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Abstract

Nuclear factor of activated T cells (NFAT) is a family of transcription factors composed of five proteins. Among them, NFAT1
is a predominant NFAT protein in CD4+ T cells. NFAT1 positively regulates transcription of a large number of inducible
cytokine genes including IL-2, IL-4, IL-5 and other cytokines. However, disruption of NFAT1 results in an unexpected increase
of IL-4. In this study, we have investigated the role of NFAT1 in regulation of IL-4 gene expression in T helper 2 cells (Th2)
from an epigenetic viewpoint. NFAT1 deficient Th2 cells showed a sustained IL-4 expression while wild type (WT) cells
reduced its expression. We tested whether epigenetic maintenance and changes in the chromatin architecture of IL-4
promoter locus play a role in differential IL-4 transcription between in WT and NFAT1 deficient Th2 cells. Compared with WT,
NFAT1 deficient CD4+ Th2 cells exhibited enhanced chromatin accessibility with permissive histone modification and DNA
demethylation in the IL-4 promoter region. Transcription factors bound to IL-4 promoter region in the absence of NFAT1
were identified by Micro-LC/LC-MS/MS analysis. Among the candidates, preferential recruitment of JUNB to the IL-4
promoter was confirmed by chromatin immunoprecipitation analysis. Overexpression of JUNB together with SATB1
synergistically upregulated IL-4 promoter activity, while knockdown JUNB significantly reduced IL-4 expression. Our results
suggest that the prolonged IL-4 expression in NFAT1 deficient Th2 cells is mediated by preferential binding of JUNB/SATB1
to the IL-4 promoter with permissive chromatin architecture.
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Introduction

T cell receptor (TCR) signaling drives T lymphocyte gene

expression and activation of nuclear factor of activated T cells

(NFAT) [1]. NFAT proteins regulate transcription of a large

number of inducible genes in immune system including diverse

cytokines, costimulatory factors and their receptors [1,2]. NFATs

are rapidly activated by calcineurin phosphatase after TCR

engagement, and return back to inactive phosphorylated states by

several kinases within a short period of time [3,4,5,6]. The

dephosphorylation and phosphorylation of NFAT regulates its

functional activity by affecting its subcellular localization, duration

of nuclear residence, interacting partners, DNA binding activity

and its transcriptional activity [4]. The NFAT family of

transcription factors is composed of five proteins. Among them,

NFAT1 is a predominant NFAT protein in T cells and accounts

for 90% of total NFAT DNA binding activity in wild type T cells

[7]. NFATs mainly work as transcriptional activators during the

immediate early time and determine the subsequent gene

expression program. NFAT1 positively regulates transcription of

a large number of inducible cytokine genes including IL-2, IL-4,

IL-5 and other cytokines as well [1]. However, disruption of

NFAT1 results in an unexpected increase of IL-4 upon stimulation

[8]. Mice lacking NFAT1 show a modest splenomegaly,

hyperproliferation of T and B cells and dysregulated production

of IL-4 [8,9,10,11,12,13]. Furthermore, in the absence of NFAT1

and NFAT4, naı̈ve CD4+ T cells intrinsically differentiate into the

T helper type 2 (Th2) cell direction, even in the absence of

endogenous IL-4, and are hyperresponsive to TCR-mediated

activation [14]. Although some phenotypes of NFAT1/4-deficient

mice are due to defect in lymphocyte apoptosis [15], the cause of

the various abnormalities still remains unknown.

Optimal gene expression requires recruitment of specific

transcription factors to the regulatory regions (enhancers and

promoters) of their target gene loci with permissive chromatin

structure. Changes in the remodeling of chromatin structure are

accompanied by epigenetic modifications such as changes in post-

translational modification of specific histone residues and DNA

methylation statues of CpG island. Epigenetic modifications affect

gene transcription by altering the accessibility of distinct DNA

regions to transcription factors and other DNA binding molecules

[16,17,18]. Among histone modifications, acetyl histone H3 lysine

9/14 (AcH3K9/14) and dimethyl histone H3 lysine 4 (H3K4me2)

are associated with actively transcribed genes required for T cell

function and development, whereas trimethyl histone H3 lysine 27

(H3K27me3) is associated with silent genes [19]. In addition,

methylated CpG inhibits the access of transcriptional machinery

and decreases transcriptional activity [20,21,22]. Several groups
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have observed that epigenetic regulation is crucial for controlling

IL-4 gene expression [23,24,25,26,27].

Special AT-rich sequence-binding protein-1 (SATB1) is a global

chromatin organizer and transcription factor. It plays a key role in

forming a transcriptionally poised chromatin [28,29] to induce

gene expression in response to physiological stimuli [30]. SATB1

also organizes the IL-4 locus into distinct chromatin loops by

tethering matrix associated regions (MARs) to the nuclear matrix

at fixed distances. Upon Th2 cell activation, SATB1 is also

required for the expression of IL-4, IL-5, and IL-13 through

formation of transcriptionally active chromatin structure [29].

In this study, we have investigated the underlying mechanism of

IL-4 gene expression in the absence of the key transcription factor

NFAT1 in Th2 cells. We and others have found that Th2 cells

lacking NFAT1 still express high levels of IL-4. Prolonged

expression of IL-4 was observed in NFAT1 deficient Th2 cells

upon TCR engagement at late time points compared with wild

type Th2 cells. We tested the possibility that NFAT1 deficiency

may bring a change in the chromatin architecture in the IL-4

promoter and recruitment of other transcription factors may

replace the transactivity of NFAT1 to mediate prolonged IL-4

expression. Here we show that the sustained IL-4 expression is

mediated by a permissive chromatin change and by the

recruitment of JUNB/SATB1/coactivator complex upon TCR

stimulation in NFAT1-deficient Th2 cells.

