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ABSTRACT: Wannier functions have become a powerful tool in
the electronic structure calculations of extended systems. The
generalized Pipek-Mezey Wannier functions exhibit appealing
characteristics (e.g., reaching an optimal localization and the
separation of the σ−π orbitals) compared with other schemes.
However, when applied to giant nanoscale systems, the orbital
localization suffers from a large computational cost overhead if one
is interested in localized states in a small fragment of the system.
Herein, we present a swift, efficient, and robust approach for
obtaining regionally localized orbitals of a subsystem within the
generalized Pipek-Mezey scheme. The proposed algorithm
introduces a reduced work space and sequentially exhausts the
entire orbital space until the convergence of the localization functional. It tackles systems with ∼10000 electrons within 0.5 h with no
loss in localization quality compared to the traditional approach. Regionally localized orbitals with a higher extent of localization are
obtained via judiciously extending the subsystem’s size. Exemplifying on large bulk and a 4 nm wide slab of diamond with an NV−

center, we demonstrate the methodology and discuss how the choice of the localization region affects the excitation energy of the
defect. Furthermore, we show how the sequential algorithm is easily extended to stochastic methodologies that do not provide
individual single-particle eigenstates. It is thus a promising tool to obtain regionally localized states for solving the electronic
structure problems of a subsystem embedded in giant condensed systems.

■ INTRODUCTION
Localized orbitals are widely used in electronic structure
computations for multiple purposes: conceptually, they can
provide valuable information about chemical bonding and
chemical properties of molecules and materials. More
importantly, they allow the evaluation of nonlocal two-body
interaction integrals at a significantly reduced cost due to the
reduced spatial overlaps. Hence, they represent a powerful tool
in mean-field and postmean-field electronic structure calcu-
lations such as hybrid functional calculations,1,2 density
functional theory with the Hubbard correction term,3,4 or
many-body calculations.5,6 In the same vein, the maximally
localized orbital descriptions are optimal for treating
correlation phenomena since (due to the locality) the number
of “inter-site” interactions is minimal, and the effective size of
the problem is smaller. As a result, optimally localized states
are essential in the context of embedding and downfolding for
many-electron problems.7−10

Orbital localization approaches can be categorized by
whether a cost function is optimized or not. The selected
columns of the density matrix (SCDM)11 method and
projection with a minimal atomic basis10,12 are representative
localization schemes without optimizing a cost function.
Within the optimization techniques, several functionals have
been proposed: the Foster-Boys (FB) scheme13−15 minimizes

the spatial extension of the orbitals and leads to maximally
localized Wannier functions (MLWF)16,17 in periodic solids,
while the Edmiston-Ruedenberg (ER) approach15,18,19 max-
imizes the self-repulsion energy. von Niessen20 introduced
another functional that maximizes the charge-density overlap.
Pipek-Mezey (PM)21 proposed to minimize the mean
delocalization measure (defined later). Arguably, the most
popular approaches are the FB scheme for molecules and the
MLWF for periodic solids due to their N( )3 scaling (N is the
number of electrons), but these schemes suffer from the
mixture of σ − π bonds, commonly known as “banana”
orbitals.21,22 The ER approach provides more localized orbitals
than the FB and supports the σ − π separation. However, its
computational cost scales as steeply as N( )5 , preventing it
from practical applications in large systems.

Among these functional-optimization approaches, PM
localization is the most appealing approach. It can provide
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high spatial localization and the separation of σ − π characters
of chemical bonds compared with the FB counterpart. At the
same time, the scaling of PM localization is N( )3 only, i.e.,
significantly lower than the ER counterpart. Because of the
mathematically ill-defined Mulliken charges23 in the original
scheme, the PM localization has been generalized to various
partial charge schemes.24,25 The generalized PM approach is
robust with respect to the choice of the partial charge.25

Recently, the PM localized molecular orbital formalism has
been further expanded to periodic systems.22 This generalized
Pipek-Mezey Wannier Functions (G-PMWF) approach retains
the advantages (particularly stronger localization) compared
with MLWF.

The iterative optimization with N( )3 scaling per iteration,
however, still translates to a relatively high computational cost
and requires that all single-particle states are known. This
becomes a bottleneck for giant systems: the overhead is
substantial when one is interested only in a small fraction of
the system, such as maximally localized orbitals associated with
a point defect in solids, an adsorbate molecule on a surface, or
molecular states in a complex environment. Here, handling the
entire problem is often necessary, despite only a fraction of
localized states being sought. Such nanoscale problems involve
thousands of electrons. To generate PMWFs or localized
orbitals with comparable quality, the prevalent strategy is to
lower the number of iteration steps necessary to reach the
optimum, e.g., by a robust solver.26,27 Although the proposed
scheme is either iteration-free26 or can effectively lower the
iteration steps toward convergence,27 an auxiliary set of
functions or atomic basis is still required in the localization
process. The computational scaling to the system’s size is not
seen improved either. Further, for truly large systems with
thousands of electrons, one would employ techniques that
avoid the use (or knowledge) of all single-particle states.28−45

Herein, we present a new and complementary top-down
approach leading to a fast, efficient, and robust orbital
localization algorithm via sequentially exhausting the entire
orbital space. It is beneficial for obtaining regionally localized
orbitals for a subsystem within the G-PMWF scheme. In
contrast to other methods, the problem’s dimensionality is
reduced from the outset by partitioning the orbital space. As
our work space is effectively compressed, the dimensionality of
the relevant matrices in the G-PMWF scheme is much smaller,
and therefore, the time per iteration step is shortened by orders
of magnitude. The unitary transform is performed iteratively
until convergence. The transformation starts directly either
with (i) the canonical real-space delocalized orbitals without
any external or auxiliary atomic basis set26,27,46 or (ii) an initial
guess of the subspace of localized single-particle orbitals
(which can be obtained by, e.g., filtering28,30,31,33,41,43). The
compression of dimensionality helps to reduce the scaling of
the method with the number of electrons to be linear. The
completeness of sequentially exhausting the orbital space is
demonstrated by the converged localization functional. We test
the quality of the localized basis by constructing an effective
Hubbard model for the negatively charged nitrogen-vacancy
(NV−) defect center in diamond and computing its optical
transition energies in bulk supercells and a large (4 nm thick)
slab containing nearly 10,000 electrons. Excellent agreement
between the sequential exhausting approach and the full space
approach is achieved for the computation of optical transition
energies. The accuracy of Hubbard model calculations is

further improved by the Wannier function basis obtained from
the subsystem with an extended size. In the last section, we
provide a thorough discussion of how the choice of localization
affects the excitation energies of the embedded NV− center.

