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Abstract: Porcine epidemic diarrhea virus (PEDV) is the predominant cause of an acute, highly
contagious enteric disease in neonatal piglets. There are currently no approved drugs against PEDV
infection. Here, we report the development of a nanoluciferase (NLuc)-based high-throughput
screening (HTS) platform to identify novel anti-PEDV compounds. We constructed a full-length
cDNA clone for a cell-adapted PEDV strain YN150. Using reverse genetics, we replaced the open
reading frame 3 (ORF3) in the viral genome with an NLuc gene to engineer a recombinant PEDV
expressing NLuc (rPEDV-NLuc). rPEDV-NLuc produced similar plaque morphology and showed
similar growth kinetics compared with the wild-type PEDV in vitro. Remarkably, the level of
luciferase activity could be stably detected in rPEDV-NLuc-infected cells and exhibited a strong
positive correlation with the viral titers. Given that NLuc expression represents a direct readout
of PEDV replication, anti-PEDV compounds could be easily identified by quantifying the NLuc
activity. Using this platform, we screened for the anti-PEDV compounds from a library of 803 natural
products and identified 25 compounds that could significantly inhibit PEDV replication. Interestingly,
7 of the 25 identified compounds were natural antioxidants, including Betulonic acid, Ursonic acid,
esculetin, lithocholic acid, nordihydroguaiaretic acid, caffeic acid phenethyl ester, and grape seed
extract. As expected, all of the antioxidants could potently reduce PEDV-induced oxygen species
production, which, in turn, inhibit PEDV replication in a dose-dependent manner. Collectively, our
findings provide a powerful platform for the rapid screening of promising therapeutic compounds
against PEDV infection.

Keywords: PEDV; nanoluciferase; high-throughput screening; antiviral compounds; reverse genet-
ics system

1. Introduction

Porcine epidemic diarrhea virus (PEDV), a member of swine enteric coronaviruses
(CoVs), causes diarrhea, vomiting, anorexia, and dehydration in neonatal piglets [1]. After
PEDV classical strains of the genogroup I (GI) were first reported in the UK in 1971 [2], it
has spread throughout most European and Asian countries [3,4]. In 2010, highly pathogenic
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PEDV variants suddenly emerged in China, and they rapidly spread to North America,
Europe, and other Asian countries in 2013 [5–7]. Since then, virulent PEDV variants
(GII) have caused epidemic outbreaks, resulting in high morbidity and mortality rates in
newborn piglets [8]. Currently, PEDV is considered one of the most devastating swine
viruses, resulting in massive economic losses to the global pig industry [6,8,9]. To prevent
and control the outbreaks, several commercial vaccines, such as inactivated, live-attenuated,
and S subunit vaccines, have been approved for use against PEDV in China, South Korea,
and the USA [10–12]. Nevertheless, these vaccines cannot provide adequate protective
immunity against the prevalent PEDV strains, and large-scale outbreaks of PEDV still occur
and frequently recur [13]. Thus, the development of antiviral agents is urgently required to
prevent PEDV infection from compensating for the vaccine’s effect.

Natural products extracted from plants, fungi, and bacteria are increasingly pursued
as potential alternative antiviral agents. A limited number of natural compounds, such
as quercetin [14], quercetin 7-rhamnoside [15], glycyrrhizin [16], surfactin [17], and aloe
extract [18], have been demonstrated to exhibit antiviral activities against PEDV infection.
These studies have successfully identified natural compounds against PEDV mainly by
quantifying virus titers in compound-treated cells by traditional infection- or RT-PCR-
based assays. However, such methods are laborious, time-consuming, and challenging to
achieve high-throughput screening (HTS) of compounds against PEDV. Incorporating a
reporter gene into the viral genome can rapidly and effectively monitor viral replication,
which provides an ideal tool for HTS and evaluating antiviral compounds. To date, several
reporter CoVs have been genetically engineered for the high-throughput screening of
anti-CoV compounds and agents. For instance, Shen and colleagues recently screened a
2000-compound library of drugs using the recombinant human CoV OC43 (HCoV-OC43)
expressing Renilla luciferase and identified 36 inhibitors against HCoV-OC43 replication
in vitro [19].