Results

IL-4 expression is sustained in NFAT1 deficient Th2 cells
compared with WT

NFAT1 positively regulates IL-4 gene transcription in CD4+ T

cells. However, disruption of NFAT1 results in an unexpected

prolonged increase of IL-4 upon stimulation. Anti-CD3 (a-CD3)

stimulation significantly increased IL-4 transcripts in NFAT1

deficient CD4+ T cells than in WT mice [8,14]. To elucidate the

underlying mechanism of IL-4 expression in the absence of

NFAT1, Th2 cells differentiated from wild type (WT) or lacking

NFAT1 (NFAT1 KO) mice were stimulated with anti-CD3 for the

indicated time periods and the IL-4 at mRNA and protein levels

were determined by quantitative real-time PCR and ELISA,

respectively. In line with previously published data [8], NFAT1

deficient Th2 cells maintained much higher levels of IL-4

expression than WT cells till later time points (Fig. 1). The IL-4

mRNA level showed a peak expression at 3 h after stimulation in

WT cells followed by a rapid decline. Since NFAT1 is rapidly

activated through dephosphorylation within 1 h and then returned

to the phosphorylated inactive form (Fig. S1A), IL-4 gene

transcription at the early time (,1 h) might be mainly mediated

by NFAT1 activation. In NFAT1 deficient T cells, however, the

IL-4 mRNA levels were progressively increased until 6 h and were

then maintained at much higher level compared with WT (Fig. 1).

Enhanced IL-4 protein level was also observed in Th2 cells lacking

NFAT1 compared with WT Th2 cells analyzed by ELISA (Fig.

S1B).

The IL-4 promoter of NFAT1 deficient Th2 cells has more
permissive chromatin structure

IL-4 expression is mainly mediated by the NFAT1 at

immediately early time points (Fig. 1A). However, underlying

mechanism for higher IL-4 expression in NFAT1 deficient CD4+

T cells is still unknown. To test the role of epigenetic change in

these states, we compared chromatin accessibility to micrococcal

nuclease (MNase) at the IL-4 promoter between WT and NFAT1

deficient Th2 cells. Nuclei isolated from Th2 cells of WT and

NFAT1 KO mice were stimulated for 6 h with anti-CD3 and

were incubated with MNase for 5 min at room temperature. The

amount of amplified genomic DNA from each treatment was

quantitatively measured by real-time PCR with primer sets

specific for IL-4 promoter (Table 1). IL-4 promoter was more

accessible in NFAT1 deficient Th2 cells than in WT (Fig. 2A). To

address transcriptional activity as a marker for active chromatin,

the amount of recruited RNA polymerase II (Pol II) to the IL-4

promoter and within the body of the IL-4 gene (Exon1) was

assessed by ChIP assay using phospho-Pol II antibody. The

enrichment of the phospo-Pol II molecule was observed at

promoter (Fig. 2B) and within the body of the IL-4 gene (data not

shown) in the NFAT1 deficient Th2 cells compared with the WT

cells. To further confirm whether the differential chromatin

accessibility at the IL-4 promoter between WT and NFAT1 KO

Th2 cells is accompanied by epigenetic modification, we

performed ChIP analysis with specific antibodies for modified

histone molecules by quantitative real-time PCR analysis. In

general, modification of acetylated H3 at lysine residue 9 and 14

(AcH3K9/14) and trimethylated H3 at lysine 27 (H3K27me3)

are well correlated with actively transcribed or silenced region,

respectively. In both WT and NFAT1 deficient Th2 cells,

amounts of AcH4K9/14 were significantly increased upon

stimulation, whereas H3K27me3 levels were decreased at the

IL-4 promoter (Fig. 2C). However, NFAT1 deficient Th2 cells

showed significantly elevated AcH3K9/14 binding levels com-

pared with WT cells at the IL-4 promoter (Fig. 2C). As a control

Figure 1. Sustained IL-4 expression in NFAT1 deficient Th2
cells. Th2 cells differentiated in vitro from WT or NFAT1 KO mice were
stimulated with anti-CD3 (a-CD3) for indicated time periods and IL-4
mRNA levels were measured by quantitative RT-PCR by normalizing
with b-actin levels (A). PCR products were visualized on ethidium
bromide-stained agarose gels (B). Data shown are the mean 6 SEM
from four separate experiments and * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0022042.g001

Diverse Role of NFAT1 in IL-4 Gene Regulation
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we also analyzed the actin promoter region. Regardless of

stimulation, the amount of recruited levels of AcH4K9/14 or

H3K27me3 at the action promoter was similar between WT and

NFAT1 deficient Th2 cells (Fig. 2C). These results suggest that

more permissive chromatin structure in NFAT1 deficient CD4+

Th2 cells compared with WT cells at the IL-4 promoter is related

with sustained higher IL-4 expression.

CpG sites at the IL-4 promoter of NFAT1 deficient Th2
cells are preferentially demethylated

Generally hypermethylation of DNA at the gene promoters or

CpG island is associated with transcriptional repression while

hypomethylation is associated with actively transcribed genomic

locus. To test whether the differential methylation statute of IL-4

promoter between WT and NFAT1 deficient Th2 cells is involved

in differential IL-4 expression between them, we analyzed the

DNA methylation status at the IL-4 promoter by pyrosequencing.

Under unstimulated condition, little difference in the methylation

status was observed between NFAT1 deficient (68%) and WT

(74%) Th2 cells. Six hours after stimulation, however, the level of

methylated DNA in the IL-4 promoter of NFAT1 deficient Th2

cells was significantly decreased (55%) than that of WT (74%) Th2

cells (Fig. 3A and Fig. S2). To confirm this observation, we next

assessed the levels of enriched methylated DNA at the IL-4 locus

by methylated DNA immunoprecipitation assay. In line with the

pyrosequencing data, a significant decrease of demethylated DNA

at the IL-4 promoter was observed in NFAT1 deficient cells

compared with WT Th2 cells (Fig. 3B). As a control, methylated

DNA levels were also measured at the FoxP3 and beta-actin gene

locus as controls for repressed or active gene, respectively. These

results suggest that DNA hypomethylation at the IL-4 promoter of

NFAT1 deficient Th2 cells is related with sustained higher IL-4

expression.

Preferential recruitment of JUNB to the IL-4 promoter in
NFAT1 deficient Th2 cells

The higher expression level of IL-4 in NFAT1 deficient Th2

cells than WT cells suggests that transcription factors other than

NFAT1 may bind to the accessible IL-4 promoter to transactivate

IL-4 expression. To identify the transcription factors bound at IL-

4 promoter we performed EMSA and Micro-LC/LC-MS/MS

analysis. IL-4 promoter contains binding sites for important

transcription factors [31,32,33] (Fig. 4B). Jurkat T cells (human T

cell lymphoma cell line) or Th2 cells from WT or NFAT1 deficient

cells were stimulated by PMA/ionomycin or anti-CD3 for 6 h,

respectively and then nuclear extracts were prepared. Oligomers

corresponding to P2 (-196 to -163) locus of IL-4 promoter were

incubated with the isolated nuclear proteins and then EMSA

analysis was performed. IkB probe was used as a positive control

for the binding of the NF-kB complex and EF-1 probe was used as

a loading control. The regulatory element P2 was shown to

interact with nuclear proteins of Th2 cells (Fig. 4A). Bands

Table 1. List of oligonucleotide primer sequence (59 to 39).

