are 
available upon request from the corresponding author. 

The scripts to reproduce the analyses presented in this article are 
available publicly through a GitLab repository (https://gitlab.oit. 
duke.edu/dcibioinformatics/pubs/pca-dcis-scrna-seq). 

Results 
scRNA-seq distinguishes normal from neoplastic epithelial 
cells 

We performed scRNA-seq on DCIS (n ¼ 16) and matched syn-
chronous normal tissues (n ¼ 12) from 15 patients undergoing 
mastectomy (sample set 1). We excluded three DCIS and five nor-
mal samples based on QC metrics. The QC results for all samples 
are shown in Supplementary Fig. S1, and Supplementary Table 
S1 lists the 13 DCIS and 7 normal samples from 14 patients that 
passed QC with patient demographic features. Both the DCIS and 
normal specimens were bisected, with one half used for single-cell 
dissociation and scRNA-seq, and the other half was FFPE to confirm 
the presence and extent of DCIS and normal breast epithelium 
(Fig. 1A). From the FFPE samples, we performed WGS and bulk 
RNA-seq on microdissected areas of histologically confirmed DCIS. 

Two-dimensional UMAP embedding plots of cells from DCIS 
and matched normal tissue samples colored by cell type (Fig. 1B) 
show that the overall architecture of the clustering was preserved 
between the two sample types but that some clusters were only 
present in DCIS samples from specific patients (Supplementary Fig. 
S2A). Based on histologic examination of the facing FFPE section, 
we recognized that the dissociated cells from DCIS samples were 
comprised of a mixture of neoplastic and nonneoplastic epithelial 
cells (Supplementary Fig. S2B). We used the scRNA expression to 
infer cell-specific genomic CNV profiles and compared those with 
WGS-based CNV profiles derived from microdissected DCIS from 
the adjacent paraffin block (Fig. 1C; Supplementary Fig. S2C). 
Epithelial cells with CNVs from DCIS specimens were categorized 
as DCIS cells (“DD”) and those lacking these CNVs were catego-
rized as “DN.” Additionally, because our study included a series of 
normal or uninvolved specimens, these epithelial cells were cate-
gorized as “NN.” To further validate that our inferred CNV-based 
approach distinguished DD from DN epithelial cells, we compared 
aggregated gene expression (pseudobulk samples) between NN and 
DD cell populations. A heatmap of the top 250 significantly 
upregulated and 250 downregulated genes comparing the DCIS 
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(DD) with normal cells (NN) is shown in Fig. 1D (the complete 
list of differentially expressed genes is provided in Supplemen-
tary Table S4). DN cells were not used in the DE analysis for this 
heatmap but clustered closely with cells from normal breast (NN; 
Fig. 1D), indicating that the DN cells are admixed normal breast 
epithelial cells known to exist in these specimens based on 

histologic examination of the facing block. Comparison of DD 
with either DN or NN cells revealed similar patterns in signifi-
cant pathway alterations, including cell-cycle progression and 
metabolic pathways elevated in DD cells, further supporting the 
accuracy of the cell level categorization based on inferred copy 
number (Supplementary Fig. S2D). 
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Figure 4. 
Analysis of cell type proportions in independent DCIS cohorts. A, Analysis of imputed cell fractions based on three major epithelial cell states found in the normal 
breast from bulk RNA-seq datasets of the FFPE sample set matching the scRNA-seq samples as depicted in Fig. 1A with three normal, seven ER+ DCIS, and five 
ER� DCIS libraries obtained from 11 patients (sample set 1). Differences were tested using the unpaired two-sample Wilcoxon rank-sum test. P values were 
adjusted using the Benjamini–Hochberg method to account for nine comparisons. The results with an adjusted P value of less than 0.05 are shown. B, Analysis of 
imputed cell fractions based on three major epithelial cell types found in normal breast from bulk RNA-seq datasets of 126 patient-matched normal breast, DCIS, 
and IBC libraries (24 ER+ DCIS, 18 ER� DCIS, 42 matched normal, and 42 matched IBC; sample set 2). Points for each patient are connected with a gray line. 
Pairwise differences were tested using one-sample Wilcoxon signed-rank tests. P values were adjusted using the Benjamini–Hochberg method to account for 
18 comparisons. C and D, Kaplan–Meier curves of time to IBC recurrence for high and low levels of LumSec-major (C) and LumSec-myo (D) from the analysis of 
imputed cell fraction bulk RNA-seq datasets of retrospective DCIS case–control cohorts (sample set 3). The P values were derived from Cox proportional hazards 
models to assess the difference in recurrence risk between the two groups. The table below each plot shows the number of patients still at risk of recurrence at 
each time point. 
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Inferred CNV subclones demonstrate intratumoral genetic and 
expression heterogeneity 