PEDV is an enveloped, single-stranded positive-sense RNA virus belonging to the
genus α-coronavirus of the family Coronaviridae [20]. The PEDV genome is about 28 kb in
length, which contains a 5′ untranslated region (UTR), seven open reading frames (ORFs)
with the order 5′-ORF1a/1b-S-ORF3-E-M-N-3′, and a 3′ UTR. Two large overlapping ORFs,
ORF1a, and ORF1b occupy approximately two-thirds of the genome encoding polyproteins
pp1a and pp1b that are further cleaved by viral proteases into 16 nonstructural proteins
involved in viral genome replication and transcription [21]. The remaining one-third of
the genome encodes four structural proteins responsible for virion assembly, including
spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, and one accessory
ORF3 protein [21,22]. Notably, ORF3, positioned between the S and E genes, is the only
identified accessory gene in PEDV. Although the ORF3 protein has been demonstrated
to bind directly to the S protein and might be involved in virus assembly [23], the ORF3
protein is dispensable for virus replication in vitro. Using targeted RNA recombination, Li
et al. replaced the ORF3 gene of the attenuated PEDV DR13 (GI) with the GFP and Renilla
luciferase genes and applied these report PEDVs to virus neutralization assay [24].

NanoLuc luciferase (NLuc) is a small, highly stable, and ATP-independent enzyme
that has higher specific activity and produces a more vigorous bioluminescence signal
intensity (>150-fold increase) in comparison to the Firefly and Renilla luciferases [25]. In
this study, we established a reverse genetics system of the PEDV YN150 strain, a prevalent
GII strain, and replaced the entire ORF3 gene with the NLuc for engineering a recombinant
PEDV expressing NLuc (rPEDV-NLuc). We found that the growth kinetics of rPEDV-
NLuc was comparable to that of wild-type PEDV, and the level of luciferase activity
could be stably detected in rPEDV-NLuc-infected cells. Remarkably, the level of luciferase
activity exhibited a strong positive correlation with viral titers in rPEDV-NLuc-infected
cells, providing a powerful tool for monitoring the extent of viral replication. Finally, we
employed the rPEDV-NLuc to perform a high-throughput screening (HTS) of the anti-
PEDV compounds from a library of 803 natural products and successfully identified 25
compounds that could potently inhibit PEDV replication.
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2. Materials and Methods
2.1. Cells, Viruses, and Antibodies

Vero cell (#CCL-81) was purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco,
Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS). The cell-culture-
adapted PEDV YN150 strain (GenBank accession number MZ581326) was obtained by
serial passages of the virulent PEDV YN1 strain (GenBank accession number KT021227).
PEDV YN150 was propagated in Vero cells in DMEM, containing 10% tryptose phosphate
broth (TPB) and 10 µg/mL trypsin. The anti-PEDV S mAb 4B2, anti-PEDV N mAb 8E2,
and anti-NLuc mAb 5H6 used in this study were generated in our laboratory.

2.2. Construction of a Full-Length cDNA Clone

The full-length cDNA clone of the PEDV YN150 strain was constructed using a
unidirectional molecular clone strategy, which was previously described for the PC22A
strain of PEDV [26]. Briefly, the full-length PEDV cDNA clone was divided into six
contiguous fragments that could be systematically linked by five BsmBI restriction sites
at nucleotide positions 6055, 9880, 14880, 19216, and 23,497. A T7 promoter sequence
and 22 A residues were added to the viral genome’s immediate 5′ end and 3′ end. Five
naturally occurring BsmBI sites at nucleotide positions 376, 787, 2842, 11564/11566, and
23,882 were removed by introducing synonymous mutations to ensure the appropriate
assembly of the full-length infectious clone. Six cDNA fragments (F1–6) were synthesized
and cloned into the pJET1.2/blunt cloning vector (Thermo Scientific, Waltham, MA, USA).
After propagation in Escherichia coli, all PEDV fragments were sequenced to ensure their
sequence fidelity. These fragments were digested using restriction enzymes, separated
through 0.8% agarose gels, excised, and purified using a QIAquick gel extraction kit
(Qiagen, Hilden, Germany). The digested fragments were ligated overnight at 4 ◦C using
T4 DNA ligase (Thermo Scientific), extracted with phenol/chloroform, and precipitated
with isopropanol. Full-length PEDV RNA was generated by in vitro transcription using
mMESSAGE mMACHINE T7 Transcription Kit (Ambion, Austin, TX, USA) according to
the manufacturer’s instruction. SP6 PEDV N gene transcripts were generated from the
PCR-purified PEDV N gene sample using a 4:1 ratio of cap to GTP (Ambion).