■ THEORY
Generalized Pipek-Mezey Wannier Functions. In this

subsection, we briefly revisit the G-PMWF formalism22 to
clarify the motivation for this work. The G-PMWF seeks to
minimize the mean delocalization measure defined as21
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where i denotes the ith state, and Ns represents the number of
states that spans a particular orbital space. A is the Ath atom in
the system, and NA is the number of atoms in the system. Q is
termed the atomic partial charge matrix (defined below). In
practice, Q ii

A represents the partial charge on atom A
contributed by state i. U is the unitary matrix that transforms
the orbitals. Minimizing is equivalent to maximizing the
following functional

= [ ]
= =

QU U( ) ( )
i

N

A

N

ii
A

1 1

2
s A

(2)

The stationary point of corresponds to the unitary matrix
U that transforms the canonical states into Pipek-Mezey
localized states
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where |ϕk⟩ represents the canonical state.
Generally, the value of is iteratively maximized until

reaching convergence. In the nth iteration step, the Q matrix
can be calculated by
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A n

i
n
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(4)

Here, r( )i
n represents either the transformed state (n > 0) or

the canonical state (n = 0). In the G-PMWF formalism, wA
denotes the atomic weight function using real-space partition-
ing,22,25 e.g., Gaussian weight.47

For n ≥ 1, the Q matrix can also be transformed by
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Note that in practice, the Q matrix has a dimensionality of
×N NA s

2. The number of elements reaches 109 for a system
with 103 atoms and 103 occupied states. Furthermore, in our
real-space implementation, the theoretical scaling of the
method is × ×N N Ng A s

2, where Ng denotes the number of
grid points in real space. Our numerical results for the defect
center in diamond are close to this theoretical behavior, as
discussed in the Results and Discussion section.

Fragmentation and Sequential Variant of G-PMWF.
This subsection presents an efficient algorithm to obtain a
subset of PMWFs localized on a specific set of atoms.

Fragmentation Treatment. Conventionally, one has to
localize all Ns states and then identify Nrl states that are
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regionally localized on the selected atoms. For instance, for a
CH4 molecule surrounded by other atoms/molecules, Nrl will
be four if considering only the valence electrons and doubly
occupancy. When Nrl ≪ Ns, this approach suffers from a
significant overhead. This is quite limiting when nanoscale
systems are considered: the dimensionality of matrix Q and the
computational scaling make it challenging to work with
thousands of electrons. Previously, we introduced a modified
form of the PM functional to account for NA N N( )A A
selected atoms only and search for the Nrl states directly.6 Such
a modification is equivalent to the search of a local maximum
of on the selected atoms, and it reduces the dimensionality
to ×N NA s

2. In this work, we further compress the NA to
simply 1 by creating a single fragment from the subset of
atoms. Unlike the “fragment” proposed in the FB scheme,46

our definition of a fragment uses the atomic weight function wA

=
=

w wr r( ) ( )f
A

N

A
1

A
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where f denotes the fragment of interest. The localization
functional thus becomes
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where is the modified PM functional for the fragment.
Note that (i) the unitary transform is still performed on all

Ns states that need to be known, and (ii) the Nrl states are
identified from Ns by evaluating the partial charge on the
selected fragment. In this context, we define the measure of the
locality of a specific state on the fragment as

= *L wr r r r( ) ( ) ( )di
f

i f i (8)

Its value ranges from 0 (not localized) to 1 (most localized).
Only the top Nrl states of the Ns states in the decreasing order
of Li

f are considered the regionally localized Wannier
functions on the fragment. In the following text, we denote
this fragmentation variant of G-PMWF as “F-PMWF”.

Next, the F-PMWF approach is broken into two steps: (1)
maximize (eq 7) and find the Nrl states that are localized on
the fragment and (2) maximize the canonical defined as
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using the Nrl states from step 1 and obtain localized states on
each individual atom of the fragment.

Essentially, the first step is a “folding” step where the
electron density is effectively localized on the fragment
disregarding the individual atoms. The second step is instead
an “unfolding” step where the electronic states obtained from
step 1 are unfolded onto each individual atom in the fragment.

The Q matrix is reduced to Ns
2 in step 1 and to ×N NA rl

2 in
step 2, respectively. The second step is trivial in cost since Nrl
is often much smaller than Ns. However, the first step can still
be expensive when working with thousands of electrons, and
the knowledge of Ns eigenstates is necessary.

Sequential Exhausting of the Full Orbital Space. To
further compress the Ns in the maximization process and, in
principle, avoid the knowledge of Ns states altogether, we

introduce a sequential variant of F-PMWF, sF-PMWF. We first
review the approach which assumes Ns states are available, and
at the end of this section, we extend it to a more generalized
case when the eigenstates do not need to be known a priori.

The sF-PMWF approach incorporates an additional iterative
loop (“outer-loop”) to maximize the functional successively.
The idea is schematically presented in Figure 1a. A generalized

original (entire) space, either occupied or unoccupied, is
spanned by Ns orthonormal canonical states. The initial matrix
that contains the canonical states is the identity matrix, and
each row of the matrix contains the coefficients of a single-
particle state in the canonical basis. The number of rows
represents the number of states used in the Q matrix. The
black lines and arrows stand for the initialization of the
localization procedure. The outer-loop is guided by the blue
lines and arrows, while the magenta lines and arrows guide the
inner-loop (maximizer). The red points denote the con-
vergence checkpoints.

Figure 1. (a) Schematic illustration of the sF-PMWF method. Each
row of the matrix represents a single-particle state in the canonical |ϕj⟩
basis. Ns represents the number of states that define the original space,
while Nw represents the number of states in the actual work space. P′
is the modified PM objective functional. The index m denotes the
iterative step of the outer-loop (blue). The index n denotes the
iterative step of the inner-loop (magenta). (b) sF-PMWF method
exemplified on the NV− center in diamond. The electron density
represents the occupied space consisting of Ns delocalized canonical
orbitals. The fragment is built with four selected atoms. The core
space is first defined by Nc relatively localized canonical states and
then sequentially localized on the selected fragment. The rest space is
represented by Ns − Nc delocalized states over the whole system. The
output is a set of regionally localized Wannier functions on the
selected fragment. The isosurface value is set at 0.1 for the electron
density and 0.05 for the single-paricle orbital.
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Our goal is to find only Nrl states that are spatially localized
on a selected fragment. We seek to minimize the cost of the
calculation by neglecting the localization in the other regions
of the systems. The general procedure is as follows:

First, we assume that in practical calculations, it may be
necessary to account for a “buffer”, i.e., we search for Nc ≥ Nrl
states (where Nc is typically similar to Nrl in magnitude). We
denote the Nc most localized orbitals chosen based on the
value of Li

f (eq 8) as “core states”, and the “core space” is
spanned by such Nc states. The original space is essentially split
into two, the core and its complement (denoted “rest space”).
The states in the rest space are then reordered upon their
locality (eq 8) for the next step.

