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The intima-media thickness (IMT) of common carotid artery (CCA) can serve as an important indicator for the assessment of
cardiovascular diseases (CVDs). In this paper an improved approach for automatic IMT measurement with low complexity and
high accuracy is presented. 100 ultrasound images from 100 patients were tested with the proposed approach. The ground truth
(GT) of the IMTwasmanuallymeasured for six times and averaged, while the automatic segmented (AS) IMTwas computed by the
algorithm proposed in this paper. The mean difference ± standard deviation between AS and GT IMT is 0.0231 ± 0.0348mm, and
the correlation coefficient between them is 0.9629. The computational time is 0.3223 s per image with MATLAB under Windows
XP on an Intel Core 2 Duo CPU E7500 @2.93GHz. The proposed algorithm has the potential to achieve real-time measurement
under Visual Studio.

1. Introduction

In 2011, a report by the World Health Organization [1]
revealed that cardiovascular diseases (CVDs) are the number
one cause of death globally. An estimated 17.3 million people
died from CVDs in 2008, representing 30% of all global
deaths. The number of people who die from CVDs will
increase to 23.3 million by 2030. Therefore, a growing body
of studies is looking for an early diagnosis and treatment of
cardiovascular diseases, which is crucial to prevent patients
from suffering more serious pathologies.

Several large population-based studies [2–5] have shown
that the intima-media thickness (IMT) of common carotid
artery can serve as an important indicator for cardiovascular
diseases at an early stage and can also be used to predictmajor
cardiovascular events. In practice, ultrasound imaging, which
has been widely used in medical diagnostic technique due to
its noninvasive nature, low cost, and real-time examination,
can be applied to measure IMT by visual assessment of the
leading edges.The carotid arteries are most suitable for study

because of their superficial location, size, and limited move-
ment, and the CCA is easy to image for it is relatively close
and parallel to the skin surface. As illustrated in Figure 1, IMT
is the distance between the two approximately parallel lines,
lumen-intima interface (LII), and media-adventitia interface
(MAI), respectively. Conventionally, IMT was measured
by manual tracing of the interfaces between tissue layers.
This method requires substantial experience, and it is time
consuming and varies according to the training, experience,
and the subjective judgment of the experts. Therefore, the
manual measurements suffer from considerable inter- and
intraobserver variability [6, 7].

During the past two decades, efforts have been made by
numerous investigators worldwide to try to find an approach
for interface detection that is less reliant on human operators;
thus many computer-aided methods have been developed to
solve this problem. The earliest research on the feasibility
study of using B-mode sonographic images to measure the
CCA IMTwas reported in 1986 [8]. Since then, a wide variety
of techniques have been proposed for the IMTmeasurement,

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 740328, 8 pages
http://dx.doi.org/10.1155/2014/740328

http://dx.doi.org/10.1155/2014/740328


2 BioMed Research International

(a)

LII

MAI

IMT

(b)

Figure 1: Illustrations of theCCA intima-media complex (IMC) and
intima-media thickness (IMT). IMT is the difference between LII
and MAI boundaries.

which can be classified into two groups: semiautomatic [9–14]
and fully automatic measurement [15–20].

Almost all of the existing methods include two stages:
estimating the initial boundaries (LII, MAI) and then adjust-
ing them to their exact locations. For the purpose of the first
stage, the semiautomatic techniques need human interven-
tion to select a region of interest (ROI) [11–14] or some points
of interest [9, 10]. By contrast, the fully automatic technique
can complete the task without any user interaction. Petroudi
et al. [18, 19] proposed an algorithm that used variational level
set [21] method to segment the ultrasound image into two
parts according to image intensity and then estimated the
MAI and LII with the boundary of the segmented image. Del-
santo et al. [15, 16] developed a completely user-independent
algorithm to locate the CCA tunicae as a ROI considering
the mean value and variance of image intensity. Molinari
et al. [17] described a novel technique called completely
automated multiresolution edge snapper (CAMES), which
recognized CCA based on a combination of scale-space and
statistical classification in a multiresolution framework. The
main difference between semi- and fully automatic groups
is whether the technique can automatically complete the
task of the first stage. In order to achieve the results in the
second stage, different methods have been developed for the
adjustment, such as active contours [9, 10, 18, 19], Williams-
Shah snake [11], dual snakes [14], dynamic programming
[12], and dual dynamic programming [13]. A state-of-the-
art review on IMT measurement and wall segmentation is
presented in [22, 23], and the latest review article of this field
is presented in [24].