To construct the PEDV-NLuc with the ORF3 deletion, ORF3 in the PEDV-F6 fragment
was replaced with synthesized NLuc gene using fusion PCR. PEDV-F6-4ORF3-NLuc was
amplified in Escherichia coli and sequenced to guarantee seamless substitution of ORF3
with NLuc and the retainment of the transcription regulatory sequence (TRS) of ORF3.

2.3. In Vitro Transfection

The 30 µL of the full-length PEDV RNA and 10 µL of N RNA transcripts were together
transfected into Vero cells (8.0 × 106 cells/mL) in phosphate-buffered saline (PBS), and
three electrical pulses of 450 V at 50 µF were given by a Gene Pulser X cell electroporation
system (Bio-Rad, Hercules, CA, USA). The transfected cells were seeded into a 75 cm2

flask and incubated at 37 ◦C. After 12 h, the cells were washed with PBS and incubated in
DMEM containing 10 µg/mL trypsin. Rescued viruses were harvested and further purified
by plaque assay.

2.4. Virus Genome Sequencing

Viral RNAs were extracted from the supernatant of PEDV-infected Vero cells using
TRIzol Reagent (Invitrogen, Waltham, MA, USA). Viral genome RNA was converted to
cDNA by Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland). The
full-length genome of rescued PEDVs was sequenced by conventional PCR with 28 pairs
of primers, listed in Table S1.
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2.5. Indirect Immunofluorescence Assay (IFA)

PEDV-infected Vero cells were fixed with 4% paraformaldehyde for 15 min and
subsequently permeabilized with 0.1% Triton X-100 (Sigma, St. Louis, MO, USA) for 10 min.
After blocking with 5% bovine serum albumin (BSA) in PBS, the cells were incubated with
anti-PEDV S mAb 4B2, followed by AlexaFluor 488 donkey anti-mouse IgG (Invitrogen).
Cells were stained with 4′,6-diamidino-2-phenylindole (Invitrogen) for 15 min, and the
fluorescence signal was examined using a fluorescence microscope.

2.6. Luciferase Assay

Vero cells seeded in 96-well plates were infected with rPEDV-NLuc at the indicated
viral amount. At 20 h post-infection, infected cells were lysed by Passive Lysis Buffer
(Promega, Madison, WI, USA) and assayed for luciferase activity using the Nano-Glo
Luciferase Assay System (Promega) according to the manufacturer’s instructions.

2.7. Western Blotting

PEDV- and rPEDV-NLuc-infected cell lysates were obtained using lysis buffer (65 mM
Tris-HCl (pH 6.8), 4% sodium dodecyl sulfate, 3% DL-dithiothreitol, and 40% glycerol),
separated by 12% SDS-PAGE, transferred to polyvinylidene difluoride membranes, and
blocked with 10% skim milk. The membranes were incubated with anti-PEDV N mAb
8E2 and anti-Nluc mAb 5H6 followed by horseradish peroxidase (HRP)-conjugated goat
anti-mouse IgG (ABclonal, Wuhan, China). Signals were detected using the SuperSignal
West Pico Luminal kit (Pierce, Woodland Hills, CA, USA).

2.8. HTS of a Natural Product Library

A library of 803 natural products was purchased from Selleck Chemicals (Houston, TX,
USA). Compounds were stored in 10 mM stock solution in DMSO at −80 ◦C until use. The
primary HTS assay was performed in Vero cells. Briefly, Vero cells were seeded into 96-well
plates in DMEM containing 10% FBS. After 12 h, 1 µL of each compound was added to
the cell cultures in plates at a final concentration of 10 µM (one compound per well) in
triplicate; 1 µL of DMSO was used for the controls. After 1 h incubation, the cells were
washed three times and inoculated with 0.01 MOI rPEDV-NLuc diluted in 100 µL/well
maintenance medium containing 10 µM compound and 10 µg/mL trypsin. After 20 h
incubation, the luciferase activity in infected cells was determined using the Nano-Glo
Luciferase Assay System (Promega). The primary candidates were identified using the
criteria of no apparent cytotoxicity and an average >90% inhibition in triplicate wells. The
criteria of dose-dependent inhibition and cell viability of >80% were used to reconfirm
the candidates. Moreover, the compound-specific toxicity (CC50) was calculated using
GraphPad Prism 6, and compounds with an SI > 10 were considered hits in this study.
Cytotoxicity was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay.