Sense Antisense Product size (bp)

CHART (Chromatin accessibility real time PCR)

-393 TCAAGGCAGACTTTCTTGATATTACTCTGT AATCAGCACCTCTCTTCCAGGAGAA 279

-195 GTGTTTCATTTTCCAATTGGTCT AATCAGCACCTCTCTTCCAGGAGAA 81

actin AGCACAGCTTCTTTGCAGCTCCTT AGGACCCTGCAGTGAGGTACTA 117

ChIP (Chromatin immunoprecipitation)

-278 GATAAGATTAGTCTGAAAGGCCGATTATG AATCAGCACCTCTCTTCCAGGAGAA 164

-195 GTGTTTCATTTTCCAATTGGTCT AATCAGCACCTCTCTTCCAGGAGAA 81

actin AGCACAGCTTCTTTGCAGCTCCTT AGGACCCTGCAGTGAGGTACTA 117

EMSA

ikB AGCTTCAGAGGGGACTTTCCGAGAGG CCTCTCGGAAAGTCCCCTCTGAAGCT

P1 GGAGGGGTGTTTCATTTTCCAATTGGTCTGATTTC GAAATCAGACCAATTGGAAAATGAAACACCCCTCC

P2 CTGGTGTAATAAAATTTTCCAATGTAAACTCATTT AAATGAGTTTACATTGGAAAATTTTATTACACCAG

RT-PCR

IL-4 CAACGAAGAACACCACAGAG GGACTTGGACTCATTCATGG 192

IL-2 ACCTCTGCGGCATGTTCTGGATTTGACTC CCTCAGAAAGTCCACCACAGTTGCT 169

JunB AGGTGAAGACACTCAAGGCTGAGAA TGACATGGGTCATGACCTTCTGCTT 102

Actin CTGTGGCATCCATGAAACTACATTCAAT AGGAGGAGCAATGATCTTGATCTTCA 145

aLuc constructs

GAAGATCTAAATCTTCAACCTAGCCCAG GGGAAGCTTTTGAGCTTTGTCCCTAGTCC 977

Pyrosequencing analysis

GATATCAGAGTTTCCAAG AGAGAAGGAAGAGGTCACAGGT 140

MeDIP

IL-4 ACAAACTTGTAAGATCAGCTGGTCT ATCTACAAAGTTTCAGCATAGGAAATTA 322

FoxP3 TGCAAAGACCCTAGCTTTACACTTCAGT ACCAAACCATGGACCCTGAGAAAAT 204

actin GGCCAGCGTTTGCCTTTTATGGTAATAAT TATAGCCTTCTTTTGTGTCTTGATAGTTCG 181

aLuc, luciferase.
doi:10.1371/journal.pone.0022042.t001

Diverse Role of NFAT1 in IL-4 Gene Regulation
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showing different mobility pattern between the WT and NFAT1

deficient cells were cut and then the identity of binding proteins

were analyzed by Micro-LC/LC-MS/MS analysis (Table 2).

Jurkat nuclear extract showed the NF-kB complex (lane 1) and

NFAT/AP1 complex (Lane 6) (Fig. 4A). Nuclear extracts of

NFAT1 deficient Th2 cells showed a much stronger signal of

STAT (lane 9), SATB1/JUNB (lane 9) complex incubated with P2

element than WT Th2 cells (Fig. 4A lane 12). Formation of EF-1

binding complex was same between WT and NFAT1. This result

suggests that preferential binding of JUNB/SATB1 to the P2

Figure 2. NFAT1 deficient Th2 cells have more permissive chromatin structure at the IL-4 promoter. (A) For chromatin accessibility
analysis, Th2 cells differentiated in vitro from WT or NFAT1 KO mice were stimulated with anti-CD3 for 6 h. Nuclei isolated from each group and were
incubated with or without 50 U Mnase. Fifty nanograms of genomic DNA from each treatment were subjected to real-time PCR analysis with indicated
primer sets covering IL-4 promoter. The Ct values generated were converted to DNA concentrations by using the standard curve. MNase accessibility
was expressed as a relative value of undigested genomic DNA and plotted for each primer set. Graphs depict the PCR products from digested samples
normalized to the PCR products from undigested samples and show mean 6 SEM, n = 3 and ** P,0.01 for four separate experiments. To measure the
mounts of recruited Pol II and modified histone molecules at the IL-4 promoter, ChIP analysis was performed with antibodies specific for RNA Pol II (B)
and acetyl histone H3 lysine 9/14 (AcH3K9/14), trimethyl histoneH3 lysine 27 (H3K27me3) or isotype matched control IgG (C). Relative amount of
enriched DNA by ChIP was measured by quantitative RT-PCR using the primers spanning the indicated IL-4 promoter region or b-actin region. The graph
represents mean 6 SEM, from four separate experiments and * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0022042.g002

Figure 3. Increased DNA demethylation status at the IL-4 promoter of NFAT1 deficient Th2 cells. Th2 cells from WT or NFAT1 KO mice
were stimulated with anti-CD3 for 6 h or left without stimulation. DNA methylation state at the IL-4 promoter was analyzed by pyrosequencing (Fig.
S2) and ChIP analysis using anti-5mC antibodies specific for methylated DNA at IL-4 promoter (B). FoxP3 and b-actin locus were tested as positive or
negative control, respectively for methylated DNA experiment, (C). The relative amount of enriched methylated DNA was assessed by real-time PCR
analysis. 10% of the input sample was used for PCR amplification and normalized to the input samples from three independent experiments and
* P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0022042.g003

Diverse Role of NFAT1 in IL-4 Gene Regulation
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regulatory element in NFAT1 deficient Th2 cells may mediate

sustained IL-4 expression.

To further test whether the identified proteins by Micro-LC/

LC-MS/MS analysis are also recruited to the IL-4 promoter (P2

region) in vivo, ChIP assay was performed. WT and NFAT1

deficient Th2 cells were stimulated with anti-CD3 for 6 h and

DNA-protein complex were enriched by use of specific antibodies

for SATB1, JUNB, and other cofactors such as P300, PCAF, and

HDAC1. The relative amounts of enriched P2 region from each

ChIP experiment were measured by quantitative RT-PCR.