The aim of this paper is to present an automatic technique
for CCA IMT measurement with low computational cost
and high accuracy. More specifically, a ROI is extracted at
the beginning of the processing, and then the LII and MAI
boundaries are estimatedwithin the extractedROI; finally the
estimated boundaries are adjusted to the accurate locations
by using improved dynamic programming. The rest of this
paper is structured as follows. In Section 2, we will describe
the approach in detail. Section 3 shows the results of our
experiments on 100 test images. Finally, Section 4 discusses
the accuracy, efficiency, limitations, and advantage of the
proposed approach.

2. Materials and Methods

2.1. Image Dataset. Our dataset consisted of 100 B-mode
longitudinal ultrasound images of the CCA from Cyprus
Institute of Neurology of Nicosia (Cyprus). These images
are acquired by the ATL HDI-3000 ultrasound scanner
(Advanced Technology Laboratories, Seattle, USA), which
is equipped with 64-element, fine-pitch, high-resolution,
38mm broadband array, a multielement ultrasound scan
head with an operating frequency range of 4–7MHZ, an
acoustic aperture of 10 × 8mm, and a transmission focal
range of 0.8–1.1 cm. Digital images were resized using the
bicubic method to standard pixel density of 16.66 pix-
els/mm. The images were logarithmically compressed and
were recorded digitally on a magnetooptical drive at size
of 768 × 576 pixels with 256 gray levels. The images were
recorded at Cyprus Institute of Neurology and Genetics, in
Nicosia, Cyprus, from 42 female and 58 male symptomatic
patients aged between 26 and 95 years, with a mean age of 54
years. These subjects were at risk of atherosclerosis and have
already developed clinical symptoms, such as a stroke or a
transient ischemic attack [11].

In order to remove the textual markers of the images and
facilitate the following processing, the original ultrasound
images were automatically cropped into a size of 401 × 401
pixels (from 100 to 500 lines and from 200 to 600 columns).

2.2. Overview of the Proposed Approach. The flowchart of the
proposed approach is shown in Figure 2.Our approach can be
divided into six cascaded steps: (1) the method of template-
based matching is utilized for ROI extraction; (2) bilateral
filtering is applied to remove noise and artifacts in the ultra-
sound images; (3) initial LII boundary is estimated within
the extracted ROI; (4) initial MAI is estimated based on the
edgemap and the LII boundary; (5) the estimated boundaries
are adjusted to their exact locations with improved dynamic
programming; (6) IMT measurement and validation are
carried out.

2.3. ROI Extraction. Themethod of template-basedmatching
was applied to extract the ROI. Firstly, a template containing
part of the IMC and some lumen and adventitia was con-
structed according to the pixel density and image contrast.
Then, the template was used to find the positions of the IMCs
by searching a series of ultrasound images. We call the search
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Figure 2: The flowchart of the approach.

image𝑓(𝑥, 𝑦), where (𝑥, 𝑦) represents the coordinates of each
pixel in the ultrasound image and the template𝑇(𝑥
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, 𝑦
𝑡
) with
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In our algorithm, we simply moved the center of the
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𝑡
) over each point (𝑥, 𝑦) on a vertical line in

the image and calculated the sum of the absolute differences
(SAD) between their pixel intensities. Thus the SAD can be
defined as
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where 𝑇
𝑟
and 𝑇

𝑐
denote the number of rows and columns

of the template, which are assumed as odd integers. In this
method the lowest SAD score gives the best estimation for
the IMC on that vertical line. Actually, we find seven such
points on seven evenly spaced vertical lines. Figure 3 shows
the seven estimated points.

If the image is damaged by speckle noises or artifacts to a
large extent, some points may be located at wrong positions.
As long as four points ormore are positioned correctly, we can
achieve a ROI by excluding the wrong points. In practice, the
difference in vertical position of the points with each other is
computed. If the vertical position of one point has a difference
within 2mm with other three points or more, this point
is assumed to be correctly positioned since the CCA IMC
almost locates in a horizontal position in the longitudinal
CCA ultrasound image.