2.9. Detection of ROS Production

The intracellular ROS production was examined using the fluorescent probe 6-carboxy-
2′, 7′-dichlorodihydrofluorescein diacetate (DCFH-DA, Beyotime Biotechnology, Shanghai,
China). Following PEDV infection, Vero cells were washed with PBS and then treated with
10 µM DCFH-DA for 20 min at 37 ◦C. After treatment, cells were washed twice in PBS and
subjected to fluorescence microscopy observation and FACS analysis.

3. Results
3.1. Construction of the Full-Length cDNA Clone of PEDV

Recently, the reverse genetics system for the PEDV PC22A strain has been successfully
developed based on the unidirectional assembly of a full-length genome cDNA from a set of
consecutive shorter cDNA fragments [26]. Here, we employed a similar strategy to construct
the full-length cDNA clone of PEDV YN150. The complete viral genome was divided into
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six contiguous fragments (F1–6) that could be systematically joined by five BsmBI restriction
sites at nucleotide positions 6055, 9880, 14,880, 19,216, and 23,497 (Figure 1A). Five naturally
occurring BsmBI sites at nucleotide positions 379, 790, 2834, 11,557, and 23,886 located at F1,
F3, and F6 were removed by silent mutations but not changing protein products. Notably,
BsmBI is a type-IIS restriction endonuclease that cleaves outside their recognition site and
leaves unique 4-nucleotide overhangs, allowing for the systematic, efficient, and directional
assembly of the six smaller cDNA fragments into the full-length PEDV genomic cDNA by
in vitro ligation. A T7 promoter sequence and 22 A residues were added to the immediate 5′

end and 3′ end of the viral genome (Figure 1A) for in vitro transcription and polyadenylation
of RNA transcripts.
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Figure 1. The assembly of the full-length PEDV cDNA clone and recovery of rPEDV. (A) The
schematic diagram for the assembly of the full-length cDNA clone of PEDV YN150. The full-length
genome of the PEDV YN150 was divided into six contiguous cDNAs (F1–6). Restriction sites linking
fragments are noted. (B) Wild-type PEDV, rPEDV, or mock-infected Vero cells were subjected to IFA
using anti-PEDV S mAb 4B2 at 20 hpi (magnification, ×100). (C) Five genetic markers were verified
by sequencing rPEDV genome. Four genetic markers at nucleotide positions 376, 787, 2842, and
11,564/11,566 are located on the ORF1ab, while one genetic marker at nucleotide position 23,882 is
located on the Spike.
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3.2. Recovery, Identification, and Characterization of rPEDV

Each PEDV fragment was digested, purified, and ligated to generate a full-length viral
cDNA genome. PEDV transcripts were then synthesized with the T7 RNA polymerase
using the full-length cDNA as a template. Since the supplement of N gene transcript can
facilitate the replication efficiency of several CoVs, such as MHV, TGEV, SARS-CoV, and
MERS-CoV [27–30], capped PEDV-N gene transcripts were mixed with the full-length
transcripts, and co-electroporated into Vero cells. Apparent cytopathic effects (CPE) were
observed within 30 h post-transfection, and the expression of the S protein could be detected
by IFA using anti-PEDV S mAb (Figure 1B). After plaque purification, the complete genome
of rPEDV was sequenced. We observed that the whole genome sequence of rPEDV was
identical to the cDNA clone with no unwanted mutation, including the five genetic markers,
as shown in Figure 1C. These results indicated the successful rescue of rPEDV in Vero cells.

3.3. Construction and Rescue of rPEDV-NLuc

To express NLuc from the PEDV genome, the ORF3 gene in the F6 fragment was
replaced with that of NLuc (Figure 2A). Transcription regulatory sequences (TRS) of ORF3
and E were preserved for initiating subgenomic RNA expression (Figure 2A). After in vitro
ligation and transcription, the full-length transcripts were electroporated into Vero cells for
rPEDV-NLuc recovery. Similar to the wild-type PEDV, detectable CPE caused by rPEDV-
NLuc was readily observed within 30 h post-transfection (Figure 2B). The expression of S
and N proteins was also detected in Vero cells infected with the wild-type PEDV and rPEDV-
NLuc by IFA and Western blotting (Figure 2B,C). After plaque purification, we sequenced
the whole genome of rPEDV-NLuc and confirmed that the ORF3 was successfully replaced
by NLuc in rPEDV-NLuc without unwanted nucleotide change compared to its cDNA
clone (Figure 2D). Notably, we observed that rPEDV-NLuc retained the inserted NLuc gene
up to five passages in Vero cells (data not shown). To investigate whether the presence of
NLuc affects viral replication, we determined the viral plaque size and growth kinetics of
rPEDV-NLuc. As shown in Figure 2E, rPEDV-NLuc produced similar plaque morphology
with the wild-type PEDV and rPEDV. Titers of rPEDV-NLuc at the different time points
post-infection were also similar to those of the wild-type PEDV and rPEDV (Figure 2F).
These results suggested that the replacement of ORF3 with exogenous NLuc in PEDV
YN150 did not affect viral proliferation in Vero cells.

