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Abstract: Compared with the ordinary foundation plate, the composite conical convex-concave
plate (CCCP) has obvious anisotropic characteristics, and there is less research on the relationship
between its mechanical properties and structural parameters. In this article, a numerical model for
the equivalent stiffness of a typical unit cell with conical convex is established by using the variational
asymptotic method. Then, the 3D finite element model (3D-FEM) of CCCP is transformed into 2D
equivalent plate model (2D-EPM) with the effective plate properties obtained from the constitutive
analysis of unit cell. The accuracy of 2D-EPM is verified by comparing with the displacement,
natural frequencies, and buckling results from 3D-FEM under different boundary conditions. Then,
the influence of geometric parameters and layup configurations on the effective performances of
CCCP are investigated. Finally, the buckling loads and natural frequencies of bidirectional CCCP are
compared with those of CCCP by using the present model. The present model is particularly useful
in the early design stage of CCCP where many design trade-offs need to be made over a vast design
space in terms of material selection, ply angles, and geometric parameters.

Keywords: composite conical convex-concave plate; variational asymptotic method; finite element
analysis; buckling analysis; natural frequency

1. Introduction

With the development of modern science and technology, thin plate theory cannot
meet the requirement of industrial production. The main disadvantage is that the increase
in stiffness can only be achieved by changing the thickness of thin plate, but the thin plate
theory is no longer applicable when the thickness of thin plate reaches a certain value,
and the shear effect needs to be considered. In addition, the increase in stiffness can also be
achieved by bonding laminated plates and sandwich plates, which is not suitable for indus-
trial production and cannot meet engineering requirements [1,2]. Moreover, subsequent
studies have found that the production process of laminated plates and sandwich plates is
relatively complex and prone to degumming or dislocation, which is not conducive to the
use in industrial production [3–5].

As a new type of lightweight structure, the convex-concave plate, made by stamping
and rolling can avoid the shortcomings of the degumming, dislocation, and complicated
process, resulting in high industrial application value and reliability. Although its thickness
is very small, it has light weight, high strength, and high stiffness. This is because the
convexities of the plate changes the plate structure after stamping or rolling, and the
stiffness is greatly enhanced. Furthermore, the convexities can absorb a lot of energy in the
process of impact vibration, and the loss of the plate can be greatly reduced [6]. This kind
of plate also has high heat dissipation efficiency and excellent sound insulation and heat
insulation performance, which cannot be achieved by the sandwich plate and laminated
plate. In fact, it has been used as the plate heat exchanger as shown in Figure 1.
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Figure 1. Structural diagram of a concave-convex plate heat exchanger.

Due to the existence of the convexities, the energy absorption capacity is obviously
improved and the service life is greatly enhanced [7–9]. Haldar et al. [10] focused on study-
ing the influence of the thickness of convexities on the energy absorption and obtained the
optimal energy absorption properties of the convex-concave plate by comparing the experi-
mental and finite element simulation results. Sashikumar [11] tested the energy absorption
capacity of an aluminum egg-box plate in commercial vehicles and proposed that the
natural constraints within the geometric structure of egg-box plates have a positive impact
on their energy absorption capacity. Akisanya and Fleck [12] discussed the dependence of
strength and energy absorption of egg-box material on the geometric shape by using the
finite element prediction method and determined the variation of the stiffness and strength
of egg-box material with relative density. Ma et al. [13] concluded that the periodic origami
structure has better energy absorption capacity by comparing the dynamic analysis and
experimental and numerical results.

In addition to the traditional single-layer convex-concave plate, the laminated convex-
concave plate has also been widely investigated. Chang et al. [14–16] adopted the exper-
imental method to study the energy absorbing ability and deformation process of two
kinds of sinusoidal convex-concave plate reinforced by fiber materials during quasi-static
compression. Zhang et al. [17] tested the performance of egg-box panel stuffed whipple
shield from impact area, cell size and the axial offset etc. At present, experiments and finite
element simulation are mostly used to investigate the energy absorption capacity, failure,
and heat transfer performance of concave-convex plates.

The laminated composite plate by nature has two dimensions larger than the thickness
dimension by an order of magnitude. In recent years, the variational asymptotic method
(VAM) has been used to strictly split the plate/shell problem into the through-the-thickness
linear analysis (1-D analysis) and 2D nonlinear plate analysis by using the small parameter
of width-to-thickness ratio. This method combines advantages of both asymptotic and
variational methods, and considers all possible deformations during problem formulations
while avoiding any kinematic assumptions. Atilgan and Hodges [18,19] developed VAM
for laminated plates in which each lamina exhibits monoclinic symmetry about its own mid-
plane. Sutyrin and Hodges [20] extended VAM to laminated plate, the material properties
of which varied through the thickness and for which each lamina was orthotropic. Later, Su-
tyrin [21] developed linear, asymptotically correct theories for inhomogeneous orthotropic
plates, for example, laminated plates with orthotropic laminae. Yu et al. [22] developed an
accurate stress/strain recovery procedure for laminated plates that can be implemented in
standard finite element programs. Kamineni and Burela [23] developed constraint method
for laminated composite flat stiffened panel using VAM. Further, Zhong and Yu [24–28]
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successfully constructed the equivalent model of various composite structures by using
this method.