Among the correctly located points, a rectangular ROI
can be extracted with top left and bottom right points, which
can be denoted by (min(𝑥), 𝑦 − 𝑑) and (max(𝑥), 𝑦 + 𝑑),
respectively, where 𝑑 is a positive constant integer.

2.4. Bilateral Filtering. Speckle noises always affect the
boundary detection on ultrasound images.Therefore we need
to reduce the effect of noise over the extracted ROI at the first
place. The bilateral filter [25] has been chosen because it is a
simple, noniterative tool for edge preserving as well as noise
reducing.

The basic idea underlying bilateral filtering is to combine
domain and range filtering, thereby enforcing both geometric

Figure 3: The seven small boxes are the best matches on each
vertical line. The rectangular region denotes the extracted ROI.

and photometric locality. Bilateral filtering can be described
as follows:

h (x) = 𝑘−1 (x) ∫
∞

−∞

∫

∞

−∞

f (𝜉) 𝑐 (𝜉, x) 𝑠 (f (𝜉) , f (x)) 𝑑𝜉. (2)

With the normalization

𝑘 (x) = ∫
∞

−∞

∫

∞

−∞

𝑐 (𝜉, x) 𝑠 (f (𝜉) , f (x)) 𝑑𝜉, (3)

where 𝑐(𝜉, x) measures the geometric closeness between the
neighborhood center x and a near point 𝜉 and 𝑠(f(𝜉), f(x))
measures the intensity similarity. Both the closeness function
and the similarity function are Gaussian functions of the
Euclidean distance between their arguments.The filtered ROI
can be seen in Figure 4(a).

2.5. LII Estimation. After filtering, the intensity of the ROI
is normalized into the scale of 0 to 1. When examining
the histogram of the ROI intensity, we could find that the
histogram consists of three peaks and two valleys, as shown in
Figure 5.The two valleys are located at𝑇

1
and𝑇
2
, respectively.

A pixel with intensity between 𝑇
1
and 𝑇

2
may belong to the

CCA intima, whereas pixels with intensity higher than 𝑇
2

probably belong to the CCA adventitia. The value 𝑇
1
can

serve as the threshold to divide the pixels in the ROI into two
clusters according to the intensity of each point. Suppose that
the extracted ROI has a size of 𝑀 lines and 𝑁 columns; we
need to find a point in each column in order to get a rough
LII boundary. Inspired by Liu et al. [12], the rough LII was
searched as follows.
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1
from 1 to 𝑀 until 𝐼(𝑖

1
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𝑇
1
;(𝑖
1
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2
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in the next column.
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, set the next point at (𝑖
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−1, 𝑗), and

if 𝑖
2
= 𝑖
1
, select (𝑖

1
, 𝑗) as the next point and then set

vertical position of the new point as 𝑖
1
.
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(4) If 𝑗 = 𝑁, output the rough boundary; otherwise,
return to (2).

After the above operations, we can get an eight-neighborhood
continuous line standing for the rough boundary of LII and
a binary image segmented by the threshold 𝑇

1
. In some

cases, intima layer may disappear at some places because of
artifacts; thus, there would be a gap in the binary image, as
shown in Figure 4(b).Morphological operations consisting of
dilation followed by erosion were implemented to fill the gap.
Finally we can get a flat line standing for the estimated LII
boundary, as in Figure 4(c).

2.6. MAI Estimation. The boundary of MAI is estimated
according to the LII, since the two lines are approximately
paralleled to each other. Additionally, the MAI lies on the
border of media and adventitia where a strong edge locates.

In order to estimate MAI boundary using the initial LII,
we proposed a simple method. Firstly, the edge map of the
ROI was computed; secondly, the initial LII boundary was
displaced downward for several pixels taking into account the
normal IMT range (0.4–1.4mm) and the pixel density of the
images; thuswe got a series of parallel lines; and then the value
of the edge strength on each line was summed up; at last,
the line with the highest value was chosen as the estimated
MAI boundary. The estimated LII and MAI can be seen in
Figure 4(d).