Indeed, in vivo binding of JUNB, P300, and PCAF to the P2

region of IL-4 promoter were enriched in a stimulation-

dependent manner (Fig. 5). Compared with WT cells, significant

increase of JUNB (Fig. 5A) and PCAF (Fig. 5D) binding in

NFAT1 deficient cells was observed while the level of SATB1

binding (Fig. 5B) was similar between WT and NFAT1 deficient

cells regardless of stimulation. We also analyzed the relative levels

of recruited HDAC1 as a SATB1-interacting partner of repressor

complex. Interestingly, a significant decrease of HDAC1 binding

to the P2 region of IL-4 promoter was observed in NFAT1

deficient cells compared with WT cells in a stimulation-

dependent manner (Fig. 5E). As a negative control for ChIP

experiments, isotype matched normal IgG data was included

(Fig. 5F). This result suggests that in vivo binding of JUNB/

SATB1 together with transcriptional coactivators (P300 and

PCAF) complex to the IL-4 promoter mediates IL-4 expression in

NFAT1 deficient Th2 cells.

SATB1 and JUNB synergistically transactivate the IL-4
promoter

To test the functional role of SATB1 and JUNB recruitment in

vivo to the IL-4 promoter, we performed IL-4 reporter analysis by

measuring luciferase activity driven by IL-4 promoter. IL-4

reporter construct was transfected into HEK cells in the presence

of SATB1 or JunB expression plasmids alone or together, and then

luciferase activity was measured. SATB1 alone failed to activate

IL-4 promoter activity while JunB alone significantly activated it

(Fig. 6A). However, co-transfection of SATB1 with JunB

Figure 4. Identification and analysis of IL-4 promoter-binding transcription factors. EMSA assay was carried out with nuclear extracts
prepared from Th2 cells of WT and NFAT1 KO or from Jurkat cells that were stimulated with anti-CD3 for 6 h or PMA/I for 2 h, respectively (A).
32P-labelled P2 probes were incubated with indicated nuclear extracts. IkB probe containing kB element was used as a positive control and 100 pmol
unlabeled ikB probe was used as a competitor to interfere the complex formation. (2) or (+) indicates in the absence or presence competitor,
respectively. The DNA binding complexes that appeared or were enhanced after stimulation are indicated. Arrows indicate the identified proteins
that bound to the corresponding gel band. Equal loading of nuclear extracts was controlled by using the binding site for the constitutive factor EF-1
as a probe. Identification of DNA-binding transcription factors was carried out by micro-LC/LC-MS/MS analysis as described in Material and Methods.
(B) Predicted DNA binding elements for the P2 region of IL-4 promoter.
doi:10.1371/journal.pone.0022042.g004

Diverse Role of NFAT1 in IL-4 Gene Regulation
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synergistically transactivated IL-4 promoter activity in a dose

dependent manner (Fig. 6A). Since transcription coactivators such

as P300 and PCAF also bind to the IL-4 promoter in vivo (Fig. 5),

we tested whether expression of transcription coactivators (P300

and PCAF) together SATB1/JunB could further enhance the IL-4

promoter activity. Indeed, overexpression of the PCAF and/or

p300 cofactors significantly enhanced transactivation activity

(Fig. 6B). In the formation of transcriptional activation complex,

JUNB may play a pivotal role through interaction with SATB1

and coactivators since SATB1 alone failed to activate IL-4

promoter activity while overexpression of JunB enhanced it in a

dose-dependent manner (Fig. 6A). To further validate the JUNB-

dependent IL-4 gene activation we tested the knockdown effect of

JUNB by using JunB siRNA (si-JunB) in WT and NFAT1 deficient

Th2 cells. We first confirmed that stimulation of Th2 cells with

anti-CD3 significantly upregulated IL-4 expression (Fig. 6C and

Fig. S4A). Then cells were transfected with scrambled or si-JunB.

Overexpression of si-JunB successfully reduced JunB levels (Fig. 6D

and Fig. S4B), which significantly reduced IL-4 transcript levels

compared with mock siRNA treatment (Fig. 6D). These results

suggest that JUNB plays pivotal role to induce IL-4 expression

through coordinated interaction with other coactivators in Th2

cells.

Discussion

NFAT1 is a crucial transcription transcriptional activator and

regulates expression of cytokines and other inducible genes in

immune cells. However, NFAT1 deficiency results in hyperre-

sponsiveness and sustained expression of IL-4 in CD4+ Th2 cells

upon TCR stimulation. In this study, we have investigated the

molecular mechanism of sustained IL-4 gene expression in NFAT1

deficient T helper 2 cells. Our results showed that sustained IL-4

expression in NFAT1 deficient Th2 cells is mediated by enhanced

Table 2. Proteins of interest and their peptide sequences detected by micro LC/LC-MS/MS analysis.

Protein Peptide sequence

Special AT-rich sequence-binding protein-1 (SATB1) R.LLAQQSLNQQYLNHPPPVSR.S R.AGISQAVFAR.V R.TQGLLSEILR.K

Nuclear factor kappa-B (NF-kB) R.YVCEGPSHGGLPGASSEK R.RLEPVVSDAIYDSK.A K.VIVQLVTNGK.N

Jun-B oncogene (JUNB) R.GPGPEGSGAGSYFSGQGSDTGASLK.L R.GASAFKEEPQTVPEAR.S K.AENAGLSSAAGLLR.E

Nuclear factor of activated T-cells (NFAT1) R.IEVQPKPHHR.A

Jun oncogene (c-Jun) R.ELTDTLQAETDQLEDEKSALQTEIANLLK.E

Signal-transducer and activator of transcription protein (STATs) R.GQATQLLEGLVQELQK.K R.LITQDTENELKK.L R.EAQTLQQYR.V K.FLEQVHQLYDDSFPMEIR.Q
R.FHDLLSQLDDQYSR.F R.FHDLLSQLDDQYSR.F R.FSLENNFLLQHNIR.K
R.FNQAQEGNIQNTVMLDK.Q R.ELLNSIELTQNTLINDELVEWK.R K.FTYEPDPITK.N
R.TFLLFQQLIQSSFVVER.Q K.LLGPNAGPDGLIPWTR.F R.EGAITFTWVER.S K.TELISVSEVHPSR.L

- Number indicates the frequency of unique peptide of the detected protein.
doi:10.1371/journal.pone.0022042.t002

Figure 5. In vivo binding of JUNB, SATB1 and cofactors to the IL-4 promoter. Th2 cells from WT or NFAT1 KO mice were stimulated with
anti-CD3 for 6 h or left without stimulation. The relative amount of DNA-protein complex enriched at the P2 locus of IL-4 promoter was analyzed by
ChIP using control normal IgG (F) or specific antibodies for JUNB (A), SATB1 (B), and other cofactors such as P300 (C), PCAF (D) and HDAC1 (E). Relative
enrichment at the P2 locus of IL-4 promoter in the precipitated samples compared to total chromatin (input) is shown. Data are representative of
three independent experiments and * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0022042.g005

Diverse Role of NFAT1 in IL-4 Gene Regulation
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chromatin accessibility with permissive histone modification and

DNA demethylation in the IL-4 promoter. Furthermore, prefer-

ential recruitment of JUNB/SATB1 with transcriptional coacti-

vators (PACF and P300) to the IL-4 promoter mediates continual

IL-4 expression in the absence of NFAT1.