The composite conical convex-concave plate (CCCP) studied in this article is a new
type of convex-concave plate. Most of the research at this stage is limited to the manufactur-
ing process, and its equivalent mechanical properties have not been investigated, especially
the natural vibration and stability characteristics. Therefore, it is necessary to study the
equivalent stiffness of the orthotropic convex-concave plate, which lays a foundation for
studying the deformation of convex-concave plates under applied load and provides a
theoretical basis for the reasonable design of its geometric parameters.

In this work, a VAM-based equivalent plate model is developed to predict the effec-
tive performance of CCCP. The organization of this paper is as follows. The theoretical
formulation for the VAM-based 2D equivalent plate model (2D-EPM) is deduced in Sec-
tion 2. Numerical examples of static displacement, global buckling, and free-vibration
analysis of CCCP are used in Section 3 to verify the accuracy and effectiveness of 2D-EPM.
Section 4 investigates the influences of layup configurations and geometric parameters
on the effective performances of CCCP by using the 2D-EPM. In Section 5, the effective
performance of bidirectional CCCP and CCCP is compared. Finally, some conclusions are
drawn in Section 6.

2. Theoretical Foundation
2.1. Equivalent Plate Modeling of CCCP

The equivalent model of CCCP can be established from the perspective of energy
concept. Due to the periodicity of the CCCP along the two axes of the plane, a square plate
with conical convexity is taken as a typical unit cell as shown in Figure 2b. The length,
height, and thickness of the unit cell are l, h, and t, respectively. That is, the analysis of
the original CCCP is decomposed into a microscopic analysis of the unit cell (providing
effective plate properties) and macro analysis of 2D-EPM as shown in Figure 2c.
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Figure 2. The 3D finite element model (3D-FEM) of the composite conical convex-concave plate
(CCCP) (a) is divided into a (b) 3D unit cell and (c) 2D equivalent plate model (2D-EPM).

To facilitate the derivation, two groups of coordinates are introduced: the macro
coordinates, xi, describing the original structure, and the micro coordinates, yi, describing
the unit cell. The macro coordinate x3 is perpendicular to the in-plane coordinates x1 and
x2, and the origin of the macro coordinate is located at the center of the plate as shown in
Figure 2a. Because the micro size of the unit cell is much smaller than the macro size of the
plate, the micro coordinates yi = xi/ξ (1/ξ is a small parameter) are used to describe unit
cell. For the equivalent plate model, the function of the original CCCP can be expressed
as a function defined along the reference plane x1 − x2 (x3 disappears), and its partial
derivative is

∂ f (xα; yi)

∂xα
=

∂ f (xα; yi)

∂xα

∣∣∣∣
yi=const

+
1
ξ

∂ f (xα; yi)

∂yi

∣∣∣∣
xα=const

≡ f,α +
1
ξ

f;i (1)

where i takes values of 1, 2, and 3; α takes values 1 and 2.
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To establish the VAM-based equivalent model of CCCP, the 2D plate variables should
be used to represent the 3D displacements of the original CCCP as

u1(xα; yi) = v1(x1, x2)− ξy3v3,1(x1, x2) + ξw1(xα; yi)

u2(xα; yi) = v2(x1, x2)− ξy3v3,2(x1, x2) + ξw2(xα; yi)

u3(xα; yi) = v3(x1, x2) + ξw3(xα; yi)

(2)

where ui and vi represent the displacement of the original three-dimensional plate and
two-dimensional equivalent plate, respectively, and wi denotes the fluctuating function
used to describe the deformation that cannot be described by the classical plate theory.

The underlined terms in Equation (2) are the deformations generated by the reference
plane, which should meet the following requirements:

hvα(xα) = 〈uα〉+ 〈ξy3〉v3,α, hv3(xα) = 〈u3〉 (3)

where the angle brackets denote the integral over the unit cell.
The definitions in Equation (3) introduce the constraints on the fluctuating functions as

〈ξwi〉 = 0 (4)

The strain field can be obtained from linear elasticity theory as

Γij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(5)

The corresponding 3D linear strain field can be obtained by substituting Equation (2)
into Equation (5), and neglecting higher-order terms,

Γ11 = ε11 + ξy3κ11 + w1,1
2Γ12 = 2ε22 + 2ξy3κ12 + w1,2 + w2,1
Γ22 = ε22 + ξy3κ22 + w2,2
2Γ13 = w1,3 + w3,1
2Γ23 = w2,3 + w3,2
Γ33 = w3,3

(6)

where the 2D plate strains εαβ and καβ of the 2D-EPM are defined as

εαβ(x1, x2) =
1
2
(
vα,β + vβ,α

)
, καβ(x1, x2) = −v3,αβ (7)

With the aid of matrix representation, the 3D strain field can be expressed as

Γe = [Γ11 Γ22 2Γ12]
T = ε + x3κ + ∂ew||

2Γs = [2Γ13 2Γ23]
T = w|| + ∂tw3

Γt = Γ33 = w3,3

(8)

where Γe, Γs, Γt are strain components of 3D-FEM, respectively; ()|| = [()1 ()2]
T, ε =

[ε11 2ε12 ε22]
T, κ = [κ11 κ12 + κ21 κ22]

T, and

∂e =

 (),1 0
(),2 (),1
0 (),2

, ∂t =

{
(),1
(),2

}
(9)
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The geometric structure of the element can be divided into five parts shown in Figure 3
for easy integration, and the strain energy of unit cell can be written as

U =
∫ l3/2

−l3/2

∫ l3/2+l1+l2

−(l3/2+l1+l2)

∫ h

0
ΓT

CDCΓCdy1dy2dy3

+2
∫ l3/2+l2

l3/2

∫ l3/2+l1+l2

−(l3/2+l1+l2)

∫ h

0
ΓT

BDBΓBdy1dy2dy3

+2
∫ l3/2+l2+l1

l3/2+l2

∫ l3/2+l1+l2

−(l3/2+l1+l2)

∫ 0

−t
ΓT

ADAΓAdy1dy2dy3

(10)

(a) The shape and size of the unit cell (b) The cross section of a-a

Figure 3. Geometry and sizes of typical unit cell.