2.7. Boundaries Adjustment with Dynamic Programming.
Dynamic programming [26] is a technique for solving opti-
mization problems when not all variables in the evaluation
function are interrelated simultaneously. To formulate the
boundary-snapping procedure as dynamic programming, we
must define an evaluation function that embodies a notion
of the “best boundary.” In our situation, both LII and MAI
boundaries are nearly straight lines at the position of strong
edges. Therefore, the “best boundary” can be denoted by
a weighted sum of high cumulative edge strength and low
cumulative curvature. For an𝑁-segment curve boundary, the
following formula can be established:
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where 𝜆 is a negative constant, 𝑥
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can be found by applying dynamic programming, which
consists of the points of the “best boundary.”

Canny [27] showed that Gaussian derivatives yield good
compromise between localization and detection. Therefore,
we convolved the ROI with a vertical directional first-order
derivative of Gaussian kernel to get the edge map, which
was previously used in Section 2.6. The Gaussian kernel we
applied has a size of 10 × 10 with standard deviation of 1 in

(a)

(b)

(c)

(d)

(e)

Figure 4: (a) The extracted ROI after bilateral filtering. (b) Binary
ROI segmented by threshold. (c) Binary ROI followed by dilation
and erosion. (d) The estimated boundaries of LII and MAI. (e) The
final boundaries of LII and MAI.
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Figure 5: The intensity histogram of the filtered ROI.

both horizontal and vertical directions. The vertical direc-
tional derivative of the Gaussian kernel has the advantage
for detecting edges lying approximately in the horizontal
direction.

Practically, curvature has become a basic tool to formulate
a contour function. Williams and Shah’s work [28] presented
several curvature approximation methods for discrete curves
and evaluated their efficiency of computation, accuracy of the
estimation, and presence of anomalies. In a situation where a
curve consists of three not evenly spaced points (Figure 6),
their work proved that taking the difference between the
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Figure 6: Estimation of the curvature.

normalized vectors could give a good estimation for the
curvature; that is, the formula of the curvature is given by
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, 2 ≤ 𝑘 ≤ 𝑁 − 1.

(5)

After the dynamic programming procedure, we could get
the accurate boundaries both for LII and MAI as shown in
Figure 4(e).

2.8. IMT Measurement and Validation. The IMC lies almost
horizontally in the ultrasound image, and the detected
boundaries of LII and MAI have the same number of points.
Therefore, the IMT can be measured by calculating the mean
absolute distance between the two detected boundaries:

IMT = 1

𝑁

𝑁

∑

𝑘=1

|MAI (𝑘) − LII (𝑘)| , (6)

where 𝑁 is the number of points constituting the two
boundaries and 𝑘 is the index spanning the columns of the
image. The maximum and minimum values of {|MAI(𝑘) −
LII(𝑘)|, 1 < 𝑘 < 𝑁} can be used to test whether the detected
IMT is reasonable. If they are not within the range of 0.2mm
to 1.6mm, the IMT measurement is failed.

When processing a large number of ultrasound images,
the automatic segmented (AS) IMT values and ground truth
(GT) IMT values should be compared. There are two impor-
tant criteria for the comparisons: correlation and Bland-
Altman plot.

The two sets of IMT values are correlated and the Pearson
𝑅 coefficient is used to give an estimate of the measurement
agreement:

𝑅 =

∑
𝑛

𝑖=1
(AS (𝑖) − as) (GT (𝑖) − gt)

√∑
𝑛

𝑖=1
(AS (𝑖) − as)2√∑𝑛

𝑖=1
(GT (𝑖) − gt)2

, (7)

where 𝑛 is the number of subjects for IMT measurement,
AS(𝑖) andGT(𝑖) are the automatic segmented IMT values and
ground truth IMT values for 𝑖th subject, and as and gt are the
mean value of the two sets of IMT.

The mean and standard deviation (SD) between AS and
GT IMT are plotted in the Bland-Altman plot. This method
is very effective in pointing out possible biases in IMT
measurement.

Table 1: Parameters’ list in our experiment.

Parameters 𝑑 T1 𝑟 𝜆

Values 20 0.1 15 −0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
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Figure 7: Automatic segmented IMT versus ground truth IMT.

3. Results

In our experiment, the ground truth (GT) of the IMT was
measured by expert vascular clinician, which was manually
computed by delineating the LII and MAI boundaries on
the ultrasound images for six times and then averaged. The
automatic segmented (AS) IMT is measured by applying the
proposed algorithm. Table 1 shows the parameters’ list in
our experiment, where 𝑑 is the positive constant integer in
Section 2.3; 𝑇

1
is the threshold in Section 2.5; 𝑟 is the size of

the structuring element applied to morphological operations
in Section 2.5; 𝜆 is the weights of curvature in Section 2.7.