Second, a work space is built with a dimensionality of Nw ×
Ns, where Nc < Nw ≪ Ns. The first part of the work space is
filled by the core states (the yellow region). On the other hand,
the rest space is partitioned into Nb blocks according to the
value of Nr, which is an arbitrary integer parameter (1

N N Nr s c) that denotes the number of states from the
rest space, and note that the states in the rest space have been
reordered in the decreasing order of Li

f . The number of states
in each block satisfies the following equations

= <N N k Nifs
k

r b (9)

and

=N N k Nifs
k

r b (10)

Here,Ns
k represents the actual number of states in the kth block.

The rest space is sequentially updated (explained in the next
step) and can be reaccessed during the localization process.
The index m denotes the mth iteration step in the outer-loop,
and the m (m > 0) and k are connected by

=
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m N m N
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Here, we define one “macro-cycle” when the outer-loop
exhausts all the blocks in the rest space once, i.e., the full
orbital space is transformed once.

Third, the initial (m = 0) objective functional value (eq 7) is
calculated for the work space, and the change of the PM
functional in the outer-loop is defined as

= mfor 1m m m( ) ( ,0) ( 1,0) (12)

The convergence checkpoint 1 in Figure 1a evaluates the
m( ) as well as the accumulative step m. The iteration will

exit the outer-loop if either
m( )

1 (13)

or

=m maximal outer loop iterations (14)

is satisfied. Here, λ1 is a convergence threshold. The λ1 value
and the maximal outer-loop iterations are carefully chosen to
converge the localization (see the next section). If the iteration
does not exit the loop, the index m will become m + 1, and the
corresponding kth (eq 11) block will fill the second part of the
work space. The constructed work space then enters the
maximization solver (the inner-loop in magenta). The change
of the PM functional in the inner-loop is defined as

= nfor 1n m n m n( ) ( , ) ( , 1) (15)

Here, n denotes the iteration step (if iterative maximization is
needed) in the inner-loop. The convergence checkpoint 2
evaluates the n( ) as well as the accumulative step n. The
iteration will exit the inner-loop if either

n( )
2 (16)

or

=n maximal inner loop iterations (17)

is satisfied. Here, λ2 is another convergence threshold. The λ2
value and the maximal inner-loop iterations are carefully
chosen to allow the work space to reach the maximum
smoothly (see the next section). Once exiting, the core space is
identified from the transformed work space, and the residues of
the work space replace the Ns

k states in the kth block. This
operation is denoted as “the update of the rest space” since
both the core and rest spaces are dynamic during the
maximization. The index n is reset to 0, and the m( )

arrives at the convergence checkpoint 1. If the iteration does
not exit the loop, the next block then fills the work space to re-
enter the maximizer. With all the Nb blocks exhausted and
updated, the states in the rest space will be reordered again for
the next macro-cycle.

In Figure 1b, we provide a concrete example where the sF-
PMWF algorithm is applied to search for Nrl = 16 regionally
localized Wannier functions on the NV− center in diamond.
The original space is the occupied space consisting of Ns = 432
delocalized canonical orbitals, represented by the electron
density. The fragment is built with the four atoms at the NV−

center, and then Nc ≥ Nrl relatively localized (based on eq 8)
canonical states are identified from the original space to form
the core space. The complementary Ns − Nc states are
reordered and form the rest space. The rest space is then
sequentially exhausted and updated at a step of Nr until
convergence. The output is Nrl Wannier functions that are
regionally localized on the selected fragment (represented by
the electron density).

In practice, the outer-loop (identify the core space, construct
the work space, maximization, and update the rest space) has
to be iterated multiple times until the is converged. In
general, each iteration step in the outer-loop feeds the core
space with the ingredients to localize itself and sequentially
exhaust the full orbital space until convergence. However, the
cost of the calculation depends primarily on the size of the
work space Nw. A small Nr might require extra outer-loop
iterations, but the cost of each maximization (“inner-loop”)
should be orders of magnitude smaller than the traditional full-
space approach.

So far, we have assumed that a basis of individual single-
particle states is known (e.g., obtained by a deterministic DFT
calculation). However, this procedure is trivially extended even
to other cases, e.g., when stochastic DFT is employed.28−33 For
simplicity (and without loss of generality), we assume the
localization is performed in the occupied subspace. Here, the
sF-PMWF calculation is initialized by constructing a guess of
Nc random vectors |ζ⟩, which are projected onto the occupied
subspace as | = |Pc

o . These Nc random states then enter
the core space in Figure 1a. Here, the projector Po

is a low-pass
filter constructed from the Fermi operator leveraging the
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knowledge of the chemical potential.28−33,41,43 Next, in each
outer-loop step, one creates a block of random vectors | r

m ,
which have to be mutually orthogonal as well as orthogonal to
the Nc core states via, e.g., the Gram-Schmidt process. Here, r
denotes the rest space, and m denotes the mth step in the outer-
loop. This block of random states follows the procedure in
Figure 1a to fill the work space. Note that this block of random
vectors represents the entire orthogonal complement to the
core space.

Combined with the fragmentation treatment, the number of
elements in Q is reduced from ×N NA s

2 to Nw
2, and the unitary

matrices are also reduced from Ns
2 to Nw

2. Such a reduction in
dimensionality is expected to shorten the time spent on each
iteration step as long as Nw ≪ Ns. The cost of the stochastic
method (which does not require the knowledge of the Ns
eigenstates) is higher due to the additional orthogonalization
process. In the Results and Discussion section, we show that
the total wall time spent on a job becomes much shorter,
especially for large systems, at the expense of more inner-loop
steps. Most importantly, the localized states obtained from sF-
PMWF are practically identical to those obtained from the
traditional F-PMWF approach.

■ COMPUTATIONAL DETAILS
F-PMWF and sF-PMWF. A shared memory approach is

employed to parallelize the do-loops (via OpenMP). Several
real-space partitioning schemes47−51 for the atomic weight
function in eq 4 have been tested within the PM localization
framework.25 It turns out the resulting localized orbitals are
insensitive22,25 to its choice. This robustness of the G-PMWF
approach allows choosing the weight function for computa-
tional convenience;22,25 in this work, Hirshfeld partitioning47 is
used to calculate the Q matrix in eq 4. The actual
implementation can be found in ref 22. For simplicity, we
employ the steepest ascent (SA) algorithm52−54 to maximize
the PM functional and . Note that other extremization
procedures will likely further reduce the cost of the inner-loop,
but they do not have a decisive effect on the overall scaling.
The ascending step is set at 5.0 in the beginning and divided by
1.1 each time the change of PM functional n( ) appears
negative. In calculations using a stochastic basis, the random
states are constructed using Fortran random number generator.
The random number generator employs seeds that change in
each outer-loop step. These random states are then
orthogonalized by the Gram-Schmidt process detailed in the
Supporting Information (SI).

In F-PMWF calculations, the λ2 is set at 5 × 10−7, and it has
to be consecutively hit three times to ensure smooth
convergence. In sF-PMWF calculations, the λ2 is set at 1 ×
10−7 in the inner-loop, which also has to be hit three times
consecutively. The λ1 is set at 5 × 10−7 for the outer-loop. The
maximal iteration step is set at 2000 for n and 5000 for m.