NFAT is a family of transcription factors composed of five

proteins. These include NFAT1 (NFATp, NFATc2), NFAT2

(NFATc, NFATc1), NFAT3 (NFATc4), NFAT4 (NFATx,

NFATc3), and NFAT5 (TonEBP: tonicity element binding protein

or OREBP: osmotic response element binding protein). The role

of NFAT1 as a transcriptional activator has been well documented

in regulation of diverse target genes including cytokines and

costimulatory factors [1]. Depending on their binding partners,

however, the transcriptional activity of NFATs can be varied as an

activator or inhibitor. For example, coupling with AP-1 (composed

of Fos and Jun proteins) or MEF2 activates gene expression while

in the absence of cooperative binding with AP-1 in the nucleus or

alternative binding with histone deacetylases (HDACs) turns on a

negative regulatory gene program [34,35]. Specific role of NFAT

proteins were investigated by knockout mice models [36]. NFAT1

is a predominant NFAT protein in T cells [7] and mainly

enhances cytokine expression including IL-4 by lowering the

threshold for TCR-mediated activation [14]. Interestingly,

however, disruption of NFAT1 enhanced IL-4 expression

especially at the later stage of stimulation. What is the underlying

mechanism of IL-4 gene regulation in the absence of NFAT1? In

addition, how come IL-4 gene expression is more sustained in

NFAT1 deficient Th2 cells than WT? Since NFAT1 also works as

Figure 6. SATB1 and JUNB synergistically transactivate IL-4 promoter with other cofactors. (A) IL-4 reporter construct was transfected
into HEK cells in the presence of different amount (0, 0.2 mg (+) or 0.4 (++) mg) of SATB1 or JunB expression plasmid alone or both of them, and then
luciferase activity was measured. In each transfection, 0.1mg of TK-luciferase plasmid was added as an internal control for normalization of
transfection efficiency. Transfected cells were harvested after 24 h in reporter lysis buffer, and analyzed for luciferase activity. (B) IL-4 reporter
construct was transfected into HEK cells, in duplicate, with 0.2 mg of STATB1/JunB expression plasmids, in the absence or presence of 0.2 mg of p300
or/and PCAF expression plasmids. In each transfection, 0.1 mg of TK-luciferase plasmid was added and total DNA was maintained at 0.8 mg by
addition of the appropriate amounts of pcDNA3 control plasmid. After 24 h, cells were harvested and analyzed for firefly and Renilla luciferase
activities. Values were normalized to Renilla activities. The graphs in A-B represents mean 6 SEM, n = 3 and * P,0.05, ** P,0.01. Data are
representative of three independent experiments. (C) Th2 cells from WT or NFAT1 deficient were left without stimulation or stimulated for 6 h. The
expression levels of JunB and IL-4 were measured by RT-PCR. (D) Th2 cells from WT and NFAT1 deficient mice were transfected with scrambled mock
siRNA (Mock) or JunB specific siRNA (si-JunB) and then specific knockdown efficiency of JunB and its effect on IL-4 expression level was measured by
RT-PCR. Data are representative of three independent experiments and * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0022042.g006
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a transcription repressor by interacting with repressor proteins we

hypothesized that in the absence of NFAT1, changes in the

chromatin structure at the IL-4 promoter might be different

between WT and NFAT1 deficient Th2 cells. Indeed, chromatin

accessibility at the IL-4 promoter was significantly increased in

NFAT1 deficient cells compared with WT cells (Fig. 2A), which is

further confirmed by the enhanced recruitment of phospho-Pol II

in NFAT1 deficient Th2 cells (Fig. 2B). In addition, permissive

chromatin architecture related with epigenetic modification

showed a close correlation. Compared with WT cells, there was

enhanced modification of active chromatin marker histones

(AcH3K4Me2, AcH3K9/14). In addition, reduction of methylat-

ed DNA and H3K27me3 was observed in NFAT1 deficient Th2

cells compared with WT (Fig. 2C). Interestingly, significant

reduction of HDAC1 recruitment was observed in NFAT1

deficient cells than WT upon stimulation (Fig. 5E). It seems that

NFAT1 may act not only as an activator during the immediate

early time (,1 h) after stimulation in WT cells, but also as an

inhibitory molecule at later time points (.1 h) in Th2 cells (Fig.1),

possibly through interaction of HDAC1. Few studies suggest the

potential role of NFAT as a transcription repressor through

interaction of HDAC molecules. A reduction in acetylation of

histone H3 within the CDK4 promoter and direct association of

NFAT1 with HDAC1 suppressed cyclin-dependent kinase 4 (cdk4)

gene expression [37]. NFAT1 deficient mice showed increased

expression of type II and type X collagen [38]. In addition, in our

own studies on the transcription regulation of IL-10 gene in T

cells, we found that HDAC1 is constitutively associated with intron

4 [39] and promoter (Lee et al, unpublished) of the IL-10 gene in

Th1 cells, which may contribute to Th1-specific silencing of IL-10

expression in CD4+ T cells.