100 ultrasound images from 100 patients were tested
by our algorithm. Seven images were failed for IMT mea-
surement with our approach because of the absence of the
intima layer. Among the 93 correctly detected images, the
mean IMT ± standard deviation for GT and AS is 0.6707 ±
0.1275mm and 0.6938 ± 0.1279mm; the mean difference
± standard deviation between AS and GT is 0.0231 ±

0.0348mm. The correlation coefficient is 0.9629 for AS
and GT IMT. The average processing time for automated
measurement is 0.3223 s with MATLAB under Windows XP
on an Intel Core 2 Duo CPU E7500 @2.93GHz. Figure 7
shows the scatter diagram of the AS IMT with respect to
GT IMT. Figure 8 shows the Bland-Altman plots for AS
IMT versus GT IMT. Figure 9 shows another six pairs of
the experiment results; the left sides of the pictures are the
extracted ROI and the right halves are the final boundaries.
The first five examples illustrate the correctly detected IMT
and the last one shows the case of failed detection.
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Figure 8: Bland-Altman plot between AS and GT IMT.
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Figure 9: Examples of the extracted ROI and the final boundaries. The first five examples illustrate the correctly detected IMT and the last
one shows the case of failed detection. In (c) and (e), the intima layer is incomplete. In (b) and (c), the adventitia layer is destroyed by noises
or artifacts. In (f), the intima layer is completely disappeared and the IMT measurement is failed.
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Figure 10: The intensity histogram of the failed ROI.

Table 2: Comparison with previous researches.

Previous researches 𝑛 Mean IMT bias Processing time Automatic
Menchon-Lara et al. (2014) [21] 60 0.64 ± 0.19mm 3.44 s Yes
Molinari et al. (2012) [17] 365 0.078 ± 0.112mm <15 s Yes
Petroudi et al. (2012) [19] 100 0.095 ± 0.0615mm 21 s Yes
Xu et al. (2012) [14] 50 0.0381 ± 0.0164mm 0.43 s No
Our approach 100 0.0231 ± 0.0348mm 0.32 s Yes
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4. Discussions

In our experiment, the mean difference of AS and GT is
0.0231mm among the 93 correctly tested images; that is, the
IMT computed by our technique is more likely thicker than
that manually measured by expert. This may be due to the
ambiguous boundary understanding of MAI, while human
did not delineate the concave contours according to gradient
maxima. Figures 9(b) and 9(c) show the concave contours
automatically detected by our approach.

The IMC template used in Section 2.3 should contain an
IMCstripwith amedium IMTvalue (about 0.7mm). It can be
cropped from one ultrasound image of the dataset and then
smoothed by bilateral filtering. For a set of ultrasound images
with the same pixel density and similar contrast, the template
is quite robust for detecting IMC regions correctly. Even if
some points (no more than four out of seven) are positioned
at wrong places because of speckle noises or artifacts, the
negative effects can be ignored.

The threshold 𝑇
1
in Section 2.5 can be adaptive according

to the contrast of ultrasound images. The dataset used in our
experiment comes from the same machine with the same
parameters setting. Therefore the 93 images were correctly
detected with 𝑇

1
= 0.1. Among the seven failed images, the

intima layer has completely disappeared.TheROI of IMC can
be correctly detected, but the final LII and MAI boundaries
are almost overlaid (Figure 9(f)). The intensity histogram
of the failed ROI was shown in Figure 10. Compared to
Figure 5, peaks and valleys are ambiguous in this histogram
image.

Our approach is compared with some representative
researches in Table 2. The results show low mean IMT bias
and short processing time with other researches. However,
there are three limitations related to the proposed approach.
Firstly, the IMC template should be changed when the
algorithm applied to ultrasound images from other machines
because of different pixel density or image contrast. Secondly,
the results of LII estimation are sensitive to plaques. Thirdly,
the mean bias of LII and MAI were not investigated in our
experiment for the lack of information on LII and MAI
boundaries of manual tracing.