3.4. Assessment of rPEDV-NLuc Replication via Luciferase Assay

To further confirm the expression of NLuc, we examined the bioluminescent signal
in cells infected with rPEDV-NLuc. As shown in Figure 3A, plaques produced by rPEDV-
NLuc could be easily visualized as luminescent signals using the In Vivo Imaging System
(IVIS). Bioluminescence signals of Vero cells infected with rPEDV-NLuc were also enhanced
with the increased MOI (Figure 3B). To investigate whether the level of NLuc activity could
accurately reflect the extent of viral replication, we detected the NLuc activity in cell lysates
infected with rPEDV-NLuc at different times post-infection. The NLuc activity could be
measured as early as 4 h post-infection and increased until 28 h post-infection (Figure 3C),
which has similar dynamics of rPEDV-NLuc growth determined by TCID50 as presented
in Figure 2F. Additionally, an increased amount of rPEDV-NLuc infection could result in
elevated NLuc activity in a dose-dependent manner. A linear log RLU-log PFU correlation
was observed in the cells infected with rPEDV-NLuc (Figure 3D). These data indicated that
the level of viral replication could be effectively monitored by measuring the NLuc activity
in the Vero cells infected with rPEDV-NLuc.
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Figure 2. Rescue of rPEDV-NLuc. (A) Schematic representation of the cDNA clone of rPEDV-NLuc. (B) The rPEDV-NLuc-
and mock-infected Vero cells were detected by IFA using anti-PEDV S mAb 4B2 (magnification, ×100). (C) Western blot
analysis of the expression of PEDV N and NLuc using the anti-PEDV N mAb 8E2 and the anti-NLuc mAb 5H6, respectively.
(D) Identification of the ORF3 replacement with NLuc by sequencing the rPEDV-NLuc genome. (E) Representative plaques
of wild-type PEDV-, rPEDV-, and rPEDV-NLuc-infected Vero cell. (F) Comparison of growth kinetics of wild-type PEDV,
rPEDV, and rPEDV-NLuc. Vero cells were infected with wild-type PEDV, rPEDV, and rPEDV-NLuc at an MOI of 0.01, and
viral titers were detected at indicated time points by TCID50 assay. Data are represented as the mean ± SD (n = 3).
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Figure 3. Assessment of rPEDV-NLuc replication via luciferase assay. (A) Nanoluciferase imaging of plaques from Vero
cells infected with rPEDV-NLuc. Vero cells were infected with rPEDV-NLuc at an MOI of 0.001 or rPEDV at an MOI of 0.01.
At 36 h post-infection, plaques formed by PEDVs were visualized as luminescent signals using the In Vivo Imaging System
(IVIS). (B) Vero cells were infected with rPEDV and rPEDV-NLuc at different MOIs. At 20 h post-infection. NLuc substrate
was added to each well and luminescent signal were detected by IVIS. (C) The replication kinetics of rPEDV-NLuc was
quantified by luminometry. Vero cells were infected with rPEDV and rPEDV-NLuc at an MOI of 0.01, and the luminescent
signals were quantified by luminometry at the indicated times. Data are represented as the mean ± SD (n = 3). (D) Vero
cells were infected with rPEDV-NLuc at the different MOIs, and the luminescent signals of cell lysates were tested at 20 h
post-infection by the Nano-Glo Luciferase Assay System (Promega). The analysis of correlation between virus input and
bioluminescent signal was analyzed by GraphPad Prism 7.0. Data are represented as the mean ± SD (n = 3).

3.5. Screening of a Natural Product Library for Inhibitors of PEDV Infection

Using the rPEDV-NLuc reporter virus, we optimized the HTS assay conditions to
be 10,000 Vero cells/well in 96-well plates and rPEDV-NLuc infection at an MOI of 0.01.
Under this condition, the coefficient of variation (CV) and Z factor were 2.5% and 0.94,
respectively, demonstrating that the assay was robust and suitable for HTS.