Equation (10) can be briefly expressed as

U =
1
2

〈
ΓTDΓ

〉
=

1
2

〈
Γe

2Γs
Γt


T De Des Det

DT
es Ds Dst

DT
et DT

st Dt


Γe

2Γs
Γt


〉

(11)

where De, Des, Det, Ds, Dst, and Dt denote the sub-matrices of the three-dimensional 6× 6
material matrix.

The virtual work done due to applied loads can be expressed as

δW3D = δW2D + δW∗ (12)

where δW2D and δW∗ can be defined as

δW2D = 〈piδvi + qαδv3,α〉, δW∗ =
〈
〈 fiδwi〉+ τiδw+

i + βiδw−i
〉

(13)

where (·)+ = (·)|x3=t/2 and (·)− = (·)|x3=−t/2 denote the items acting on the top and
bottom surfaces, respectively; fi is the body force; τi and βi denote the traction forces on the
top and bottom surface, respectively; and pi = 〈 fi〉+ τi + βi, qα = h/2(βα − τα)− 〈x3 fα〉.

The total potential energy of unit cell can be expressed as

δΠ = δU − δW∗ =
1
2

δ
〈

ΓTDΓ
〉
−
〈
〈 fiδwi〉+ τiδw+

i + βiδw−i
〉

(14)

2.2. Dimension Reduction of CCCP

To solve the unknown fluctuating function wi by using VAM, the order of each term
in Equation (14) must be evaluated as

Γij ∼ εαβ ∼ hκαβ ∼ n, wi ∼ hn, w||,α ∼ w3,α ∼
h
L

n

w||,3 ∼ w3,3 ∼ n, h fα ∼ αα ∼ βα ∼ µ
h
L

n, h f3 ∼ α3 ∼ β3 ∼ µ

(
h
L

)2 (15)
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where n and µ are the order of the minimum strain and material properties, respectively,
and L is the length of the plate.

2.2.1. Zeroth-Order Approximation

The explicit expression of Equation (14) can be expressed as

2Π =
〈
(ε + x3κ)TDe(ε + x3κ) + 2(ε + x3κ)TDe∂ew||,α

+2(∂ew||,α)TDe∂ew|| + 2(ε + x3κ)TDesw||,3 + 2(ε + x3κ)TDes∂tw3,α

+2
(

∂ew||,α
)T

Des

(
w||,3 + ∂tw3,α

)
+ 2(ε + x3κ)TDetw3,3

+2
(

∂ew||,α
)T

Detw3,3 + wT
||,3Dsw||,3 + 2wT

||,3Ds∂tw3,α + 2(∂tw3,α)
TDs∂tw3,α

+2wT
||,3Dstw3,3 + 2(∂tw3,α)

TDstw3,3 + Dtw2
3,3

〉
−2
(〈

f T
i wi

〉
+ τT

i wT
i + βT

i wT
i
)

(16)

The fluctuating function can be constrained by introducing the Lagrangian multiplier
λi, such as

δ(Π + λi〈wi〉) = 0 (17)

The fluctuating function can be obtained by solving the following zeroth-order ap-
proximate variational statement after removing the underline and double underline items
from Equation (16),〈 [

(ε + x3κ)TDes + wT
||,3Ds + wT

3,3DT
st

]
δw||,3

+λiδwi +
[
(ε + x3κ)TDet + wT

||,3Dst + wT
3,3Dt

]
δw3,3

〉
= 0 (18)

This results in the following Euler–Lagrange equations:[
(ε + x3κ)TDes + wT

||,3Ds + wT
3,3DT

st

]
,3
= λ||[

(ε + x3κ)TDet + wT
||,3Dst + wT

3,3Dt

]
,3
= λ3

(19)

where λ|| = [λ1 λ2]
T and λ3 are Lagrange multipliers corresponding to the constraint

components of w|| and w3.
The boundary conditions are[

(ε + x3κ)TDes + wT
||,3Ds + w3,3DT

st

]+/−
= 0[

(ε + x3κ)TDet + wT
||,3Dst + w3,3Dt

]+/−
= 0

(20)

where the superscript “+/−” denotes the items applied on the top and bottom surface of
the plate.