To avoid the spurious convergence or local maximum issue,
a special criterion is devised for the sF-PMWF. The principle
comes from the full-space F-PMWF. When the core space
reaches the maximum localization, the whole rest space should
no longer increase the by > 1, and neither should a
subspace in the rest space contribute further; and thus, the

m( ) of each block in one complete macro-cycle is evaluated
simultaneously. Only if the maximal m( ) satisfies the
criterion <( )1 will the m( ) be considered converged. This

also means that once the first block re-enters the work space,
all the blocks must be exhausted to decide the convergence.
This might lead to a slight increase in cost but guarantees that
the sF-PMWF reaches the convergence in the same manner as
the F-PMWF.

The sF-PMWF calculation can be easily restarted as long as
one keeps the checkpoint file at the mth step and sets the outer-
loop to start with m + 1. The source code is posted on git-hub
and available for download.

Model Systems. As a test case, we investigate the NV−

center in 3D periodic diamond supercells and a 2D slab. The
relaxed chemical structures of the investigated systems are
provided in Figure S1. The atomic relaxations of the NV−

defect center in 3D periodic diamond supercells with 215, 511,
and 999 atoms are performed using the QuantumESPRESSO
package55 employing the Tkatchenko-Scheffler’s total energy
corrections.56 For the 111 nitrogen terminated surface slab 2D
periodic calculations, the surface relaxation also employs the
Effective Screening Medium correction.57 The atom relaxation
of the surface terminated with nitrogen atoms is performed on
a smaller slab with 24 atoms, which corresponds to the 1 × 1 ×
2 supercell. The relaxed top and bottom surfaces were then
substituted into a large 4 × 4 × 6 (1.5 × 1.7 × 4.7 nm)
supercell containing 2303 atoms. The 111 surface is set normal
to the z-direction. The relaxed structure of the NV− center is
cut out from a 511-atom supercell in a way that the N−V axis
is normal to the 111 surface. This supercell is then substituted
in the middle of the 111 nitrogen terminated surface 4 × 4 × 6
slab at the 2 nm depth from the surface.

The starting-point calculations for all systems are performed
with a real-space DFT implementation, employing regular
grids, Troullier-Martins pseudopotentials,58 and the PBE59

exchange-correlation functional. For 3D periodic structures, we
use a kinetic energy cutoff of 26 hartree to converge the
eigenvalue variation to <5 meV. The real-space grids of 68 ×
68 × 68, 92 × 92 × 92, and 112 × 112 × 112 with the spacing
of 0.3 a0 are used for 215-atom, 511-atom, and 999-atom
supercells, respectively. The grid of 70 × 82 × 338 with the
spacing of 0.4 a0 is used for the 2303-atom slab supercell. The
generated canonical Kohn−Sham eigenstates are used for the
subsequent orbital localization.

■ RESULTS AND DISCUSSION
The full-space F-PMWF and the proposed sF-PMWF methods
are applied to obtain regionally localized states on the NV−

center in diamond. The NV− center is composed of three
carbon atoms and one nitrogen atom that are mutually
nonbonded. The fragment in the actual calculations is
constructed with these four atoms (see Figure 1b) unless
stated otherwise. The number of regionally localized states, Nrl,
is 16 on the constructed fragment. Two types of systems, solids
and slab, are studied. For the solids, three supercells of
different sizes are investigated. The number of occupied states,
Ns, for each system is 432, 1024, and 2000, respectively. For
the slab, the regionally localized states are identified from a
supercell with 2303 atoms and 4656 occupied states.

Completeness of sF-PMWF. First, we investigate the
completeness of the sequential exhausting approach, i.e.,
whether the sF-PMWF can reproduce the same results as the
F-PMWF. To contrast the sF-PMWF method, we perform F-
PMWF localization on the 511-atom system using a truncated
orbital space. This is a common technique to lower the cost by
filtering out a portion of canonical states upon the eigenenergy
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(eigenvalue). Only eigenstates within a specific energy range
(termed as the “energy window”) are selected for localization.
We tested two energy windows (10 and 20 eV below the Fermi
level, respectively) on obtaining the localized Wannier function
basis. Upon visual inspection, the results do not look too
different, but when applied to compute the optical transitions
in the NV− center (see “Excited states of the NV− center” in
the SI), we see considerable differences in the energies (Table
S1). The results from the truncated space are highly
underestimated compared with the results from the full
space. The energy-windowing technique fails since, to reach
optimal localization, the maximum possible Bloch states are
needed to be transformed, i.e., all the occupied states are
necessary. To localize electronic states on a selected fragment,
choosing states with significant spatial distribution on the
fragment is more critical than the choice of the energy window
for the F-PMWF technique. The degree of localization
critically depends on what fraction of states that overlap with
the selected fragment is included. Note that this is not
necessarily related to the energy of the corresponding
canonical mean-field state or the size of the energy window,
i.e., even states energetically far from the defect state can be
important and may plague the frozen window approach. The
proposed sF-PMWF method does not have this issue, and we
demonstrate its completeness below.

We first illustrate the completeness in detail using the 215-
atom system. To initialize the sF-PMWF calculations, the Nc
parameter takes 16 (minimum), i.e., we take no “buffer”. For
convenience, we only consider combinations with Nr being an
integer multiple of Nc and vice versa. Several Nr ranging from 4
to 64 are tested. Figure 2 shows the maximized , which

measures the degree of localization (eq 7) relative to the
converged maximized value using the full space ( / )full , as a
function of the accumulative outer-loop step m. It can be
clearly seen that 100% of the full is sequentially recovered
regardless of the (Nc, Nr) combination. The maximization of
each curve presented in Figure 2 is not smooth, i.e., spikes are
observed at the step where the iteration enters a new macro-
cycle. In fact, at least 94% of the converged has been gained
after the first macro-cycle (see Table S2). As the Nr increases,
fewer and fewer iteration steps N( )it

outer are required to reach
convergence (Figure 3a), and theoretically, the Nit

outer should
be reduced to two (the second step is to exit the outer-loop) if

one takes Nr = Ns − Nc to work directly in the full space.
However, the reduction in Nit

outer does not necessarily lead to a
shorter job time. Note that the time per outer-loop iteration
(touter) increases with a scaling of N( )w

1.53 (see Figure S3) for
the 215-atom system. Figure 3b shows the total wall time of
each job as a function of the Nw with Nc fixed at 16. The Nit

outer

dominates the total wall time when Nw is small (<48). In this
regime, reducing the number of iterations lowers the total wall
time effectively. When the Nw is larger, however, the touter
becomes the dominating factor, and the total wall time
increases even though the Nit

outer decreases. The trade-off
between Nit

outer and touter suggests there exists an optimal
combination of Nc and Nr for a specific system to minimize the
total cost.