CNV analysis revealed that most of the DD cell populations 
contained differing copy-number states indicative of separate 
clones. The polyclonal nature of DCIS has been established (9), and 
our single-cell analyses allowed us to explore the relationship of 
these clones with their phenotypic properties, including epithelial 
cell state. We sought to identify these epithelial cell states using 
expression signatures based on the recent compendium of single- 
cell data (34) from more than 200 normal breast samples, classifying 
the epithelium into three primary epithelial “states” (basal, LumSec, 
and LumHR) and 11 epithelial “substates” (one basal substate, seven 
LumSec substates, and three LumHR substates). Based on the ex-
pression of characteristic markers, myoepithelial cells comprise the 
majority of the basal cell state and substate and are hereafter re-
ferred to as basal/myoep cells. 

Two sample phylogenetic trees with cell states derived from 
scRNA data are shown in Fig. 2A (other cases are shown in Sup-
plementary Fig. S3A). Sample 01D is an estrogen receptor–positive 
(ER+) DCIS that demonstrates four subclones or branches of DCIS 
cells (and one branch of nonneoplastic DN cells), and sample 15D is 
an ER-negative (ER�) DCIS with three neoplastic clones. Fractional 
breast cell state composition of each of these branches indicates that 
none of these subclones are a monolithic population at the phe-
notypic level but that each subclone contains varying proportions of 
cell states and substates. 

In considering the subclones as single populations, each subclone 
exhibited enrichment of unique combinations of cancer hallmark 
pathways (Fig. 2B; Supplementary Fig. S3B). We analyzed the 
subclones using a trajectory analysis derived for each patient 
(Fig. 2C; Supplementary Fig. S3C). Subclones are enriched for po-
sitions on the individual trajectory map, but there is still substantial 
scattering of the subclones across inferred phenotypic trajectories 
(i.e., through pseudotime), indicating the extent of phenotypic dif-
ferences among patients and within subclones in a given patient. 
Trajectory maps of nonneoplastic epithelial cells also vary among 
patients. In some cases, there is good enrichment for subclones on 
the trajectory maps. Furthermore, among subclones, we observed 
highly significant pathway differences that are not readily evident 
either by examining cell state or composite epithelial UMAP posi-
tion. For example, subclones of 01D exhibit similar cell state dis-
tributions, but subclones S1 and S3 have several pathways (e.g., 
oxidative phosphorylation and TNFα signaling) that distinguish 
these two populations. Examination of individual cases reveals the 
complex genetic and phenotypic heterogeneity and indicates that 
clonal populations are themselves diverse mixtures of different 
mammary cell states. 

ER expression is not uniform across all cells within a DCIS 
sample. Based on the expression data, we analyzed the level of ER 
expression across different subclones for each patient (Fig. 2D; 

Supplementary Fig. S3D). We observe differences in ER positivity 
between subclones in both ER+ and ER� DCIS. 

ER status distinguishes DCIS cell state composition 
We next analyzed our single-cell sequencing data aggregated by 

patient, neoplastic status, and ER status. From among 140,322 cells 
that passed final QC metrics for scRNA-seq, we classified 
45,908 epithelial cells from DCIS and normal libraries into three 
primary states and 11 substates as described above (Supplementary 
Table S2; ref. 34). The three primary cell states are displayed in 
epithelial-specific UMAPs separated into DCIS (DD) and non-DCIS 
cells (DN/NN; Fig. 3A). We observed good concordance between 
the positions of the cells on the UMAP and the three cell states 
(basal/myoep, LumSec, and LumHR) assigned independently based 
on sets of signature genes (34). Comparing DCIS (DD) with normal 
(DN/NN), we observed an overall loss of basal/myoep cells and 
LumSec cells in the DCIS samples compared with the normal 
samples. 