We can solve wi by substituting Equation (20) back into Equation (19):

w|| =
〈
−(ε + x3κ)DesD−1

s

〉T
, w3 =

〈
−(ε + x3κ)DetD−1

t

〉
(21)

where

Des = Des − DetDT
stD
−1
t , Det = Det − DesD−1

s Dst, Dt = Dt − DT
sl D
−1
s Dst (22)
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Substituting Equation (22) into Equation (18), we obtain the first approximation of the
strain energy as

U2D =
1
2

〈
(ε + x3κ)TD̄e(ε + x3κ)

〉
=

1
2

{
ε
κ

}T[ A B
BT D

]{
ε
κ

}
(23)

where
A =

〈
De
〉
, B =

〈
x3De

〉
, D =

〈
x2

3De
〉
,

De = De − DesD−1
s DT

es − DetDT
et/Dt

(24)

For the zeroth-order approximate, the 3D strain field can be recovered by using
Equation (6) as

Γ0
e = ε + x3κ, 2Γ0

s = −w||,3, Γ0
t = w3,3 (25)

The local stress field can be recovered as

σ0
e =

[
σ0

11 σ0
12 σ0

22
]T

= D̄e(ε + x3κ)

σ0
s =

[
σ0

13 σ0
23
]T

= 0
σ0

t = σ0
33 = 0

(26)

The resultant stress of the plate can be defined as

∂U2D
∂ε11

= N11,
∂U2D
∂2ε12

= N12,
∂U2D
∂ε22

= N22

∂U2D
∂κ11

= M11,
∂U2D
∂2κ12

= M12,
∂U2D
∂κ22

= M22

(27)

The constitutive relation of CCCP can be obtained by connecting the internal stress,
strain, and curvature of the plate as

N11
N22
N12
M11
M22
M12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ε11
ε22

2ε12
κ11
κ22

2κ12


(28)

2.2.2. First-Order Approximation

It can be seen from Equation (26) that only in-plane stresses σe can be obtained.
The next order approximation is needed to obtain the out-of-plane stresses. The zeroth-
order warping functions can be simply perturbed as

w|| = v̄||, w3 = v̄3 + D⊥χ (29)

where χ = [ε κ]T, D⊥ =
[
−DT

et
Dt

− x3
DT

et
Dt

]
, v̄|| and v̄3 denote in-plane and out-of-plane

perturbed fluctuating functions, respectively.
The leading terms for the first-order approximation of variational statement can be

obtained by substituting Equation (29) back into Equation (14) as

2Π1 =
〈

v̄T
||,3Dsv̄||,3 + Dtv̄2

3,3 + 2v̄T
||C||,3χ,α + 2v̄T

||Ds∂tD⊥χ,α − 2v̄−T
|| p||

〉
−2v−T

|| τ|| − 2vT
||β||

(30)

The Euler–Lagrange equation of Equation (30) is(
Dsv̄||,3 + Ds∂tD⊥χ,α

)
,3
= C||,3∂tD⊥χ,α + g,3 + λ|| (31)
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where C|| = −∂T
e

[
D|| x3D||

]
, g,3 = −p||.

It can be easily observed that v̄3 is decoupled from v̄|| and only has a trivial solution.
The solution of v̄|| can be obtained from Equation (31) as

v̄|| =
(

C̄|| + Lα

)
χ,α + ḡ (32)

where
C̄||,3 = D−1

s C||,
〈

C||
〉
= 0, ḡ3 = D−1

s ḡ, 〈ḡ〉 = 0

Lαχ,α = c||/h, C̄|| = C|| +
x3
h D∓α − 1

2 D±|| − DseαD⊥
ḡ = g + x3

h g∓ − 1
2 g±

(33)

with ()± = ()+ + ()−, ()∓ = ()− − ()+.
So far, the asymptotic correction solution of the strain energy per unit area of the plate

in the first-order approximation is

2Π1 = χTD̄eχ + χT
,αBαβχ,β − 2χTF (34)

where
Bαβ =

〈
Dsαβ

DT
⊥D⊥ − C̄T

α D−1
s C̄β

〉
+ Lα

(
〈 p̄〉+

〈
p||
〉)

,α

F =
〈

DT
⊥p3

〉
−
〈

C̄T
‖ D−1

s gs

〉
− Lα

(
〈 p̄〉+

〈
p‖
〉)

,α

(35)

The variational statement of Equation (34) governs the macroscopic behavior of the
plate, and it only involves the 2-D field variables in terms of the macro-coordinates x1 and
x2. Therefore, 2D-EPM can replace the original CCCP for the global analysis.

2.2.3. Recovery 3D Local Fields

The fidelity of the equivalent model should be evaluated based on how well it can
predict the 3D local fields for the original 3D structure. Therefore, it is necessary to provide
a recovery relationship to complete the equivalent model so that the results is comparable
to those of the original 3D model.

The 3D displacement field can be recovered by using Equation (2) as

ui = vi + x3(C3i − δ3i) + Cjiwj (36)

where ui and vi are displacements of three-dimensional plate and two-dimensional equiva-
lent plate, respectively, and Cji is the cosine component of the transformation matrix from
macro coordinates to micro coordinates.