We also test the sF-PMWF calculation employing a set of
stochastic basis that represents the rest space. The same
parameter combination (16,32) is used. The 16 core states are
taken directly from the canonical eigenstates based on the
locality, while the 32 stochastic states are constructed in a
three-step manner (see “Preparation of stochastic basis” in the
SI). Compared with the (16,32) calculation using the
deterministic basis, the stochastic approach exhibits the same
completeness in exhausting the full orbital space, as seen from
the converged and . Nevertheless, more outer-loop
iterations are needed due to the randomized search, and the
time per iteration also becomes longer (3.47 s versus 0.32 s)
due to the Gram-Schmidt orthogonalization process; therefore,
the total wall time increases to 729 s (see the last row in Table
S2). For the evolution of the objective functional in
comparison with the deterministic counterpart, the stochastic
approach converges more smoothly (see Figure S4). The
stochastic basis search does not show competitive efficiency
versus the full-space approach (308 s) for such a small system.
In the following section, we show the stochastic basis approach
becomes more efficient than the full-space counterpart for a
larger system. However, we emphasize that the advantage of
sF-PMWF does not hinge on this stochastic extension but
enables it. In most of our results, we will focus on the fully
deterministic approach in which the knowledge of Ns states is
assumed.

Figure 2. Convergence of the functional with respect to the outer-
loop step m for the NV− center of the 215-atom system. Each curve is
labeled by the combination of Nc and Nr.

Figure 3. Left: Investigation of different combinations of Nc and Nr
for the localization on the NV− center of the 215-atom cell. Nc is fixed
at 16. (a) Number of iteration steps in the outer-loop as a function of
the Nr. (b) Total wall time of the calculation as a function of Nw. The
dashed line indicates the total wall time from the F-PMWF method
using the full orbital space. Right: Investigation of different
combinations of Nc and Nr for the localization on the NV− center
of the 215-atom cell. Nw is fixed at 48. (c) Number of iteration steps
in the outer-loop as a function of the Nr/Nc ratio. (d) The total wall
time as a function of the Nr/Nc ratio.
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The behavior of the sF-PMWF method discussed above is
also observed for the 511-atom system (Figure S5 and Table
S3 in the SI), confirming the generality of the completeness.

Optimization of Work Space. In the previous section, we
observe a trade-off between Nit

outer and touter, which implies a
possibly optimal parameter combination. To further under-
stand the choices of Nc and Nr, several other combinations
with Nc > 16 are tested on the 215-atom system. The maximal

and are secured regardless of the (Nc, Nr) combination,
indicating that the convergence of is insensitive to the
choices of these two parameters. For Nc fixed at 16, the time-
to-solution reaches a minimum when Nw = 48, as shown in
Figure 3b. For Nw fixed at 48, different ratios of Nr/Nc are
tested. The results suggest that the larger the Nr, the smaller
the Nit

outer (Figure 3c). Note that the touter depends solely on the
Nw (Table S2), and therefore, a smaller Nit

outer translates
directly to a shorter wall time (Figure 3d). The numerical
results are summarized in Table S2. This behavior is further
observed in the 511-atom system (see Figure S6).

To further quantify our observations above, we examine the
time per macro-cycle (tmacro) and the number of macro-cycles
(nmacro) shown in Table 1. The variation of the total wall time

(ttot) agrees well with the tmacro among different (Nc, Nr)
combinations since the nmacro in each trial does not differ too
much from one another (nmacro = 5 ± 1). The total wall time is
essentially very close to nmacro × tmacro. The scaling of tmacro, in
our sF-PMWF algorithm, can be approximately expressed as
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(18)

With Ns and Nc fixed, the right-hand side (RHS) of eq 18 is a
function of Nr with a theoretical minimum for some nonzero
Nr, and thus, eq 18 explains the existence of an optimal (Nc,
Nr) combination as observed. We note that the RHS of eq 18
is also crucial in explaining the scaling of our sF-PMWF
method with respect to Ns as discussed in the following
section.

To conclude, the “buffer” seems to be unnecessary for the
core space, i.e., Nc can be set directly as Nrl for a specific
fragment. The work space optimization then depends solely on
the choice of Nr, and there exists an optimal Nr. Nevertheless,
the cost of the investigated sF-PMWF calculations without
optimization is already absolutely lower than that of F-PMWF
regardless of the Nr (see Figure 3b and Figure S5b). The
protocol of choosing Nc and Nr is suggested to be Nc = Nrl and
Nr = 2Nc since it leads to a local minimum in the total wall
time.

This protocol is then applied to the 999-atom system, and
two additional combinations of Nc and Nr are also tested. The
(16,32) combination still leads to a cost minimum and is 85
times faster than the F-PMWF (see Table S4). Further, we also
test the stochastic basis search with the 999-atom employing
the (16,32) combination. The completeness of the stochastic
exhausting is again confirmed by the converged and .
Although the stochastic approach is still more costly than the
deterministic sequential counterpart, it is more efficient than F-
PMWF (by roughly 50%) when applied to this system with
∼4000 electrons (see the last row of Table S4). Furthermore,
∼74% of the cost in the stochastic search comes from the
Gram-Schmidt process, which advanced orthogonalization
techniques can optimize. When combined with stochastic
DFT, the total cost of orbital localization is expected to be
much lower than the deterministic approach that requires the
knowledge of the eigenstates in a system with tens of
thousands of electrons.

For the 2303-atom system, the (16,32) combination
successfully converges the and produces localized states.
Note that the cost can be lowered by 10% if the (16,48)
combination is used, and if one searches further for the optimal
Nr (or Nw), it is possible to lower the cost further. However,
for a fair comparison between one system and another, we use
the timing from the (16,32) combination for the slab, which is
already 412 times faster than the F-PMWF. The numerical
results are provided in Table S5.

We also compare the time spent on folding and the
unfolding steps, respectively (see Table S6). In each system,
the cost of the unfolding step is merely 1−2% of the folding
one since only Nrl states are transformed in the unfolding step,
and thus, it is sufficient to evaluate just the cost of the folding
step as the total cost of the orbital localization.

Finally, we remark that the (16,32) combination is stable
and efficient for a given fragment regardless of the precise
environment. This indicates that sF-PMWF is robust. Further,
the consistent parameter combination clearly demonstrates the
scaling of the sF-PMWF calculation with respect to the Ns as
discussed in the next section.

Scaling Analysis of sF-PMWF vs F-PMWF. To
investigate the scaling of the sF-PMWF method, we normalize
the timing data to the largest grid by

=t
N

N
tn

g

g

max

(19)

where tn represents the normalized time, Ng
max denotes the

number of grid points of the largest system (the 2303-atom
system), and Ng is the grid of each investigated system. The
numeric data is summarized in Table 2. We report the results
with a precision of 1 s for the total wall time and 0.01 s for the
time per iteration/cycle. Here, we note that tn

tot represents the
normalized total wall time, tn

SA and nSA denote the normalized
time per SA step and the number of SA steps in F-PMWF, tn

outer

denotes the normalized time per outer-loop in sF-PMWF, and
tn

macro and nmacro represent the normalized time per macro-cycle
and number of macro-cycles in sF-PMWF.