In the absence of NAFT1 which transcription factors mediate

IL-4 expression by binding to the IL-4 promoter? To answer this

question we performed EMSA-based Micro-LC/LC-MS/MS

analysis and following proteins were identified such as special

AT-rich sequence-binding protein-1 (SATB1), nuclear factor

kappa-B (NF-kB), Jun-B oncogene (JUNB), NFAT, Jun oncogene

(c-Jun), signal-transducer and activator of transcription protein

(STAT) (Table 2). Interestingly, the list of identified proteins were

matched well with the predicted data by bioinformatic analysis

[40] (Fig. 4B). Among the identified proteins, JUNB, SATB1 and

STAT were specifically enriched in NFAT1 deficient nuclear

extract compared with WT Th2 cells (Fig. 4A). The appearance of

this complex means that the NFAT1 complex is replaced at the IL-

4 promoter by other transcriptional factor complexes after long

term (6 h) stimulation. This complex might influence the

regulation of IL-4 expression. JUNB also was identified as the

partner of SATB1. JUNB is an abundant and inducible protein

expressed in Th2 cells and has a cooperative role of SATB1 in IL-

4 expression (Fig. 6A). Indeed, ChIP analysis showed the in vivo

binding of JUNB and SATB1 at the IL-4 promoter (Fig. 5).

Interestingly, preferential binding of JUNB was observed in

NFAT1 deficient cells compared with WT Th2 cells while SATB1

binding levels were same between them (Fig. 5). In addition, no

significant difference in the nuclear levels of SATB1 was observed

between the cells (Fig. S3A). Among the JUNB and SATB1

proteins, JUNB may play a pivotal role in transactivation of the IL-

4 gene expression. Overexpression of JUNB significantly activated

IL-4 promoter activity while knockdown of JUNB reduced IL-4

expression. In JUNB-mediated IL-4 promoter activation, SATB1

may play a synergistic role to activate JUNB function rather than

transactivate IL-4 promoter activity by itself since overexpression

of SATB1 alone failed to enhance IL-4 promoter activity (Fig. 6A).

SATB1 organizes cell type specific nuclear architecture by

anchoring specialized DNA sequences and recruiting chromatin

remodeling factors to regulate gene transcription [41]. It is also

required for expression of IL-4, IL-5, and IL-13 in a Th2 type

specific manner by rapidly inducing a transcriptionally active

chromatin structure at the cytokine locus [28,29]. Therefore,

recruitment of JUNB together with SATB1 may help to form an

active chromatin complex at the IL-4 promoter. Indeed, enriched

P300 and PCAF were observed at the IL-4 promoter in a

stimulation dependent manner (Fig. 5). SATB1 interacts with both

P300 and P300/CBP-associated factor (PCAF), a transcriptional

coactivator with intrinsic histone acetylase activity [28]. Indeed,

overexpression of transcription coactivators (P300 and PCAF)

together with SATB1/JUNB further enhanced the IL-4 promoter

activity (Fig. 6B). In addition, sustained IL-4 expression levels in

NFAT1 deficient cells was well correlated with enhanced in vivo

binding of PCAF, P300 and JUNB (Fig. 5) and acetylated histones

(AcH3K9/14) (Fig. 2C) levels.

We also tested a possibility that in the absence of NFAT1, other

NFAT members expressed in CD4 T cells could have compen-

satory function to mediate sustained IL-4 expression in NFAT1

deficient Th2 cells. However no significant increase of NFAT2 or

NFAT4 was observed in NFAT1 deficient Th2 cells compared

with WT (Fig. S5A). In line with the previously published data,

NFAT1 deficiency did not alter the nuclear levels of JUNB and

IRF4, the NF-kB family (p65 and p50) and Pol II (Fig. S5A). We

also confirmed a similar nuclear JUNB level between WT and

NFAT1 deficient Th2 cells by confocal microscopy analysis (Fig.

S5B).

In conclusion, we have shown here that the sustained IL-4

expression in NFAT1 deficient Th2 cells is the result of permissive

chromatin changes through hyperacetylation of histones and

enhanced DNA demethylation in the IL-4 promoter. In addition,

preferential binding of JUNB with transcriptional coactivators to

the IL-4 promoter mediated sustained IL-4 expression in NFAT1

deficient Th2 cells.

Materials and Methods

Animals
C57BL/6 mice were purchased from SLC (Hamamatsu, Japan)

and NFAT1-/- mice were kindly provided by Dr. Anjana Rao

(Boston, Harvard Medical School). Mice were housed in specific

pathogen-free barrier facilities. All animal procedures were

performed with the approval of Animal Care and Ethics

Committees of the Gwangju Institute of Science and Technology

(permit number: GIST-2008-12).

Cell lines and primary T cells
Jurkat T cells E6.1 were purchased from American Type

Culture Collection (ATCC, MA, USA) (Cat. Number; TIB-152).

CD4+ T cells were purified from the spleen of 8-10-week-old

female mice with the use of magnetic beads (L3T4 MicroBeads;

Miltenyi Biotec, (Auburn, CA, USA)). For Th2 differentiation,

naı̈ve CD4+ cells (16106/ml) were stimulated with 1 mg/ml plate-

bound anti-CD3e under Th2-skewing (10 ng/ml IL-4, 10 mg/ml

anti-IFN-c plus 10 mg/ml anti-IL-12) conditions in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum, L-glutamine, penicillin-streptomycin, nonessential

amino acids, sodium pyruvate, vitamins, HEPES, and 2-

mercaptoethanol. At 24 h after stimulation, 10 U/ml recombinant

human IL-2 (rhIL-2) was added, and the cells were expanded in

complete medium containing IL-2 for 4 days. On day 6 after

resting for 2 days, the cells were re-stimulated with plate-bound

1 mg/ml anti-CD3. Recombinant human IL-2 and IL-4 (11B11)
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were provided by the National Cancer Institute, Preclinical

Repository. Anti-IFN-c (XMG1.2) and anti-IL-12 (C17.8) were

obtained from BD Biosciences (San Jose, CA) and anti-CD3

(145.2C11) and anti-CD28 (37.51) were from Pharmingen (San

Diego, CA, USA).

RNA isolation and quantitative real-time PCR
Total RNA was purified by using TRI Reagent purchased from

Invitrogen. For reverse transcription, cDNA was generated by

using 1 mg of total RNA plus oligo-dT and Improm-II Reverse

Transcriptase (Promega, WI, USA) according to the manufactur-

er’s instructions in a total volume of 20 ml. The mRNA level of IL-

4 was determined by real-time PCR with SYBR green by using a

protocol provided by the manufacturer (MJ Research Chromo 4).

One microliter of cDNA was amplified by using the RT-PCR

primer sets shown in Table 1. Expression levels were normalized

to b-actin amplification levels in each sample.