The 3D strain field can be recovered from Equation (8) as

Γe = ε + x3κ, 2Γs = v̄||3 + ∂tD⊥,α, Γt = D⊥,3χ (37)

At last, the 3D stress field can be recovered as

σe = [σ11 σ12 σ22]
T = D||(ε + x3κ) + De∂ev̄||,α

2σs = [σ13 σ23]
T = Ds

(
v||,3 + ∂tχ,α

)
σt = σ33 = DT

et∂ev̄||,α

(38)

2.3. Free-Vibration Analysis of CCCP Using 2D-EPM

The elastic curved surface differential equation of 2D-EPM under lateral load τ is

D11
∂4v
∂x4

1
+ 2D66

∂4v
∂x2

1∂x2
2
+ D22

∂4v
∂x4

2
= τ (39)
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It is assumed that the plate is in equilibrium under the lateral load τ at a certain
moment, and the deflection of 2D-EPM at the equilibrium position is

va = va(x1, x2) (40)

It is well known that 2D-EPM will be in a static state after moving for a period of
time. Then, 2D-EPM will vibrate freely after the appropriate disturbing force is removed.
The deflection of 2D-EPM at a certain moment under the condition of free vibration is

vt = vt(x1, x2, t) (41)

In addition to the lateral load τ, there is also the inertia force τj after the disturbing
force is removed, and the equilibrium equation becomes

D11
∂4vt

∂x4
1
+ 2D66

∂4vt

∂x2
1∂x2

2
+ D22

∂4vt

∂x4
2
= τ + τj (42)

The acceleration of 2D-EPM is ∂2v
∂t2 . If the density and thickness of 2D-EPM are,

respectively, ρ0 and δ0, then the inertia force τj is

τj = −ρ0δ0
∂2v
∂t2 (43)

Substituting Equation (43) into Equation (42), and Equation (40) into Equation (39),
the final differential equation can be obtained after subtracting Equation (39) from
Equation (42) as

D11
∂4(vt − va)

∂x4
1

+ 2D66
∂4(vt − va)

∂x2
1∂x2

2
+ D22

∂4(vt − va)

∂x4
2

= −ρ0δ0
∂2(vt − va)

∂t2 (44)

The deflection of 2D-EPM satisfies the following conditions at any time:

v = vt − va (45)

Equation (44) can be simplified as

D11
∂4v
∂x4

1
+ 2D66

∂4v
∂x2

1∂x2
2
+ D22

∂4v
∂x4

2
+ ρ0δ0

∂2v
∂t2 = 0 (46)

and its general solution is

v =
∞

∑
m=1

vm =
∞

∑
m=1

(Am cos ωt + Bm sin ωt)W(x, y) (47)

where W is the free-vibration shape function and ω is the natural frequency (Hz).
As each natural frequency of 2D-EPM corresponds to its shape function, the differential

equation can be obtained by substituting any of the natural frequency into Equation (46):

D11
∂4W
∂x4

1
+ 2D66

∂4W
∂x2

1∂x2
2
+ D22

∂4W
∂x4

2
= −ω2ρ0δ0W (48)

The nonzero solution satisfying W can be obtained as

ω2 =
D11

∂4W
∂x4

1
+ D22

∂4W
∂x4

2
+ 2D66

∂4W
∂x2

1∂x2
2

ρ0δ0W
(49)
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The free-vibration shape function of the four-side simple supporting plate can be
defined as

W = sin
mπx1

a
sin

nπx2

b
(50)

where m and n are half-wave numbers along x1 and x2 directions, respectively; a and b are
the side lengths of 2D-EPM, respectively.

Substituting Equation (50) back into Equation (49), we can obtain

ω2 =
D11

(mπ
a
)4

+ D22
( nπ

b
)4

+ 2D66
(mπ

a
)2( nπ

b
)2

ρ0δ0
(51)

Therefore, the natural frequencies of 2D-EPM can be obtained as

ω = π2

√
D11

(m
a
)4

+ D22
( n

b
)4

+ 2D66
(m

a
)2( n

b
)2

ρ0δ0
(52)

3. Model Validation

In this section, the accuracy and effectiveness of the equivalent model are verified
by comparing with the results of static displacement, free-vibration, and global buckling
analysis of the three-dimensional finite element model (3D-FEM).

The dimensions of unit cell are l = 30 mm, h = 10 mm, t = 1 mm, l1 = 5 mm,
l2 = 5 mm, and l3 = 10 mm. The whole model of CCCP is the repetition of the unit cell
in Figure 2b 20 times along x1 and x2 directions. The layup configuration of laminate
is [0/45/90/ − 45/0]s, and each ply thickness equals 0.1 mm. The material used is a
unidirectional carbon fiber/epoxy resin composite (T300/7901), and the lamina properties
are E11 = E22 = 48.36 GPa, E33 = 12.74 GPa, G12 = 11.37 GPa, G13 = G23 = 4.59 GPa,
v12 = 0.078, v13 = v23 = 0.397, ρ = 1670 kg/m3. The effective plate properties of CCCP
obtained by present model is shown in Figure 4.

Figure 4. Effective plate properties of CCCP with layup configuration of [0/45/90/− 45/0]s obtained
by present model.

3.1. Static Deformation Analysis

To investigate the static deformation of CCCP under different boundary conditions,
the four cases shown in Figure 5 are considered. Table 1 lists the static displacements
of 2D-EPM and 3D-FEM when a concentrated load of 100 N is applied to the center of
the plate. It can be seen that the displacement distribution of 2D-EPM agrees with that
of 3D-FEM under different boundary conditions. The boundary condition has a great
influence on the relative errors. The smaller the boundary constraint is, the larger the
displacement error is. However, the maximum error is less than 6% in Case 4, indicating
the equivalent stiffness obtained by VAM is accurate, and the present 2D-EPM can well
reflect the static displacement of CCCP under different boundary conditions.
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(a) Case1 (b) Case2 (c) Case 3 (d) Case4

Figure 5. Four boundary conditions used in the static analysis of CCCP: (a) CCCC, (b) CSCS, (c) SSSS,
and (d) SFSF, with C denoting clamped support, F for free support, and S for simple support.