In Figure 4a, the log of tn
tot is plotted as a function of the log

of Ns for the four investigated systems. The scaling of the F-
PMWF using the full orbital space is N( )s

2.43 (black line and
square points). This is a bit higher than the theoretical N( )s

2

Table 1. Timing Data of Orbital Localization Performed on
the 215-Atom System Using sF-PMWF

(Nc, Nr) ttot (s) tmacro (s) nmacro

(16,4) 47 9.07 5
(16,8) 31 5.87 5
(16,16) 29 4.65 6
(16,32) 22 4.19 5
(16,48) 28 4.51 6
(16,64) 27 5.09 5
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due to the other N( )s do-loops, tasks related to paralleliza-
tion, and practical executions (e.g., reading and writing of
files). The sequential method, sF-PMWF, reduces the scaling
from N( )s

2.43 to N( )s
1.07 (red line and circle points). This

linear scaling is observed when the same protocol (16,32)
applies to the four systems. Such an order of magnitude
reduction in the scaling promises the efficiency of sF-PMWF
when applied to much larger systems. In our largest system
with 4656 states, the total wall time is shortened from 8 days to
<0.5 h (Table 2, on a workstation with 2.5 GHz CPUs and
parallelization on 60 cores).

The reduced scaling of sF-PMWF is largely attributed to the
reduction of dimensionality during the maximization process.
The efficiency is reflected mainly in the time per inner-loop
iteration, tinner in sF-PMWF and tSA in F-PMWF. From 432
states to 4656 states, the tn

SA of the F-PMWF approach scales
rapidly from 1.81 to 1056.26 s (Table 2). As shown in Figure
4b, the scaling of tn

SA in F-PMWF is N( )s
2.63 . Further, Table 2

shows that the numbers of inner-loop iterations Nit
inner in F-

PMWF are reasonably large (600−700) and translate to a total
scaling of N( )s

2.43 shown in Figure 4a.
In sF-PMWF, however, the tinner remains constant and as low

as ×5 10 4 seconds regardless of the Ns (see Table S9).
Although more SA iteration steps are required relative to the F-

PMWF calculations (Figures S8 and S9), 1000 iterations now
take as low as 0.5 s, and therefore, in sF-PMWF, the time spent
in the maximizer is no more the dominating factor within an
outer-loop step. It is more convenient to evaluate the efficiency
of sF-PMWF by tn

outer and tn
macro. We first study the scaling of

the time per outer-loop step t( )n
outer with respect to the Ns. It is

shown that tn
outer hardly scales with respect to Ns when the same

(Nc, Nr) combination is applied (see Figure S10). In addition,
Nit

outer scales almost linearly with Ns and gives a total scaling of
N( )s

1.07 .
A more direct derivation of linear-scaling is by evaluating

tn
macro and nmacro summarized in Table 2. Interestingly, nmacro is

very close between any two systems, being 5 ± 1. The total
wall time is approximately the product of tn

macro and nmacro;
hence, it is sufficient to evaluate tn

macro only. In the previous
section, eq 18 actually suggests that the scaling of tmacro

depends linearly on Ns. The normalized time per macro-
cycle (tn

macro, Table 2) is plotted as a function of Ns in Figure
4b. Note that tn

macro for F-PMWF coincides with tn
SA since the

full orbital space is transformed at once in a single SA step.
Here,we can clearly see the linear dependence N( )s

0.98 in sF-
PMWF versus the N( )s

2.63 in F-PMWF. Although tn
macro for a

specific system in sF-PMWF can be higher than that in F-
PMWF, the evaluation of the number of macro-cycles, nmacro or
nSA, is ∼5 for sF-PMW,F while it is ∼650 for the conventional
F-PMWF. To conclude, eq 18 quantitatively explains the
observed linear-scaling when the same (Nc, Nr) combination is
applied to systems of different sizes.

Localization Quality of sF-PMWF vs F-PMWF. Visual-
ization of Localized Orbitals and Density. In the previous
section, the completeness of sF-PMWF has been demonstrated
for the maximization of the modified PM functional (eq 7).
These 16 resulting states are localized on the fragment and
serve as a subspace to further maximize the , which unfolds
the states on each individual atom. The converged and
between F-PMWF and sF-PMWF differ by no more than
0.0001 (<0.002%, see Tables S11 and S12) . Graphically, the
16 regional Wannier functions correspond to 9 C−C bonds, 3

Table 2. Normalized Timing Data of Orbtial Localization
Performed on the Four Investigated Systems Using F-
PMWF and sF-PMWF, Respectively

F-PMWF sF-PMWF

system tntot (s) tnSA (s) nSA tntot (s)
tnouter
(s) tnmacro (s) nmacro

215-
atom

1903 1.81 637 139 1.99 25.83 5

511-
atom

18339 21.43 700 284 2.08 66.45 4

999-
atom

58007 85.01 586 675 2.07 128.16 5

2303-
atom

695370 1056.26 650 1683 1.89 266.02 6

Figure 4. (a) The log of the normalized total job time plotted as a function of the log of Ns. (b) The log of the normalized time per macro-cycle
plotted as a function of the log of Ns. The black line and square points represent results obtained from the F-PMWF method transforming the full
orbital space at once. The red line and circle points represent results obtained from the sF-PMWF method sequentially transforming the orbital
space. The scaling is derived from the slope of each fitting using the numeric data in Table 2.
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C−N bonds, and 4 “p-like” states. The electron densities
constructed from these 16 localized states are shown to be
visually identical between the sF-PMWF and F-PMWF
calculations (see Figures S11 to S13). The same agreement
is also seen for the four selected individual “p-like” states
(Figures S14 to S16) that are used in the following excited-
state calculations. Figure 5a highlights the NV− center in the

slab using the regionally localized electron density. The
obtained electron density conserves the spatial symmetry
across the C−C−C plane and the C−C−N plane (Figure 5b).
The left panels of Figure 5b show the electron density
constructed from the 16 most localized canonical states, while
the right panels present the maximized results from the sF-
PMWF calculation. It can be clearly seen that electron density
distribution becomes much more concentrated on the selected
atoms, indicating the effectiveness of the localization.

To demonstrate that the sF-PMWF localization is
subsystem-independent, an arbitrary carbon atom is chosen
from each investigated system, and four regionally localized
states are sought. The electron density around the selected C
atom is successfully reproduced for each system (see Figure
S17), confirming the generality of the sF-PMWF approach.