Theproposed algorithm in this paper is especially suitable
formedical uses, where some ultrasound equipment has been
set to automatic IMT measurement for different patients.
There are only two parameters that need to be set for a new
machine, that is, the IMC-like template and the intensity
threshold 𝑇

1
for LII detection. After that the machine can

be used for automatic IMTmeasurement from one patient to
another. Since the processing time is less than 0.5 s per image
in MATLAB, it has the potential to achieve real-time IMT
measurement when using C++ under Visual Studio.
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Burkhardt, “Using snakes to detect the intimal and adventitial
layers of the common carotid artery wall in sonographic
images,” Computer Methods and Programs in Biomedicine, vol.
67, no. 1, pp. 27–37, 2002.

[10] J. L. Izquierdo-Zaragoza, L. C. Bastida-Jumilla, M. C. Verdu-
Monedero et al., “Segmentation of the carotid artery in ultra-
sound images using frequency-designen B-spline active con-
tour,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’01), pp. 35–49,
Prague Congress Ctr, Prague, Czech Republic, 2001.

[11] C. P. Loizou, C. S. Pattichis, M. Pantziaris, T. Tyllis, and A.
Nicolaides, “Snakes based segmentation of the common carotid
artery intima media,” Medical and Biological Engineering and
Computing, vol. 45, no. 1, pp. 35–49, 2007.

[12] G. Liu, B.Wang, andD.C. Liu, “Detection of intima-media layer
of common carotid artery with dynamic programming based
active contour model,” in Proceedings of the Chinese Conference
on Pattern Recognition (CCPR ’08), pp. 369–374, October 2008.

[13] D. Cheng and X. Jiang, “Detections of arterial wall in sono-
graphic artery images using dual dynamic programming,” IEEE
Transactions on Information Technology in Biomedicine, vol. 12,
no. 6, pp. 792–799, 2008.

[14] X. Xu, Y. Zhou, X. Cheng, E. Song, and G. Li, “Ultrasound
intima-media segmentation using Hough transform and dual
snakemodel,”ComputerizedMedical Imaging and Graphics, vol.
36, no. 3, pp. 248–258, 2012.



8 BioMed Research International

[15] S. Delsanto, F. Molinari, P. Giustetto, W. Liboni, and S. Badala-
menti, “CULEX-completely user-independent layers EXtrac-
tion: ultrasonic carotid artery images segmentation,” in Pro-
ceeding of the 27th Annual International Conference of the
Engineering in Medicine and Biology Society (IEEE-EMBS ’06),
pp. 6468–6471, Shanghai, China, Jan 2006.

[16] S. Delsanto, F. Molinari, P. Giustetto, W. Liboni, S. Badala-
menti, and J. S. Suri, “Characterization of a completely user-
independent algorithm for carotid artery segmentation in 2-D
ultrasound images,” IEEE Transactions on Instrumentation and
Measurement, vol. 56, no. 4, pp. 1265–1274, 2007.

[17] F. Molinari, C. S. Pattichis, G. Zeng et al., “Completely auto-
mated multiresolution edge snapper—a new technique for an
accurate carotid ultrasound IMT measurement: clinical valida-
tion and benchmarking on amulti-institutional database,” IEEE
Transactions on Image Processing, vol. 21, no. 3, pp. 1211–1222,
2012.

[18] S. Petroudi, C. Loizou, M. Pantziaris, M. Pattichis, and C.
Pattichis, “A fully automated method using active contours
for the evaluation of the intima-media thickness in carotid
US images,” in Proceedings of the 33rd Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS ’11), pp. 8053–8057, September 2011.

[19] S. Petroudi, C. Loizou, M. Pantziaris, and C. Pattichis, “Seg-
mentation of the common carotid intima-media complex in
ultrasound images using active contours,” IEEE Transactions on
Biomedical Engineering, vol. 59, no. 11, pp. 3060–3069, 2012.

[20] F. Molinari, U. Rajendra Acharya, G. Zeng, K. M. Meiburger,
and J. S. Suri, “Completely automated robust edge snapper for
carotid ultrasound IMT measurement on a multi-institutional
database of 300 images,”Medical and Biological Engineering and
Computing, vol. 49, no. 8, pp. 935–945, 2011.

[21] R.-M. Menchon-Lara, B.-J. Maŕıa-Consuelo, M.-S. Juan, and
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