Table 1. Comparison of static displacement between 3D-FEM and 2D-EPM under different boundary
conditions (unit: mm).

Cases Case 1 Case 2 Case 3 Case 4

3D-FEM

2D-EPM

Error % 1.03 4.28 2.05 5.21

3.2. Recovery 3D Field

As shown in Equations (36)–(38), the global displacements and strains of 2D-EPM
should be imputed into the corresponding unit cell to recover the local field distribution.
Note that most of the simplified models cannot predict the accurate local field distribution.

It can be seen from Figure 6 that the distribution of local stress within the unit cell
is not uniform. The values of σ11 and σ22 are larger on the conical convexity, while other
stresses are mainly concentrated at the intersection between the flat plate and the conical
convexity. That is, these stresses on the conical convexity are very small, and the conical
convexity cannot completely resist the load. It can be reasonably explained that the plate
fails at the intersection of the flat plate and the conical convexity.

Figure 7 shows the distribution of the local fields within the unit cell closest to the
midpoint of the plate in Case 1 (CCCC). It is seen that the displacement within the unit
cell is symmetrically distributed, and the minimum displacement is located at the edge
of the flat plate, while the maximum displacement is located at the intersection of the flat
plate and the conical convexity. The changes of U1 and U2 are opposite on both sides of the
conical convexity, and the maximum and minimum values of U1 and U2 are also located
close to the intersection of the flat plate and the conical convexity.

Figure 8 shows the local stress and displacement distributions along Path 1 predicted
by 2D-EPM and 3D-FEM. It can be seen that the local stress and displacement distributions
predicted by the two models are in good agreement, and the maximum error is less than
2%. The location of stress concentration and the change trend can be obtained directly
according to the local field distribution, which provides a reference for the damage analysis
of the structure.
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(a) σ11 (b) σ22 (c) σ33

(d) σ23 (e) σ13 (f) σ12

Figure 6. Local stress distributions within the unit cell closest to the center of the plate in Case 1.

(a) U1 (b) U2 (c) U3

Figure 7. Local displacement distributions within the unit cell closest to the center of the plate in
Case 1.
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Figure 8. Comparison of σ11 and U3 distribution along Path 1 predicted by 2D-EPM and 3D-FEM.

3.3. Global Buckling Analysis

In this section, the linear buckling behavior of CCCP is predicted by 2D-EPM and
3D-FEM under the assumption of small displacements. Four sides of CCCP are simple-
supported and two opposite sides are pressed. Table 2 shows that the global buckling
modes of 2D-EPM are consistent with those of 3D-FEM. For example, there are one, two,
three, and four half-wave along the horizontal direction in the first, second, third, and
fourth mode shape of 2D-EPM and 3D-FEM, respectively. The maximum error of critical
buckling load is 2.08% in the first order buckling mode, indicating the equivalent model
based on VAM has high accuracy in buckling analysis of CCCP.
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Table 2. Comparison of the first five buckling mode of CCCP in Case 3 predicted by different models
(unit: N).

Orders 1 2 3 4 5

2D-EPM

3D-FEM

Error % 2.08 0.09 0.95 1.49 1.53

3.4. Free-Vibration Analysis

In this section, the natural frequencies and vibration mode shapes of CCCP are
predicted by 2D-EPM and 3D-FEM. The geometry and boundary conditions are the same
as those in Section 3.3. Table 3 shows that the vibration modes predicted by 2D-EPM are
consistent with those predicted by 3D-FEM, and the maximum error of natural frequency
is within 5%. The accuracy of 2D-EPM based on VAM is verified from the aspect of
vibration characteristics.

Table 3. Comparison of natural frequencies (Hz) and mode shapes of CCCP in Case 3 predicted by
different models.

Orders 1 2 3 4 5

2D-EPM

3D-FEM

Error % 1.03 4.55 3.17 4.63 2.96

3.5. Comparison of Calculation Efficiency

To further demonstrate the advantages of the model, the computational efficiencies
of the three-dimensional FE model and two-dimensional equivalent model are compared
as shown in Table 4. It can be observed that the present model is more time-efficient and
cost-efficient than 3D-FEM in performing static, global buckling, and free-vibration analysis
of CCCP. Note that the geometry of CCCP studied in this article is relatively simple, and the
advantages of 2D-EPM can be reflected in more complex composite structures.
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Table 4. Comparison of computational efficiency between 3D-FEM and 2D-EPM.

Modelling Information 3D FEM
2D-EPM

Unit Cell 2D Plate

Element type C3D10 C3D4 S4R
Number of element 197,356 42,720 14,400
Number of nodes 394,157 59,827 14,641

Running time

Static analysis 5 min 30 s

10 s

30 s
Buckling analysis 10 min 30 s 25 s

Free-vibration analysis 7 min 15 s 25 s

4. Parameter Analysis
4.1. Influence of Structural Parameters

The structural parameters mainly include l1, l3, h and t as shown in Figure 3. In this
section, the influence of structural parameters on the effective performance of CCCP is
analyzed by using control variable method.