Excited States of the NV− Center. To further demonstrate
the practical application and quality of the sF-PMWF
approach, we investigate the optical transitions in the NV−

center using the “p”-like Wannier functions (see Figure 6) that
form a minimal basis. To model the excited states of the NV−

center, we solve the Hubbard Hamiltonian written as

= + +† † †

>

†H c c t c c Un n Vn n
i

i i i
i j

ij i j
i

i i
i j

i j
, , ,

(20)

where †ci and ci are creation and annihilation operators in site
i with spin σ, and †ni is a particle number operator. εi and tij are
the on-site and hopping energies. U and V represent the on-site
and intersite Coulomb interactions, respectively. It is a minimal
model of the NV− center that is commonly used60−63 to
describe its low-lying excited states. Note, although including
screening is important to capture the physics of the system
correctly and has been extensively studied,61,63,64 only bare
interactions are considered in this work to focus on the
sensitivity to the variations of the Wannier basis. In this
section, we will particularly comment on the selection of the
fragment on which the electronic states are localized. Note that
the fragment size is independent of the sF-PMWF method-
ology, but it represents an important parameter.

First, we focus on the results computed from the sF-PMWF
Wannier basis of the four-atom fragment shown in Figure 6.
The three lowest energy transitions are given in Table 3 in
parentheses. For the 3D periodic systems, the two small cells
slightly underestimate the 3E − 3A2 transition energy and
overestimate the 1A1 − 3A2 one. Instead, the 1E − 3A2
transition converges well to the supercell size. The 3E − 3A2
and 1A1 − 1E transition energies are underestimated with
respect to the experimental values of 1.95 and 1.19 eV,
respectively. However, these results agree well with other
theoretical calculations that employ PBE functionals to
compute the bare Hubbard model parameters.65−70 The 1E
− 3A2 transition energy fluctuates mildly with respect to the
supercell size but maintains a comparable magnitude. The
results computed in bulk systems from the sF-PMWF basis
agree perfectly with the F-PMWF ones (see the F-PMWF
results in Table S15), confirming the equivalency of the two
sets of localized orbitals. In contrast, the F-PMWF and sF-
PMWF differ slightly more from each other for the slab results.
To investigate this difference in transition energies, we first
examine the equivalence of the two sets of “p-like” Wannier
functions: the orbitals from sF-PMWF have >99.99% overlap
with their counterparts from F-PMWF, i.e., these two sets of

Figure 5. (a) Electron density constructed from the 16 regionally
localized states around the NV− center. The isosurface value is set at
0.05. (b) Density distribution sliced through the C−C−C plane
(upper panels) and the C−C−N plane (lower panels) of the NV−

center in the slab. The left panels are constructed from the 16 most
localized canonical states before the sF-PMWF calulation, and the
right panels are constructed from the 16 regionally localized states
after the sF-PMWF maximization.

Figure 6. “p”-like Wannier function basis used in the Hubbard model
calculations. Each row provides the fragment model, the correspond-
ing set of PMWFs obtained from this fragment, the electron density
constructed from these four PMWFs, and the total locality computed
from eq 21. Here, the {4,4} fragment represents the minimal model,
and the {16,16} one is found with the optimal fragment size. The
isosurface value is set at 0.02.
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states are practically identical. The numerical results are
provided in Table S16. By subtracting corresponding sF-
PMWF and F-PMWF Wannier orbitals, we observe seemingly
negligible difference (slightly higher than the numerical noise),
which however affects the Hubbard model calculations.
Comparing the Hamiltonian computed with the two basis
sets, we found that the discrepancy in transition energies stems
only from the ionic part of the t parameters (see the definition
of t parameters in eq S2 in the SI). In contrast, the kinetic part,
sensitive to the small variation of the Wannier functions, is
practically identical, confirming that both orbitals should be
considered as equivalent. The small, ≪0.01%, difference is
distributed over the real-space grid, and it becomes sizable
enough for the slab calculation because of the system size
(which is significantly larger than the bulk systems).

Furthermore, the slab results are strikingly different from the
bulk, i.e., the transition energies are up to 70%−80% lower
than those in bulk. As we show below, this is due to the
selection of the fragment size and independent of the
completeness of the orbital space. To the best of our
knowledge, we note that no calculations for shallow NV−

centers in slabs have been done previously. Hence, it is not
possible to compare our results with any reference.

The situation is remedied when the fragment size effects are
considered. As noted earlier, the fragment studied in the
previous sections is actually a minimal model, i.e., the orbital
localization is considered only on the four atoms where the
“p”-like states are located, and the total number of orbitals on
these four atoms is 16. However, neglecting the neighboring
atoms might lead to a mixed character of “p”-like states and
C−C (or N−C) covalent bonds. To test this, we investigate
four combinations of { }N N,A A fragments: for instance, {4,16}
represents the case where four atoms are considered in the
folding step, while 16 atoms (including the bonded atoms) are
considered in the unfolding step. A detailed investigation of the
various parameters is performed on the 215-atom system. The
corresponding fragments are presented in Figure S2. The four
Wannier functions used for the Hubbard model are illustrated
in Figure 6, where we compare the {4,4} fragment, the {16,16}
fragment, and the all-atom case.

For a better comparison among different sets of PMWFs
(Figure S18), we also provide the spatial overlaps between the
fragmentation approaches and the all-atom calculation,
|⟨ψi|ψj⟩|, in Table S13. The all-atom calculation refers to
orbital localization on all atoms at once using G-PMWF.
Numerically, the {4,16} combination gives the closest
solutions to the all-atom ones. Note that in the all-atom
case, the optimization does not preferentially localize single-
electron states near the defect; rather, it seeks globally most
localized states. Such an approach is not guaranteed to
generate transformed PMWFs that are optimal for the

mapping onto the Hubbard model. Indeed, we discuss this
point in detail below.

In contrast, the results for the {4,4} combination represent
the minimal fragment where the optimization is performed for
16 orbitals on four atoms neighboring the defect center. These
PMWFs from the minimal model are shown in Figure 6 and
display overlocalization of the “p”-like states in the NV− center,
i.e., the orbitals are less centered on the atoms and tend to
merge at the geometric center. This is a purely numerical
artifact of a too-small optimization space which is alleviated
(Figure S18) when the 12 bonded atoms are included to
compete with the geometric center for the electron density.
Due to this, we disregard the {4,4} case further.

Upon visual inspection, the {16,16} combination graphically
gives the most localized “p”-like orbitals (the second row in
Figure 6). To provide a quantitative measure of localization,
we calculate the locality of each “p”-like state on the
corresponding atom plus its neighboring bonded atoms to
account for the environment

= | |
=

L wi
A

i A i
1

4

(21)

where i denotes the ith “p”-like state, and A sums over the four
atoms (1 center atom + 3 bonded atoms). The value for each
individual state is summarized in Table S14, where we use the
sum, = Li i1

4 , to represent the whole set of PMWFs. In
agreement with the visual analysis (Figure 6), the {16,16}
combination exhibits the strongest localization attributed to
the modification of the objective functional (eq 7). As
commented on by Jo ́nsson22 et al., the solutions to
“maximally-localized Wannier functions” are actually not
unique and sometimes ambiguous since the resulting localized
orbitals are determined by the objective functional. We
emphasize that the traditional G-PMWF approach evaluates
the overall orbital localization on all the atoms, but it does not
necessarily reach maximal localization on a specific subsystem
(fragment). Instead, the proposed fragmentation treatment in
this work leads to an objective functional for regionally
localized orbitals. We surmise that this approach is more
beneficial for effective embedding and downfolding.