We analyzed this further at the patient level and confirmed both 
a lower proportion of basal/myoep cells in both ER+ and ER�
DCIS compared with normal samples (Fig. 3B, adj. P ¼ 0.003 and 
0.014, respectively). LumHR cells comprised the greatest propor-
tion of the DD populations from ER+ DCIS, and concomitantly, 
there were fewer LumSec and basal/myoep cells. Interestingly, 
ER� DCIS cells exhibited higher proportions of LumSec fractions 
compared with the ER+ DCIS cells. Aggregating the cell data 
confirmed highly significant distributional differences between 
normal (NN or DN), ER+ DCIS, and ER� DCIS cells (Fig. 3C). 
Comparing hallmark pathways within cell states between the 
normal cells (DN/NN) and ER+ and ER� DCIS cells (DD) 
revealed substantial differences, with pathways related to 
epithelial–mesenchymal transition (EMT), proliferation, and es-
trogen differentially enriched within the cell states between these 
cell populations (Fig. 3D; Supplementary Fig. S4A; Supplementary 
Table S5). 

We next repeated this analysis by applying the more granular 
11 epithelial substates (UMAP in Fig. 3E). Comparisons between 
normal, ER+ DCIS, and ER� DCIS cell populations demonstrated 
significant differences in cell substate compositions and expression 
pathways (Fig. 3F–H). The relative proportions of both the 
LumSec-basal and LumSec-prolif substates were higher in ER�
DCIS compared with ER+ DCIS (adj. P ¼ 0.022 and 0.016, re-
spectively). With respect to the LumHR substates, the relative 
proportion of the LumHR-active substate was significantly lower 
in ER� compared with ER+ DCIS and normal cells (adj. 
P ¼ 0.041 and 0.041, respectively). ER� DCIS contained sub-
stantial proportions of the various LumHR subtypes (i.e., LumHR- 
major and LumHR-SCGB). Therefore, even though the ER� DCIS 
cells did not express appreciable levels of the ER, a proportion of 

Figure 5. 
BM expression in DCIS. A, Relative expression of BM genes across the three major cell states and fibroblasts within each pseudobulk samples from scRNA-seq 
data (sample set 1). Displayed genes were most significantly upregulated (adj. P < 0.01) in each specific cell type compared with all other cell types. B, Detection 
of COL4A1 RNA (green) in DCIS epithelium (E) and adjacent stroma (S), with ACTA2 protein (red) expression demarcating the basal zone of the DCIS sample. C, 
Detection of LAMC2 RNA (green) in DCIS epithelium (E) and adjacent stroma (S), with ACTA2 protein (red) expression demarcating the basal zone of the DCIS 
sample. D, IF of LAMC2 in DCIS. The white dashed line indicates the edge of the DCIS. E, located adjacent to invasion (sample set 4). E, IF of ACTC2 in DCIS (E) 
located adjacent to microinvasion. F, IF of COL4A1 in DCIS (E) located adjacent to invasion. G, IF of LAMC2 in DCIS (E) located distant to invasion. H, IF of 
COL4A1 in DCIS (E) located distant to invasion. I, IF of LAMC2 in IBC. J, IF of COL4A1 in IBC. K, Comparison of percentage of continuity for LAMC2 in DCIS ducts 
between DCIS adjacent to invasion or distant to invasion. L, Comparison of percentage of continuity for COL4A1 in DCIS ducts between DCIS adjacent to invasion 
or distant to invasion. Scale bar, 20 μm. 
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these cells retained expression profiles that classified them as 
LumHR. 

Pathway analysis comparing ER+ and ER� DCIS with normal 
cells demonstrated global differences in TNF signaling (lower in 
ER� DCIS) and estrogen response (higher in ER+ DCIS) across 
multiple cell substates (Fig. 3H; Supplementary Fig. S4B; Supple-
mentary Table S6). We also noted some significant substate-specific 
differences between ER+ and ER� DCIS cells, compared with 
normal cells, including lower expression of the EMT pathway in the 
basal/myoep substate as well as lower IFNγ response in the LumSec- 
prolif substate in ER� DCIS compared with ER+ DCIS. 