Figure 9a shows the influence of l1 on the equivalent stiffness of CCCP. The parameters
l3 and h remain unchanged when considering the influence of l1, so the total length of
the unit cell is variable. It can be observed that the equivalent tensile stiffness of CCCP
increases with increasing of l1, while the equivalent bending stiffness gradually decreases
nonlinearly. The main reason is that with the increase of the spacing between the conical
convex part, the concave-convex characteristics of CCCP become less obvious, and the
geometry of the structure is more similar to an ordinary flat plate.
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(b) Buckling loads and natural frequencies

Figure 9. The influence of l1 on the effective performance of CCCP.

Figure 9b shows that the first three buckling loads and natural frequencies of CCCP
decrease with the increase of l1. The critical buckling load of CCCP with l1 = 2 mm is about
three times that of l1 = 10 mm, while the difference of natural frequency is about double,
indicating that l1 has a great influence on the buckling load and natural frequency of CCCP.

Figure 10a shows the influence of l3 on the equivalent stiffness of CCCP. It can be
observed that the width of convexity l3 has little influence on the equivalent tensile and
bending stiffness of CCCP. The curves of A11 and A22 decrease slightly, while the curve of
D11 shows an gentle and irregular change. The buckling loads and natural frequencies of
CCCP shown in Figure 10b increase slightly with the increasing l3. Therefore, the width of
convexity l3 has little influence on the effective performance of CCCP.
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Figure 10. The influence of l3 on the effective performance of CCCP.

Figure 11a shows the influence of height h on the equivalent stiffness of CCCP. It can
be observed that with the increase in convex height h, the equivalent tensile stiffness of
CCCP decreases within a small range. The bending stiffness reaches the minimum value at
h = 8 mm and then increases gradually with increasing of h. It can be seen form Figure 11b
that the critical buckling load and natural frequency of CCCP increase to a certain extent
with increasing of h, indicating the height of the convexity has a certain influence on the
overall performance of the structure.
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Figure 11. The influence of h on the effective performance of CCCP.

Figure 12a shows the influence of thickness t on the equivalent stiffness of CCCP. It can
be seen that the equivalent tensile stiffness of CCCP increases linearly with the increasing
thickness t, while the equivalent bending stiffness increases nonlinearly, which has a great
influence on the buckling load and natural frequency of CCCP as shown in Figure 12b.
The reason is that with the plate thickness t increases, the orthogonality of CCCP becomes
non-obvious.
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(b) Buckling loads and natural frequencies

Figure 12. The influence of t on the effective performance of CCCP.

4.2. The Effect of Layup Configuration
4.2.1. The Influence of Ply Angles

In this section, the influence of ply angles on the effective performance of CCCP is
analyzed. The layup configuration of laminate is set as [0/θ/0/θ/0]s, where the value of θ
is from 0◦ to 90◦ with an interval of 15◦.

Figure 13a shows the influence of ply angle on equivalent stiffness of CCCP. It can
be observed that the curves of A11 and D11 show a nonlinear downward trend with the
increase of the ply angles, while the curves of A22 and D22 show a small increase between
ply angles of 0◦ and 45◦, and a nonlinear increase between ply angles of 45◦ and 90◦. It
can be observed from Figure 13b that the influence of ply angle on buckling load is not
obvious, while the second-order natural frequency reaches the maximum value when ply
angles is 90◦.
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(b) Buckling loads and natural frequencies

Figure 13. The influence of ply angle on the effective performance of CCCP.

4.2.2. The Influence of the Proportion of 0◦ Ply

In this section, CCCP with the combination of 0◦ and 45◦ ply is adopted to study
the influence of the proportion of 0◦ ply on the effective stiffness, buckling, and natural
frequencies. It can be observed from Figure 14a that the values of A11 and D11 gradually
increase with the increase in the proportion of 0◦ ply, while other stiffness gradually
decrease. The buckling load of CCCP in Figure 14b gradually increases with the increase in
the proportion of 0◦ ply, and reaches its maximum value when the proportion of 0◦ ply is
80%. The first two natural frequencies of CCCP increase and then decrease with increasing
of the proportion of 0◦ ply. Therefore, the buckling resistance of CCCP can be improved by
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optimizing the layup configuration in engineering application, so that the effective plate
properties of CCCP can be brought into full play.
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Figure 14. The influence of proportion of 0◦ ply on the effective performance of CCCP.

5. Bidirectional CCCP

The structure introduced in this section is a bidirectional CCCP, and the convex
direction along each row and column of the structure is alternately arranged up and down
periodically as shown in Figure 15, which can be used to improve heat transfer effect and
reduce pressure drop. Each convexity and its periphery is regarded as a small element,
and only four adjacent elements (2 × 2) need to be studied due to the periodicity of
bidirectional CCCP.

(a) Geometry of the unit cell (b) Sizes of cross section of b-b

Figure 15. Geometry and sizes of typical unit cell within bidirectional CCCP.

The geometrical sizes of unit cell are: h = 10 mm, t = 1.0 mm, l1 = 5 mm, l2 = 5 mm,
l3 = 10 mm, periodic length l = 60 mm. The material properties and boundary conditions
are the same as those in Section 3.1. The equivalent stiffness matrix of the bidirectional
CCCP obtained by the present model is shown in Figure 16 for reference.

Figure 16. Equivalent stiffness matrix of bidirectional CCCP with layup configuration of [0/45/90/–
45/0]s obtained by present model.
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Table 5 shows the displacements of bidirectional CCCP predicted by 3D-FEM and
2D-EPM when the concentrated load of 100 N is applied at the center of the plate. It
can be seen that the displacements of bidirectional CCCP predicted by 2D-EPM and 3D-
FEM under four different boundary conditions are basically the same, and the maximum
displacement deviation is only 3.10%. Therefore, the VAM-based equivalent model can be
used to evaluate the static behavior of bidirectional CCCP with confidence.