A flowchart of the HTS is depicted in Figure 4A. In the primary screening from the 803
compounds library at a concentration of 10 µM, 63 hits were found to significantly inhibit
rPEDV-NLuc replication with 90% reduced NLuc activity and no apparent cytotoxicity
(Figure 4B). Among these prime candidates, 25 compounds were selected based on their
dose-dependent inhibition and a selective index (SI) > 10 (Figure S1, Table 1). To verify
the results obtained by the luciferase reporter assays, we confirmed the antiviral effect
of the 25 hits in Vero cells using wild-type PEDV. Consistent with the HTS results, all
25 compounds significantly reduced PEDV replication with at least a 1-log-unit decrease in
the viral titers at the concentration of 10 µM (Figure 4C).
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Figure 4. HTS for inhibitors of PEDV infection from a natural products library. (A) HTS assay flowchart. The 63 primary
candidates were identified using criteria of an average >90% inhibition in triplicate wells. In the secondary screening,
25 compounds with dose-dependent inhibition and SI >10 was selected. (B) The HTS of a library of 803 natural products for
primary candidates against PEDV infection. Each dot represents the percentage inhibition of a compound at a concentration
of 10 µM. Dots in the blue box represents the prime candidates with inhibition >90% and no obvious cytotoxicity. (C) Con-
firmation of anti-PEDV activity by TCID50. Vero cells were treated with the hit compounds for 1 h and then inoculated
with wild-type PEDV at a MOI of 0.01. At 20 h post-infection, the cell cultures were harvested for TCID50 assay. Data are
presented as means ± SDs from three independent experiments, * p < 0.05.

Table 1. The IC50s, CC50s and SIs of 25 hit compounds.

Compound Name IC50 (µM) CC50 (µM) SI

Emodin 2.1 >100 >50
gossypol-Acetic acid 2.9 >100 >30
Gynostemma Extract 2.7 >100 >30

Oridonin 3.0 35 10.16
Licochalcone A 4.0 >100 >25
Amphotericin B 2.91 >100 >34.42

Demethylzeylasteral 2.37 38.6 16.27
Tubeimoside I 4.21 74.8 17.76

Harmine hydrochloride 1.33 >100 >75.04
Betulonic acid <1.25 61.9 >49.52
Ursonic acid 2.13 41 19.23

3′-Hydroxypterostilbene 4.29 >100 >23.29
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Table 1. Cont.

Compound Name IC50 (µM) CC50 (µM) SI

Tannic acid 4.37 >100 >22.89
(E)-Cardamonin 2.15 >100 >46.44

Harmine 1.96 >100 >51.10
Esculetin 5.97 >100 >16.75

Lithocholic acid 2.37 >100 >42.12
Nordihydroguaiaretic acid 5.00 >100 >19.99

Efonidipine 5.58 >100 >17.93
Tabersonine hydrochloride 4.30 82.6 19.23

Protoporphyrin IX <1.25 >100 >80
Proanthocyanidins 2.19 >100 >45.71

Caffeic Acid Phenethyl Ester 1.74 >100 >57.63
Grape seed Extract 2.42 >100 >41.37

7-Ethylcamptothecin <1.25 >100 >80

Of note, we observed that 7 of the 25 identified compounds had been reported to
possess antioxidant activity, including Betulonic acid (BA) [31], Ursonic acid (UA) [32],
esculetin [33], lithocholic acid (LCA) [34], nordihydroguaiaretic acid (NDGA) [35], caffeic
acid phenethyl ester (CAPE) [36] and grape seed extract (GSE) [37]. To further verify the
antiviral activities of the natural antioxidants, we examined whether the natural antioxi-
dants could inhibit PEDV replication in a dose-dependent manner via TCID50 and IFA.
Compared with the DMSO group, all seven antioxidants significantly inhibited PEDV
proliferation at 2.5, 5, and 10 µM concentrations, and the dose-dependent inhibition of
viral replication were also observed in the cells treated with all antioxidants (Figure 5A,B).
Notably, all seven antioxidants at 2.5 µM are efficient in reducing PEDV replication with at
least a 60% decline in viral load, suggesting that these antioxidants exhibited the potent
inhibition of PEDV proliferation.