Next, we analyzed the distribution of differentiated states within a 
given patient sample by overlaying them on the same trajectory 
analyses shown in Fig. 2C (Fig. 3I; Supplementary Fig. S3C). In 
ER+ DCIS, the cell states and substates are distributed throughout 
the phenotypic trajectory. In ER� DCIS, there is an enrichment of 
the LumSec-Kit at one end of the trajectory, consistent with the 
possibility that these cells have stem cell properties. Examination of 
the other cases (e.g., patients 02 and 15), when LumSec-KIT cells are 
identified, regardless of ER status, showed that they tend to occupy 
one end of the phenotypic trajectory (Supplementary Fig. S3C). The 
shape and distribution of the cell states of the trajectory maps of 
normal epithelial cells vary between patients, consistent with the 
findings of considerable cell composition heterogeneity (34). Dis-
tribution of the cells on the composite epithelial UMAP (Fig. 3A) is 
an unsupervised measure of cell state. We map each of the CNV- 
based subclones (Fig. 2) for each individual patient (Supplementary 
Fig. S4C), further highlighting the expression heterogeneity within 
each subclone. 

Cell state analysis in independent DCIS cohorts indicates 
outcome differences 

To confirm and extend these findings, we used deconvolution to 
estimate the cell state composition from two additional data sets 
(sample sets 2 and 3) of bulk RNA-seq derived from archival 
specimens. Sample set 2 is RNA-seq data from laser capture– 
microdissected epithelium of synchronous samples of normal, 
DCIS, and IBC cells from the same patient. Sample set 3 is RNA- 
seq data from macrodissected specimens from two previously re-
ported longitudinal cohorts of DCIS with known disease outcomes 
(Supplementary Table S1; ref. 7). We first confirmed the validity of 
the deconvolution method by comparing cell composition from 
bulk RNA-seq (Fig. 4A) with the matched scRNA-seq results 
(Fig. 3B). Correlating with the findings from scRNA-seq, we 
found lower relative proportion of basal/myoep cells in both ER+ 
and ER� DCIS vs normal samples (adj. P ¼ 0.028, 0.028) and 
differences between ER� and ER+ DCIS in LumSec (adj. 
P ¼ 0.022) and LumHR (adj. P ¼ 0.022). At the individual sample 

level, we observed significant correlation between scRNA-seq and 
FFPE bulk RNA-seq data for all three epithelial cell states (Sup-
plementary Fig. S5A). 

In sample set 2 (synchronous), the relative proportion of basal/ 
myoep cells was again significantly lower in DCIS versus normal 
breast for both ER+ and ER� DCIS (adj. P < 0.001, Fig. 4B). In 
addition, LumHR cells were significantly enriched in ER+ DCIS 
compared with the matched normal samples (adj. P < 0.001), but 
this was not observed for ER� DCIS. Conversely LumSec cells were 
significantly less abundant in ER+ DCIS compared with the 
matched normal samples (adj. P ¼ 0.008) but increased in ER�
DCIS (adj. P ¼ 0.011). Comparing the matched and synchronous 
DCIS with IBC, we observed minor increases of LumSec in ER+ IBC 
and LumHR in ER� IBC. Overall, differences in cell state distri-
bution between synchronous DCIS and IBC are much less pro-
nounced than between normal and DCIS samples. 

To investigate the association between the relative abundance of 
the cell states and substates and risk of invasive progression in 
DCIS, we analyzed the imputed cell fractions in retrospective DCIS 
case–control cohorts of patients with a primary diagnosis of DCIS 
who later either did or did not have IBC progression (sample set 3, 
longitudinal follow-up). We found that patients with high levels of 
LumSec-major cells (P ¼ 0.0002) and low levels of LumSec-myo 
cells (P ¼ 0.019) were associated with shorter time to IBC recur-
rence (Fig. 4C and D; Supplementary Fig. S5B). Other cell states 
and substates were not significantly associated with invasive 
progression. 

BM gene expression in DCIS 
One of the pathways that was sensitive to DCIS subclone pro-

gression is the EMT pathway (Figs. 2B, 3D and H; Supplementary 
Fig. S3B), which contains a number of BM-related genes. BM 
maintenance in the breast is an ongoing and active process (49), and 
BM loss leads to failure of developmental epithelial structures 
(50–52). Experimental studies have shown that destruction of the 
BM is associated with genetic instability and mammary tumori-
genesis (53). Thus, we next evaluated whether differences in epi-
thelial state composition could influence the production and 
integrity of the BM. In our scRNA-seq data, we examined the ex-
pression of canonical BM genes (GO:0005604; ref. 54) within the 
epithelial cell states and fibroblasts (Fig. 5A). As expected, fibro-
blasts demonstrated relatively high expression of many of these 
genes. Notably, basal/myoep cells also demonstrated significant 
expression of a set of BM genes, indicating that this epithelial cell 
state contributes to the ongoing synthesis of the BM. Although there 
was overlap, expression of some BM genes was uniquely enriched in 
each cell state, such as LAMC2 in basal/myoep cells. Among the 