Chromatin accessibility by real-time PCR (CHART-PCR)
Chromaitn accessibility assays were performed as decribed [42]

with minor modifications. Approximately 26106 nuclei in 100 ul

nuclear digestion buffer (10 mM Tris-HCl pH 7.4, 15 mM NaCl,

60 mM KCl, 0.15 mM spermine, 0.5 mM spermidine, 1 mM

CaCl2) plus 5 U/ml micrococcal nuclease (MNase; Roche, Basel,

Switzerland) were incubated at 25uC for 10 min. Reactions were

terminated with 20 ml stop solution (100 mM EDTA, 10 mM

EGTA pH 8.1) and 10 ml 10% (w/v) SDS. DNA was isolated

using a DNA blood genomic prep kit (Intron, Deageon, Korea)

and eluted into 100 ml TE. DNAs recovered from MNase samples

were checked for fragmentation in a 1% agarose gel. Untreated

MNase samples were used in PCR assays to measure the relative

abundance of target regions by using the primer sets shown in

Table 1. To calculate the Ct value of each primer set, a standard

curve was generated by using serial dilutions of genomic DNA.

Chromatin accessiblity values were calculated as a ratio of the

undigested sample to the digested samples, and then the data were

plotted as the ratio of acessibility observed in the unstimulated

digested DNA samples.

Chromatin immunoprecipitation assay
The chromatin immunoprecipitation (ChIP) assay was per-

formed essentially as described [39] with minor modifications.

ChIP analysis was performed against SATB1, JUNB, P300,

PCAF, and HDAC1 from Abcam (Cambridge, UK), RNA Pol II

(Millipore, Temecula, CA; 05-623) and AcH3K9/27, H3K27me3,

or rabbit IgG antibodies from Upstates (Temecula, CA, USA).

Methylated DNA immunoprecipitation was performed as previ-

ously described [32;33] using anti-5-methylcytosine (anti-5mC)

antibodies (Diagenode, Liege, Belgium). Fragmented DNA by

Bioruptor was immunoprecipated using anti-5mC purchased from

Diagenode (Liege, Belgium). Samples were used for RT-PCR

analysis. Three independent experiments were performed. As a

loading control, PCR was performed directly on input DNA

purified from chromatin before immunoprecipitation. Quantifica-

tion of IL-4 promoter fragment following ChIP was performed by

real-time quantitative PCR. For normalization, 1% of ‘input’

DNA from each sample was analyzed in parallel and the amount

of IL-4 DNA in each sample was calculated using the equation

2-(Ct
sample

-Ct
input

)[43], where Ct is cycle threshold [43]. Real-time

PCR detection system was carried out in triplicate. Primer

sequences are shown in Table 1. ChIP assays were used to ensure

that Ct values from samples DNA with specific antibodies resulted

from specific immunoprecipitation.

Pyrosequencing analysis
The promoter region of IL-4 (2450 , 2310) was amplified

by using the forward primer and the biotinylated reverse primer

(Table 1) designed by PSQ Assay Design (Biotage AB, Uppsala,

Sweden). Genomic DNA (20 ng) was modified by sodium

bisulfite with the EZ DNA Methylation kit (ZYMO Research,

CA, USA) according to the manufacturer’s instructions. Bisulfite-

modified DNA was amplified in a 25 ml reaction with the primer

set and 5 U/reaction of Taq polymerase (Solgent Co., Daejeon,

Korea). Samples were heated to 95uC for 10 min and were then

amplified for 40 cycles consisting of 95uC for 45 s, 55uC for 35 s,

and 72uC for 60 s. All reactions were then incubated at 72uC for

10 min and cooled to 4uC. The PCR products were visualized

on a 1.5% agarose gel by ethidium bromide staining for veri-

fication. Pyrosequencing reactions were done with sequencing

primers on the PSQ HS 96A System (Biotage AB, Anaheim, CA)

according to the manufacturer’s specifications. The methylation

index of each gene promoter and of each sample was calculated

as the average value of mC̃(mC+C) for all examined CpGs in the

target region. Statistical correlations between the methylation

index and the clinical variables recorded were made by using

SPSS version 11.

Computational analysis of the conserved nucleotide
sequence locus

Analysis of the sequences for transcription factor binding sites was

performed with the MatInspector professional program (Genomatix

Software, Munich, Germany) [40] by using the selected matrix

library (vertebrate section) and optimized thresholds.

Nuclear extract isolation and electrophoretic mobility
shift assay

Electrophoretic mobility shift assay (EMSA) analysis was

performed by using oligonucleotides corresponding to sequences

in the NFAT/kb site in the IL-4 promoter. The oligonucleotides

shown in Table 1 and the consensus kB oligonucleotide were

purchased from Promega (Madison, WI). Complementary oligo-

nucleotide pairs were annealed in 100 mM NaCl, 10 mM Tris

pH 8.0, 0.1 mM EDTA buffer by heating to 95uC for 10 min and

cooling slowly to the annealing temperature. Double-stranded

oligonucleotides were end-labeled with [c-32P] ATP and T4

polynucleotide kinase (Promega, Madison, WI). Labeled oligonu-

cleotides were purified by use of a microspin G-50 column

(275330, Amersham Biosciences, Uppsala, Sweden). Nuclear

extracts were prepared from Jurkat cells stimulated for 2 h with

phorbol myristate acetate (PMA)/ionomycin (P/I) and Th2 cells

stimulated with anti-CD3 for 6 h. Twenty million cells were

washed in PBS and suspended in buffer A (10 mM HEPES,

1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT; 500 ml) with

protease inhibitor cocktail (Roche: Mannheim,, Germany) and

5 mM b-glycerol phosphate. After 5 min of incubation on ice,

release of nuclei was assessed by Trypan blue staining. Nuclei were

sedimented in a microcentrifuge for 10 s at 4uC and were then

resuspended in 2 pellet volumes of buffer C (20 mM HEPES, 25%

glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, with

inhibitor cocktail). The total volume of the nuclei was measured.

One volume of buffer C containing 840 mM NaCl was added, and

then nuclei were extracted for 20 min on ice, with occasional

mixing. After determination of protein concentrations of the

nuclear extracts by BCA assay (Bio-Rad: (Benicia-CA, USA)),

nuclear extract (10 ug) was added to binding buffer (10 mM Tris

pH 7.5, 0.5 mM MgCl2, 80 mM NaCl, 2.5 mM DTT, 4%

glycerol, 1 mM b-mercaptoethanol, 20 ml) in the presence or
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absence of the labeled probes. For the competition assay, a 20-fold

molar excess of the unlabeled probe was added and the samples

were preincubated for 20 min. After 1 h of incubation on ice, the

binding complexes were run in a 5% polyacrylamide gel in 0.25

TBE buffer (50 mM Tris, Boric acid, 1 mM EDTA pH 8, 4%

glycerol) at 30 mA for 3 h at 4uC following pre-running at the

same condition for 1 h.