3.6. Seven Natural Products Inhibit PEDV-Induced Reaction Oxygen Species (ROS)

Recent studies showed that PEDV infection induces ROS accumulation in Vero
cells [38]. We further explored whether the seven natural antioxidants can suppress the
PEDV-induced ROS production. Using fluorescence microscopy, we observed that PEDV
infection dramatically increased DCFH-DA fluorescence as expected. In contrast, only a
few fluorescence signals were detected in PEDV-infected cells when treated with BA, UA,
esculetin, LCA, NDGA, CA, and GSE, respectively (Figure 6A). To further investigate the
effect of the natural antioxidants on PEDV-induced ROS, we employed flow cytometry to
detect the ROS levels in PEDV-infected cells after the treatment of antioxidants. As shown
in Figure 6B, ROS production induced by PEDV was significantly decreased in the cells
treated with these natural antioxidants.
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Figure 5. The inhibitory effects of seven kinds of antioxidants on PEDV infection on Vero cells. Vero
cells were incubated with seven antioxidants at various concentrations (2.5, 5, and 10 µM) for 1 h,
and then infected with wild-type PEDV at a MOI of 0.01. (A) At 20 h post-infection, the titers of
infected cell cultures were determined by TCID50. NAC (50, 100, and 200 µM) and DMSO were used
as the positive and negative controls. Data are presented as means ±SDs from three independent
experiments. (B) PEDV S protein expression (green) in infected cells was analyzed by IFA using
anti-PEDV S mAb 4B2. Nuclei (blue) were stained with DAPI. The percentage of PEDV-infected cells
was counted based on the IFA results (bottom). NAC (50 µM) and DMSO were used as the positive
and negative controls, * p < 0.05.
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Figure 6. The inhibition of PEDV-induced ROS by identified antioxidants. Vero cells were treated with each antioxidant at
the concentration of 10 µM, and then infected with wild-type PEDV at a MOI of 0.01. NAC (50 µM) and DMSO were used
as the positive and negative controls. At 16 h post-infection, the cells were stained with DCFH-DA and intracellular ROS
generation was examined by a fluorescence microscope (A) or flow cytometry (B). The relative ROS levels were calculated
by the DCFH-DA fluorescence intensity in PEDV-infected cells. Mean ± SDs from three independent experiments are
displayed. * p < 0.05 and ** p < 0.01 vs. PEDV-infected cells treated with DMSO (unpaired Student’s t-test).

4. Discussion

PEDV has been considered one of the most devastating porcine viruses that have
emerged or re-emerged in recent decades, causing severe economic losses in the global
pork industry. Even though both inactivated and live-attenuated vaccines have been
widely used to control the prevalence of PEDV in China and other counties, the PEDV
outbreak is still ongoing, and novel PEDV strains were continually detected in vaccinated
pig herds [3,8]. The development of effective antiviral agents is another strategy to control
PEDV infection. Salinomycin [39] and remdesivir [40] have been reported as potential
antiviral drugs against PEDV infection in vitro. Several natural products extracted from
plants, such as glycyrrhizin [16], quercetin 7-rhamnoside [15], and epigallocatechin-3-
gallate [41], have been demonstrated to reduce PEDV infection in Vero cells. To search for
new anti-PEDV agents, Deejai et al. screened the FDA-approved drugs that could associate
with the PEDV N protein using virtual screening and found that trichlormethiazide, D-(+)
biotin and acetazolamide could inhibit PEDV replication in vitro [42]. Recently, based on
the assessment of CPE and viral protein expression by IFA, Wang et al. screened a natural



Viruses 2021, 13, 1866 13 of 16

product library and demonstrated that tomatidine could reduce PEDV proliferation in Vero
cells [4].