Table 5. Comparison of displacements of bidirectional CCCP under different boundary conditions
predicted by 2D-EPM and 3D-FEM.

Cases Case 1 Case 2 Case 3 Case 4

3D-FEM

2D-EPM

Error % 1.41 3.10 0.69 0.18

Based on the obtained equivalent stiffness, the buckling critical eigenvalues of the
equivalent model obtained by linear buckling analysis are compared with those of 3D-FEM.
Table 6 shows that the global buckling modes of 2D-EPM are consistent with those of
3D-FEM, and the buckling critical load error of each mode is less than 4%. Therefore,
the VAM-based equivalent model has high accuracy in global buckling analysis of complex
convex-concave plates.

Table 6. Comparison of the first five global buckling modes and critical loads (N) of bidirectional
CCCP in Case 3 predicted by different models.

Orders 1 2 3 4 5

2D-EPM

3D-FEM

Error % 2.78 3.56 2.98 2.48 2.36

To fully verify the correctness of the equivalent model of the bidirectional CCCP,
the vibration modes and natural frequencies of 2D-EPM are analyzed by using the SFSF
boundary conditions. Table 7 shows the comparison results of the first five vibration modes
and natural frequencies between 3D-FEM and 2D-EPM of bidirectional CCCP. It can be seen
that the vibration modes of 2D-EPM are consistent with those of 3D-FEM, and the natural
frequency error of each mode is less than 2.6%, indicating the VAM-based equivalent model
can be confidently used to predict the free vibration of complex convex-concave plates.
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Table 7. Comparison of the first five vibration modes and natural frequencies (Hz) of bidirectional
CCCP under the SFSF boundary conditions predicted by different models.

Orders 1 2 3 4 5

2D-EPM

3D-FEM

Error % 1.76 2.15 2.66 2.34 2.59

It can be concluded from the comparative analysis of Tables 1, 2, 5 and 6 that compared
with CCCP, the static displacement of bidirectional CCCP decreases and the buckling load
increases under the same loading and boundary conditions, indicating the stiffness and
stability of the bidirectional CCCP are greatly improved, which is consistent with the
results of the previous equivalent stiffness analysis.

6. Conclusions

In this work, a VAM-based equivalent model (2D-EPM) is established to predict
the effective performance of CCCP. As the approximate energy of 2D-EPM is as close as
possible to that of the original 3D plate, it can be used to replace the original CCCP for the
global analysis. The following conclusions can be obtained.

(1) The global displacements, buckling modes, and vibration modes of 2D-EPM under
different boundary conditions are coincident with those of 3D-FEM, verifying the accuracy
of the VAM-based 2D-EPM. Furthermore, the details of local field distribution within
unit cell of CCCP are well captured. Compared with CCCP, the static displacement of
bidirectional CCCP decreases and the buckling load are significantly increased, indicating
the stiffness and stability of the bidirectional CCCP are greatly improved.

(2) The parameter analysis shows that the structural anisotropy of CCCP is more
obvious with increasing of the convex height h, and the equivalent tensile stiffness decreases
gradually, while the change of the equivalent bending stiffness is the opposite of the trend.
The equivalent tensile stiffness increases gradually, and the equivalent bending stiffness
decreases nonlinearly with increasing of the spacing between adjacent convexities, which
may be because the anisotropy of CCCP is not obvious when the spacing between adjacent
convexities increases.

(3) The ply angle of composite laminate has a great influence on the equivalent stiffness
of CCCP. With increasing of the ply angle, the equivalent tensile and bending stiffness along
the x1 direction present a nonlinear decrease, while the equivalent tensile and bending
stiffness along the x2 direction gradually increases, but it has no significant influence on the
buckling critical load and natural frequency of CCCP. With the increase in proportion of
0◦ ply, the change of tensile and bending stiffness show a trend of linear increase, and the
buckling critical load is also increased to a certain extent.

In short, compared with 3D-FEM, the present model has high accuracy for static,
buckling, and free vibration analysis of CCCP. At the same time, the DOFs of the 2D-
EPM is greatly reduced, resulting in a great improvement in computational efficiency.
The present model is particularly useful in the early design stage of composite convex-
concave structures where many design trade-offs need to be made over a vast design space
in terms of material selection, ply angles, and geometric parameters.
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Abbreviations
The following symbols were used in this paper:

xi, yi Macro coordinates and micro coordinates, respectively
ξ Micro-macro scale ratio
u, v Displacements of 3D-FEM and 2D-EPM, respectively
〈·〉 Integral over the volume domain of unit cell
εαβ, καβ In-plane tensile strains and bending curvatures of 2D-EPM
Γe, Γs, Γt Strain components of 3D-FEM
wi Fluctuating function
h, L Height and length of CCCP, respectively
t Thickness of CCCP
l Length of unit cell
n, µ Order of the minimum strain and the material properties, respectively
λi Lagrange multipliers
v̄||, v̄3 Perturbed fluctuating functions
W Free-vibration shape function
ω Natural frequency
δW2D, δW∗ Virtual work independent of and related to the fluctuating function
τi, βi, fi Traction forces on the top and bottom surface of the plate and body force
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