Figure 6. 
The effects of degrading laminin and COL4 in mammary epithelial cells in a 3D in vitro culture model. A, UMAP embedding plots based on 298 untreated MCF10A 
cells, colored by the three major epithelial cell states (top) and the 11 epithelial cell substates (bottom). B, Diagram of experimental model of BM invasion of 
MCF10A acini. C, Confocal IF images of nuclei and laminin-332 in control and hepsin-treated acini. D, Confocal IF images of nuclei and COL4 in control and 
collagenase-treated acini. E, Average laminin intensity (arbitrary units) in control and hepsin-treated conditions. Each dot corresponds to an acinus (n ≥ 4 acini). 
F, Average COL4 thickness in control and collagenase-treated conditions. Each dot corresponds to an acinus (n ≥ 9 acini). G, Day 2 analysis of acini BM breaching 
in the top row. Laminin-332 IF used to measure the location of the BM. Phase-contrast images of acini on day 2 show the boundary of the acini in the middle row. 
These images are overlayed on the bottom row. H, Ratio of the BM area based on laminin stain to the acini area based on phase image. I, Phase-contrast images 
of treated and untreated acini on day 7. J, Percentage of invasive acini in control and treated conditions (n ≥ 2 different gels). K, Circularity of acini in control and 
treated conditions. Each dot corresponds to an acinus (n ≥ 18 acini). For E and F, two-sided t test with the Welch correction was used. For H, J and K, one-way 
ANOVA with the Dunnett correction was used. 
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11 substates, several had prominent BM gene expression, including 
LumSec-basal and LumSec-KIT (Supplementary Fig. S6A). 

In situ analysis of protein and RNA expression of selected BM 
genes in DCIS samples provided additional evidence that basal/ 
myoep cells contribute to the formation and maintenance of the BM 
(Fig. 5B and C). COL4A1 RNA expression was found in fibroblasts 
adjacent to the DCIS epithelial compartment (Fig. 5B). However, 
substantial expression of COL4A1 was also evident in a subset of the 
ACTA2 (smooth muscle actin)-positive cells (i.e., basal/myoep cells) 
at the edge of the epithelial compartment. LAMC2 RNA was 
expressed in basal/myoep cells but not fibroblasts (Fig. 5C). Based 
on these data, the epithelial compartment seems to play an active 
role in the maintenance of the BM. 

We further investigated whether BM integrity is associated with 
breast cancer invasion by examining the physical continuity of 
specific BM components in a series of DCIS adjacent to areas of 
microinvasion (defined as ≤1 mm invasive component, sample set 4, 
n ¼ 13). LAMC2 expression was greatly decreased and sometimes 
absent in some ducts adjacent to the invasion (Fig. 5D) despite the 
presence of basal/myoep cells as defined by ACTA2 expression 
(Fig. 5E). Conversely, COL4A1 protein was found in a consistent 
pattern around the ducts adjacent to the invasive component 
(Fig. 5F). In contrast, DCIS distant from the invasive component 
had more continuous expression of LAMC2 and COL4A1 (Fig. 5G 
and H). The BM distribution of COL4A1 and LAMC2 is lost in the 
invasive component of all samples (Fig. 5I and J). Quantitative 
measurements of LAMC2 continuity demonstrated a significantly 
lower percentage of continuity comparing DCIS adjacent to IBC 
versus DCIS distant (P ¼ 0.04), whereas COL4A1 did not show this 
difference (Fig. 5K and L). Normal breast demonstrated a contin-
uous COL4A1 and LAMC2 layer surrounding all identified ducts 
and lobules (Supplementary Fig. S6B and S6C). This shows that 
DCIS can exist without an intact LAMC2 layer and that loss of this 
BM component is associated with DCIS near microinvasion, sug-
gesting that this may be an early step in progression. Finally, 
COL4A1 is lost at the invasive step. 