NLuc is a novel engineered luciferase that is smaller and brighter than firefly or
Renilla luciferase (about a 150-fold increase in luminescence). It utilizes the synthetic
substrate furimazine to produce high-intensity, glow-type luminescence but low back-
ground activity [25]. Recently, Xie et al., constructed a recombinant SARS-CoV-2 expressing
NLuc that can rapidly detect neutralization antibodies and screen antiviral drugs [43]. In
this study, we employed the reverse genetics system to engineer a recombinant PEDV
expressing the NLuc gene (Figure 2). PEDV ORF3 is the only accessory ORF that encodes a
putative ion channel protein [44]; however, this is dispensable for viral replication in vitro
and in vivo [24]. During serial passaging, PEDV ORF3 usually becomes abortive due to
deletion mutations [45–47]. In the cell-culture adapted YN150 strain, a nucleotide dele-
tion within the ORF3 gene leads to early termination of ORF3 at 144 aa. Therefore, the
ORF3 of PEDV YN150 is suitable for replacement with the NLuc gene. As expected, we
found that the NLuc gene was stably incorporated into the genome of PEDV YN150 with
no apparent effects on viral kinetics or plaque phenotype (Figure 2). Bioluminescence
signal produced during rPEDV-NLuc infection could accurately reflect the extent of viral
replication (Figure 3). The luciferase levels during rPEDV-NLuc infection showed an ex-
cellent linear relationship with the viral titers (Figure 3), indicating that bioluminescence
signal produced during rPEDV-NLuc infection can be used to monitor viral replication in
Vero cells.

Using the engineered rPEDV-NLuc, we performed HTS of an 803-compound library
of natural products and identified 25 compounds exhibiting anti-PEDV activity (Figure 4).
Intriguingly, we discovered that 7 of the 25 identified inhibitors are antioxidants, including
Betulonic acid, Ursonic acid, esculetin, lithocholic acid, nordihydroguaiaretic acid, caffeic
acid, and grape seed extract (Figure 4). All seven antioxidants were confirmed to inhibit
wild-type PEDV replication in a dose-dependent manner in Vero cells (Figure 5). Even
at 2.5 µM concentration, all selected antioxidants showed a level of inhibition of at least
60% (Figure 5). Previous studies demonstrated that infection of Vero cells with PEDV
causes ROS accumulation in a time-dependent manner [38]. Here, we showed that the
seven identified antioxidants could dramatically reduce PEDV-trigger ROS accumulation,
and their inhibitory effect of ROS accumulation was more substantial than that of a well-
known ROS inhibitor N-acetyl-L-cysteine (NAC) (Figure 6). NAC was found to limit
the replication of influenza virus (IV) and reduce IV-induced apoptosis [48–50]. In our
study, NAC also exhibited anti-PEDV activity in a dose-dependent manner (Figure 5),
suggesting that ROS production was involved in PEDV replication. More recently, Sun et al.
reported that ROS accumulation played a critical role in ER stress and autophagy during
PEDV infection [51]. In our previous study, PEDV-mediated autophagy facilitated viral
replication [52]. We speculated that the seven hit antioxidants reduced PEDV-induced ROS
accumulation, probably leading to the cells being defective in autophagy, thus impairing
viral replication. Nevertheless, the precise mechanism by which antioxidants inhibit PEDV
replication remains to be determined.

Besides the antioxidants, two hit compounds, protoporphyrin IX and 7-Ethylcamptothecin,
exhibited inhibitory activities on the replication of PEDV with an SI of >80.7-Ethylcamptothecin
was reported as an anti-cancer chemical with potent activity against various murine tumors
via topoisomerase inhibition [53]. To our knowledge, there has been no report on the antiviral
activity of 7-Ethylcamptothecin; however, it showed anti-PEDV activity with IC50 of <1.25 µM.
Notably, protoporphyrin IX can insert into the lipid vesicles of the vesicular stomatitis virus
and impair the viral membrane organization, leading to the inhibition of viral replication [54].
Recently, Gu et al., reported that protoporphyrin IX could completely inhibit the cytopathic
effect caused by SARS-CoV-2. They speculated protoporphyrin IX probably binds with the
receptor ACE2 and blocks the S protein-mediated entry [55,56]. Whether protoporphyrin IX
inhibits PEDV entry needs further exploration.
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In conclusion, our study has established a powerful reverse genetics platform for the
PEDV YN150 strain and engineered a reporter PEDV expressing the NLuc (rPEDV-NLuc).
We found that the recombinant virus showed similar viral plaque size and growth kinetics
to the parental virus in vitro. The bioluminescence signal produced during rPEDV-NLuc
infection could accurately reflect the level of viral replication in Vero cells. Using the
engineered virus, we performed the HTS of anti-PEDV compounds from a library of
803 natural products and successfully identified 25 compounds inhibiting the replication
of PEDV. Our findings provide a powerful tool for the rapid screening of antiviral drugs
and neutralization antibody detection and offer new and promising therapeutic strategies
against PEDV infection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13091866/s1, Figure S1: Dose–response curves for 25 inhibitors of PEDV in vitro. Table S1:
Primers used for viral genome sequencing in this study.
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