To further analyze the results, we use the four sets of
PMWFs and compute the optical transition energies for the
215-atom system (Table 4). We see that the 3E − 3A2 is the
most sensitive to the basis, while the other two are less. The
{4,16} combination provides results that are closest to the all-
atom calculations. Compared with the most localized case
({16,16}), the other results are consistently underestimated by
up to 0.55 eV. From these results, it is clear that the extent of
orbital localization affects various observables differently. While
some optical transitions for a given system are insensitive,
others can be highly dependent on the basis. The sensible

Table 3. Excited-State Transition Energies of the NV− Center in the Four Investigated Systems Using the Wannier Function
Basis Obtained from sF-PMWF Calculationsa

energy (eV)

transition symmetry 215-atom cell 511-atom cell 999-atom cell slab
3E − 3A2 2.108 (1.560) 2.277 (1.695) 2.312 (1.710) 1.343 (0.363)
1A1 − 3A2 1.433 (1.325) 1.310 (1.270) 1.202 (1.193) 1.159 (0.292)
1E − 3A2 0.447 (0.378) 0.435 (0.381) 0.413 (0.368) 0.329 (0.091)

aThe numbers with and without the parentheses correspond to the {4,4} and {16,16} fragments, respectively.
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strategy is to search for a fragment that provides the maximal
localization on each atom of interest and seek convergence of
the observables of interest.

In the rest of the paper, we employ the {16,16} fragment to
obtain the PMWF basis. The parameter study of orbital
localization using this fragment is provided in Tables S17−
S20.The excited-state transition energies are summarized in
Table 3. For the bulk systems with the new “p”-like basis, the
3E − 3A2 transition gap is enlarged by up to 0.6 eV from the
less localized basis, while the other two transition energies are
relatively less sensitive to the change of basis.

The effect of the fragment size is most pronounced for the
slab. If the {16,16} fragment is used, the results are similar to
those for the bulk systems. In detail: the 3E − 3A2 transition is
predicted ∼1 eV lower than that in bulk, while the other two
are only slightly lower (by ∼0.1 eV) compared to the 999-
atom cell. Here, the significant lowering of the triplet−triplet
transition energy in the slab can be attributed to the interplay
with the surface states of nitrogen-atom passivation layer. The
surface states dive below the conduction band minimum of the
bulk states, are located inside the band gap, and affect the
position of the in-gap defect states. Finally, we remark that
these observations underline the importance of fragment
selection. However, they are completely independent of the
proposed sequential exhausting methodology. Indeed, the
results obtained with the sF-PMWF and F-PMWF methods
agree excellently (Table S15) in each case, while the results
depend on the fragment size.

■ CONCLUSIONS AND PERSPECTIVE
By introducing the fragmentation treatment and the sequential
exhaustion of the orbital space to the traditional F-PMWF
method, we develop a swift, efficient, and robust algorithm, sF-
PMWF, to obtain a set of regionally localized states on a
subsystem of interest. The completeness and efficiency are
insensitive to the choice of input parameters. The core idea is
to reduce the dimensionality of matrices during the max-
imization process. The resulting scaling is reduced from being
hyperquadratic to linear. For the applications of localized basis
to the Hubbard model, the excited-state calculations are
sensitive to the localized basis. While the Pipek-Mezey scheme
is an ideal candidate to provide localized states with optimal
localization for the whole system, it does not necessarily lead to
“maximally” localized orbitals on a specific subsystem, but in
our fragmentation treatment, one can carefully select the atoms
(the strategy is mentioned above) to reach “maximally”
localized orbitals on the subsystem and avoid the over-
localization issue.

The resulting sF-PMWF method has five primary benefits:
(1) largely shortens the time per SA iteration and makes it

easier to monitor the progress of localization; (2) significantly
lowers the total job time and scaling for systems with
thousands of electrons; (3) provides regionally localized
orbitals with higher extent of localization; (4) is less
demanding for computing resources, e.g., memory and
CPUs; and (5) can be performed without the knowledge of
canonical eigenstates if it is coupled with stochastic methods
(e.g., stochastic DFT). The stochastic basis search approach
exhibits higher efficiency than the traditional method for
systems with over 4000 electrons.

Furthermore, we want to comment on the following
prospective applications of the sequential exhausting method:
(1) This method can be generalized to obtain localized states
of the whole system. Given that the rest space can always be
updated or reconstructed by Gram-Schmidt orthogonalization,
the sF-PMWF calculation can then be sequentially applied to
all the fragments in the entire system. (2) This method can be
coupled with other maximizers, e.g., conjugated gradient and
BFGS approach, to further facilitate the convergence of the
PM functional. (3) The idea of sequentially exhausting the
orbital space can be also implemented in other localization
schemes, e.g., Foster-Boys, for a suitably defined fragment and
an associated cost function.

We believe that the sF-PMWF method will find numerous
applications in condensed matter problems, either in
chemistry, materials science, or computational materials
physics.
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Table 4. Excited-State Transition Energies of the NV−

Center in the 215-Atom System Using the Wannier
Function Basis Obtained from Different Sizes of the
Fragment as well as the All-Atom Calculation

energy (eV)

transition symmetry {4,4} {4,16} {16,16} {40,40} all-atom
3E − 3A2 1.560 1.770 2.108 1.860 1.715
1A1 − 3A2 1.325 1.373 1.433 1.384 1.355
1E − 3A2 0.378 0.407 0.447 0.417 0.398

= Li i1
4 3.514 3.464 3.507 3.411 3.461
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(61) Bockstedte, M.; Schütz, F.; Garratt, T.; Ivády, V.; Gali, A. Ab
initio description of highly correlated states in defects for realizing
quantum bits. npj Quantum Materials 2018, 3, 31.

(62) Ma, H.; Govoni, M.; Galli, G. Quantum simulations of
materials on near-term quantum computers. npj Computational
Materials 2020, 6, 85.

(63) Ma, H.; Sheng, N.; Govoni, M.; Galli, G. Quantum Embedding
Theory for Strongly Correlated States in Materials. J. Chem. Theory
Comput. 2021, 17, 2116−2125.

(64) Muechler, L.; Badrtdinov, D. I.; Hampel, A.; Cano, J.; Rösner,
M.; Dreyer, C. E. Quantum embedding methods for correlated
excited states of point defects: Case studies and challenges. Phys. Rev.
B 2022, 105, 235104.

(65) Goss, J. P.; Jones, R.; Breuer, S. J.; Briddon, P. R.; Öberg, S.
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