To test the role of laminin and COL4 protein in regulating the 
invasive phenotype, we used our previously established 3D in vitro 
culture model of BM invasion (47). In this model, MCF10A cells are 
first cultured in the rBM matrix so that they form organotypic 
acinar structures that contain a lumen, with the cells exhibiting 
apicobasal polarity. Importantly, the acini form an endogenous BM 
around themselves with a layer of laminin-332 on the inside and 
COL4 on the outside, with the layer of laminin-332 exhibiting a 

thickness on the range of that observed in DCIS. The acini are then 
encapsulated in interpenetrating network hydrogels of the rBM 
matrix and alginate that exhibit an elastic modulus (i.e., stiffness) of 
2.4 kPa, similar to what is observed in IBC (47). In this model, the 
increased stiffness relative to normal breast tissue (100–1,000 Pa) 
promotes BM invasion by the acini. When MCF10As are cultured in 
3D, in interpenetrating network hydrogels, increased stiffness pro-
motes a set of changes in gene expression of MCF10As, mirroring 
the changes observed in DCIS versus normal patient samples (55). 
MCF10A cells display a range of cell states and substates that are 
comparable with the distribution of the normal breast (UMAP of 
MCF10A grown on plastic; Fig. 6A; ref. 35). 

In this model of BM invasion (Fig. 6B), we examined the 
impact of perturbing the BM on invasion. In control conditions, 
the acini exhibit a continuous BM at the periphery, including 
layers of laminin-332 and COL4 (Fig. 6C and D). To perturb the 
BM, the acini were treated with hepsin (56) and collagenase IV to 
degrade laminin-332 and COL4, respectively (Fig. 6C and D), 
which decreased the laminin-332 intensity and the COL4A1 
thickness, respectively (Fig. 6E and F). Next, the acini treated 
with hepsin, collagenase, both, or none were encapsulated in the 
interpenetrating network hydrogels and monitored for 7 days. 
On day 2, whereas the control and hepsin-treated acini did not 
show breaching of their BM, the acini treated with collagenase 
(with or without hepsin) breached their BM, as quantified by the 
ratio of the BM to acini area (Fig. 6G and H). On day 7, 
collagenase-treated acini (with or without hepsin) showed higher 
levels of invasion and decreased circularity than the control and 
hepsin-treated acini (Fig. 6I–K). Together, these data indicate 
that loss of COL4, but not laminin-332, facilitates higher levels of 
invasion into the surrounding matrix, in agreement with our in 
vivo data that showed loss of COL4 as always lost at invasion 
(Fig. 5). 

A conceptual model for compromise of epithelial integrity 
A conceptual model of cancer progression that incorporates the 

consequences of decreased basal/myoep cell proportions in DCIS is 
presented in Fig. 7. We hypothesized that the relative expansion of 
neoplastic luminal cells leads to an alteration of the epithelial micro-
environment. The relative reduction of cell states (basal/myoep and 
LumSec-basal) decreases the contributions made by the epithelium to 
the BM. This results in a decrease in the structural integrity of the 
DCIS-involved duct. This loss of integrity results in cells losing contact 

Normal breast Proliferation
Epithelial 

microenvironment 
alteration

“Invasion”Loss of epithelial 
integrity

LumSec-basal Basal/myoep LumHRLumSec BM

Figure 7. 
Conceptual model of DCIS invasion. Hypothesized changes in epithelial cell fractions during disease progression from normal breast to early and late DCIS 
stages. 
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with the epithelium compartment and entering the stromal compart-
ment. This passive, loss-of-function event is interpreted as invasion. 

Discussion 
On the basis of scRNA-seq data, we show that DCIS is comprised 

of multiple subclones with significant gene expression differences. 
Furthermore, the DCIS subclones are themselves not monolithic 
based on their composition of mammary cell states. Normal mam-
mary ducts and lobules are composed of several spatially organized 
cell types that exist along a differentiation spectrum starting from 
pluripotent stem cells (57), and a defining feature of DCIS is that it 
recapitulates normal breast ductal growth patterns, strongly suggesting 
that the cells retain the ability to differentiate along similar lines. For 
this reason, in addition to identifying subclones, we also classified the 
DCIS epithelial cells into phenotypic states according to the recently 
published single-cell atlas of normal human breast cells, comprising 
200 normal breast tissue samples (34). This resource defines 3 states 
and 11 substates of epithelial cells that we used here and demonstrated 
that genetic subclones of DCIS contain multiple cell states and that 
each cell state can be made up of multiple genetic clones. 