Transient transfection assay and plasmids
IL-4 minimal promoter locus (2632,327) was amplified by

PCR and cloned into pGL4 basic vector. SATB1/JunB and

cofactors, p300 or/and PCAF expression plasmids were obtained

from Korean Unigene Information (KUGI, Daejeon, Korea), and

DNA sequences of each vector were confirmed by DNA

sequencing analysis (Solgent Co., Daejeon, Korea). HEK cells

were transfected by using Fugene 6 (Roche, Germany). An

amount of 0.3 mg of the promoter luciferase reporter vector and

0.1 mg of pRL-TK resuspended in 100 ml containing 0.6 ml

Fugene6 reagents was added to 26106 HEK-T cells. After a

16 h culture, rested cells were treated with 50 ng/ml PMA and

1 mM ionomycin for 6 h, and luciferase activity was measured by

the dual luciferase assay system (Promega: Madison, WI)

according to the manufacturer’s instructions. Data were normal-

ized by the activity of Renilla luciferase.

Micro-LC/LC-MS/MS Analysis
To ideintify and charactrize the transcription factors bound to

IL-4 promoter, micro-LC/LC-MS/MS analysis was performed

essentially as described [44] with minor modifications. The

nuclear extracts in Jurkat T cells or Th2 cells differentiated above

mentioned method were prepared. After running, polyacrylamide

gel were isolated corresponding to X-film band and then gel bands

showing differential mobility shift were cut and analyzed by micro-

LC/LC-MS/MS analysis. The identity of peptides were analyzed

by protein database search [45].

Statistical analysis
P values of ,0.05 obtained with a two-tailed Student t-test were

considered significant. Single asterisks (*) indicate p,0.05; double

asterisks (**) indicate p,0.005.

Supporting Information

Figure S1 Sustained IL-4 expression in NFAT1 deficient
Th2 cells. (A) Th2 cells differentiated from WT or NFAT1

deficient CD4+T cells were left without stimulation or stimulated

with anti-CD3 (a-CD3) for indicated time periods. The relative

amount of nuclear NFAT1 protein levels was analyzed by Western

blot. The effect of cyclosporine A (CsA), a calcineurin inhibitor,

was also measured by adding CsA 30 min before stimulation.

Lamin B level was measured as an internal control for nuclear

protein extract. (B) The amount of IL-4 protein level from Th2

cells stimulated with a-CD3 for 36 h was measured by ELISA (B).

Data shown are the mean 6 SEM, from four separate experiments

and * P,0.05.

(TIF)

Figure S2 Increased DNA demethylation status at the
IL-4 promoter of NFAT1 deficient Th2 cells. Th2 cells from

WT or NFAT1 KO mice were stimulated with anti-CD3 for 6 h

or left without stimulation. DNA methylation state at the IL-4

promoter was analyzed by pyrosequencing. (A) The two targeted

cytosines are underlined in original and converted sequences. (B)

‘T’ peaks (arrowed) indicate methylated cytosine while ‘C’

indicates unmethylated cytosine. The positive control, non-CpG

cytosine residue showing complete conversion of cytosine to uracil

by bisulphite treatment (asterisk) and non reactive C residue in

yellow as negative control. First cytosine residue is unchanged in

WT and NFAT KO upon stimulation, while second cytosine

residue demonstrates a significant change in methylation. The

Methylation Index (MtI) percentage is calculated as the average

rate of G incorporation at each CpG. One representative of three

independent experiments is shown.

(TIF)

Figure S3 Constitutive expression of SATB1. Th2 cells

differentiated from WT or NFAT1 deficient CD4+ T cells were left

without stimulation or stimulated with anti-CD3 for 6 h. The

relative level of nuclear SATB1 was analyzed by Western blot.

Tubulin and LaminB1 were used as controls.

(TIF)

Figure S4 Pivotal role of JUNB in IL-4 gene expression.
(A) Th2 cells from WT or NFAT1 deficient were left without

stimulation or stimulated for 6 h. The expression levels of JunB

and IL-4 were measured by agarose gel electophoresis. (B) Th2

cells from WT and NFAT1 deficient mice were transfected with

scrambled mock siRNA (Mock) or JunB specific siRNA (si-JunB)

and then specific knockdown efficiency of JunB and its effect on

IL-4 expression level was measured by agarose gel electrophoresis.

(TIF)

Figure S5 No significant increase of NFAT2, NFAT4,
JUNB and other transcription factor in NFAT1 deficient
Th2 cells. (A) Th2 cells from WT or NFAT1 deficient were left

without stimulation or stimulated for 6 h and then relative levels of

diverse transcription factors using nuclear extract were compared

by Western analysis. (B). Immunocytochemistry was performed to

compare the nuclear levels of JUNB between WT and NFAT1

deficient Th2 cells after stimulation with a-CD3 for 0 or 6 h.

FluoView microscope was used to analyze the stained cells; JUNB

(FITC, blue), 7-Aminoactinomycin D (7-AAD, nuclear, red),

merged (pink) and DIC (differential interference contrast).

(TIF)

Author Contributions

Conceived and designed the experiments: SHI ZYP. Performed the

experiments: JSS CSC JSH. Analyzed the data: ZYP SHI. Contributed

reagents/materials/analysis tools: ZYP SHI. Wrote the paper: JSS SHI.

References

1. Macian F (2005) NFAT proteins: key regulators of T-cell development and

function. Nat Rev Immunol 5: 472–484.

2. Feske S, Rao A, Hogan PG (2007) The Ca2+-calcineurin-NFAT signalling

pathway. New Comprehensive Biochemistry 41: 365–401.

3. Garrity PA, Chen D, Rothenberg EV, Wold BJ (1994) Interleukin-2

transcription is regulated in vivo at the level of coordinated binding of both

constitutive and regulated factors. Mol Cell Biol 14: 2159–2169.

4. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by

calcium, calcineurin, and NFAT. Genes & Development 17: 2205–2232.

5. Loh C, Carew JA, Kim J, Hogan PG, Rao A (1996) T-cell receptor stimulation

elicits an early phase of activation and a later phase of deactivation of the

transcription factor NFAT1. Mol Cell Biol 16: 3945–3954.

6. Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR (1996)

Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosup-

pression. Nature 383: 837–840.
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