A key feature of the current study is the discrimination of epi-
thelial cells from the DCIS specimens as “contaminating” normal 
epithelial cells versus those that are part of the cancer. The use of 
inferred copy number based on gene expression is a validated ap-
proach for single-cell data, and our bulk WGS from the same 
specimens confirms the presence of the CNVs that were used to 
distinguish neoplastic from normal cells. Based on histology and 
inferred copy number, the samples in our study are comprised of 
highly varied mixtures of normal and DCIS cells, indicating that 
analyses of these data without this step would be misleading. We 
found that most of the DCIS lesions in the current study are 
composed of a mixture of multiple genetic clones that exist in a 
range of differentiation states. We observed notable differences in 
both the expression and relative abundance of cell states and sub-
states between normal and DCIS cells, as well as between ER+ and 
ER� DCIS cells. Looking at the intersection among cell states and 
CNV-based subclones, we observe that subclones are frequently 
comprised of multiple cell states. This would seem to indicate that 
many of the subclones maintain the ability to differentiate. 

Cells in the basal/myoep spectrum are significantly less abundant 
in the neoplastic cell populations, indicating that cell differentiation 
into this cell state is uncommon in DCIS. However, ER� DCIS (but 
not ER+) retained a significant proportion of cells with basal 
characteristics (LumSec-basal substate) distinct from the mature 
myoepithelial population. We conclude that each DCIS lesion has 
variable compositions of cell substates that only in part mimic the 
distribution and heterogeneity of the normal breast, with ER� DCIS 
(compared with ER+ DCIS) more closely resembling the cell dis-
tribution in the normal breast. In a DCIS cohort with longitudinal 
outcome, we found that high levels of LumSec-major and low levels 
of LumSec-myo substates are associated with shorter time to IBC 
progression. LumSec-major cells express MMP7, which may pro-
mote invasiveness, whereas LumSec-myo cells share properties with 
mature myoepithelial cells and may delay progression (34). 

Previous studies have found that attenuation of the basal/myoep 
cell layer is common in DCIS and has been considered as one of a 
number of potential mechanisms of invasion (13–15). However, 
whereas invasive cancers lose the basal/myoep layer, we recently 
showed, using spatial proteomics, that attenuation of the basal/ 
myoep layer (defined by ACTA2 expression) is not associated with 

longitudinal progression of DCIS, suggesting that there may not be 
a direct cause and effect relationship (58). However, our current 
results show that the changes in cell composition related to the 
expansion of DCIS cells may affect critical epithelial function, in 
particular the structure and composition of the BM. 

Some of the essential functions of the BM in maintaining integ-
rity include providing a scaffold for epithelial cells, helping them 
maintain their shape and resist mechanical stress, and anchoring the 
epithelial cells to the underlying matrix (50, 59, 60). In a mouse 
DCIS model, BM maintenance was shown to be an ongoing and 
active process (49). Our scRNA-seq data support this as well. These 
findings are consistent with previous studies on synchronous DCIS 
and IBC lesions that found epithelial gene expression changes in-
dicative of progressive loss of basal layer integrity (61). Using a 3D 
in vitro culture model that recapitulates the structure and BM of the 
breast duct, we demonstrated that compromising BM integrity by 
degrading COL4 in these in vitro acini increased the invasive phe-
notype. COL4 is one of the main structural proteins in the BM, and 
its importance in maintaining epithelial integrity is illustrated by its 
evolutionary appearance at the transition from unicellular to mul-
ticellular organisms (62). Notably in our investigation of BM con-
tinuity in DCIS adjacent to areas of microinvasion, we did not see 
COL4 loss in DCIS, rather it was lost only in areas in which there 
was histologic evidence of invasion. These results are consistent with 
COL4 being an essential component of the BM, the loss of its in-
tegrity being tightly associated with the invasive phenotype. 

In summary, our single-cell data, supplemented by evidence from 
an in vitro model, support that overgrowth of neoplastic cell pop-
ulations and the relative reduction of BM-producing cells within the 
epithelium may create an unstable epithelial structure. This chal-
lenges the prevailing dogma, reframing the process of invasion as a 
loss-of-function event due to an imbalance in critical cell pop-
ulations essential for BM integrity during the neoplastic process, 
rather than a gain of function by the neoplastic cells. This model 
helps to explain the previously described genomic identity between 
epithelial cells in DCIS and invasive cancer and suggests novel al-
ternative targets for future interception efforts that focus on 
maintenance of the BM as an adjunct to targeting of the epithelial 
compartment. 
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