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ABSTRACT

Purpose: Chronic rhinosinusitis with nasal polyps (CRSwNP) can be classified into eosinophilic 
CRSwNP (eCRSwNP) and non-eosinophilic CRSwNP (non-eCRSwNP) by tissue biopsy, which is 
difficult to perform preoperatively. Clinical biomarkers have predictive value for the classification 
of CRSwNP. We aimed to evaluate the application of artificial neural network (ANN) modeling in 
distinguishing different endotypes of CRSwNP based on clinical biomarkers.
Methods: Clinical parameters were collected from 109 CRSwNP patients, and their predictive 
ability was analyzed. ANN and logistic regression (LR) models were developed in the training 
group (72 patients) and further tested in the test group (37 patients). The output variable was 
the diagnosis of eCRSwNP, defined as tissue eosinophil count > 10 per high-power field. The 
receiver operating characteristics curve was used to assess model performance.
Results: A total of 15 clinical features from 60 healthy controls, 60 eCRSwNP and 49 
non-eCRSwNP were selected as candidate predictors. Nasal nitric oxide levels, peripheral 
eosinophil absolute count, total immunoglobulin E, and ratio of bilateral computed 
tomography scores for the ethmoid sinus and maxillary sinus were identified as important 
features for modeling. Two ANN models based on 4 and 15 clinical features were developed 
to predict eCRSwNP, which showed better performance, with the area under the receiver 
operator characteristics significantly higher than those from the respective LR models 
(0.976 vs. 0.902, P = 0.048; 0.970 vs. 0.845, P = 0.011). All ANN models had better fits than 
single variable prediction models (all P < 0.05), and ANN model 1 had the best predictive 
performance among all models.
Conclusions: Machine learning models assist clinicians in predicting endotypes of nasal 
polyps before invasive detection. The ANN model has the potential to predict eCRSwNP 
with high sensitivity and specificity, and is superior to the LR model. ANNs are valuable for 
optimizing personalized patient management.
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INTRODUCTION

Chronic rhinosinusitis (CRS) is a chronic inflammatory disease that occurs in the nasal 
mucosa and is fairly prevalent in the otolaryngology department. The overall prevalence 
of CRS in the general population in Europe is 10.9% (range 6.9%–27.1%), while in China 
it is 8.0%.1,2 CRS can be classified into CRS with nasal polyps (CRSwNP) and CRS without 
nasal polyps (CRSsNP) based on polyp status.3 Research in this area has shown that 
patients with CRSwNP have worse prognosis than those with CRSsNP.4 CRSwNP is a highly 
heterogeneous disease. Based on observed eosinophil infiltration, it can be categorized 
into 2 main endotypes, one is eosinophilic CRSwNP (eCRSwNP) and the other is non-
eosinophilic CRSwNP (non-eCRSwNP).5 The prevalence of eCRSwNP varies across the world. 
In particular, the reported prevalence of eCRSwNP in CRSwNP populations ranged from 
65% in Asia to 91% in Europe.6,7 It has previously been observed that eCRSwNP has shown an 
upward trend in Asia lately and eosinophilic inflammation has been significantly augmented 
in CRSwNP patients from central China.8-10

The eCRSwNP is also characterized by severe symptoms, a high likelihood of resistance to 
treatment, and frequent disease recurrence.11 Patients with eCRSwNP usually have higher 
levels of immunoglobulin E (IgE), higher prevalence of atopic disease, and greater prevalence 
and severity of comorbidities such as allergic rhinitis and asthma.3,9 Another feature of 
eCRSwNP is the efficacy of glucocorticoid therapy.12 Therefore, glucocorticoid therapy would 
be helpful to identify these kinds of patients in an early phase, in order to guide overall 
long-term management. Tissue analysis remains the gold standard for the classification of 
eCRSwNP and non-eCRSwNP. However, tissue biopsy is invasive and unbearable within the 
outpatient setting or before surgery.

ECRSwNP was associated with Th2 and IgE-mediated allergic responses.10 Therefore, clinical 
parameters, such as blood eosinophilia, total serum IgE, computed tomography (CT) score, 
erythrocyte sedimentation rate, and C-reactive protein, have been used for predicting 
eCRSwNP in previous researches.13-15 Previous studies have demonstrated that peripheral 
eosinophil absolute count (PEAC) played a strong predictive role in eCRSwNP.14,16 What is more, 
asthma and allergic rhinitis are type 2 inflammation-mediated diseases that are closely related 
to CRS-related inflammation. Studies have found that the comorbidity rate of asthma and 
allergic rhinitis were higher in the eCRSwNP subgroup than in the non-eCRSwNP subgroup.17,18 
However, Hu et al.19 found that although the association of eCRSwNP with asthma is widely 
accepted, there was no significant statistical difference between the rate of coexistence of 
asthma in eosinophilic and non-eCRSwNP. Nitric oxide (NO) is synthesized by L-arginine and 
oxygen through NO synthase from the upper and lower airways. The fractional concentration 
of exhaled NO (FeNO) is recommended as a routine test item in the diagnosis and treatment 
of asthma, since it is a non-invasive biomarker reflecting eosinophilic inflammation in lower 
airway inflammation.20 Recent research has also shown that FeNO was elevated in patients with 
eCRS instead of non-eCRS patients, and showed a strong correlation with Lund-Mackay scores 
in eCRS patients.21 Similarly, a number of studies suggested that nasal nitric oxide (nNO) is 
higher in eCRSwNP than in healthy people, and it is a predictive clinical marker of eosinophilic 
upper airway inflammation.22,23 Whereas Yoshida et al.24 demonstrated that nNO levels were 
markedly decreased in eCRS and negatively correlated with eosinophil levels and CT score. For 
the time being, however, the role of nNO in different subtypes of nasal polyps is not yet known 
and it has not been widely used in the domain of rhinology.
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Identifying endotypes of CRSwNP with a noninvasive approach will be of vital importance for 
precision medicine in the era of targeted biotherapies. A sensitive and specific noninvasive 
predictive strategy for identifying patients with eCRSwNP will contribute to patients’ 
prognosis predication and long-term management. Logistic regression (LR) models are 
frequently used in building predictive models. Artificial neural network (ANN) is a subset 
of artificial intelligence in the computing system that has been applied in the bio-medical 
field with splendid results, assisting in the detection and classification of certain types of 
diseases.25,26 In the past 5 years, the amount of novel applications of machine learning in the 
field of otolaryngology has increased sharply; nevertheless, its practical uses in rhinology 
remain restricted.27 Here, we aimed to assess the diagnostic accuracy of these 2 methodologies 
(LR and ANN) in predicting eCRSwNP on the basis of clinical and radiological variables.

MATERIALS AND METHODS

Study population
A total of 109 adult patients (> 18 years) diagnosed with CRSwNP according to the European 
Position Paper on Rhinosinusitis and Nasal Polyps 2020 (EPOS 2020),3 who had undergone 
functional endoscopic sinus surgery (FESS) for the treatment were enrolled in our study 
from January 2021 to December 2021. Sixty subjects in the control group, were those who 
underwent septoplasty surgery during the same period without any other inflammatory 
sinonasal diseases. At the time of surgery, polyp samples were collected from CRSwNP 
patients and fixed in formalin, preparing for hematoxylin and eosin (H&E) staining. Patients 
at age < 18 years, diagnosed with immunodeficiency, granulomatosis with polyangiitis, 
choanal polyp, cystic fibrosis, allergic fungal sinusitis and coagulation disorder, or pregnancy 
were excluded. This study was approved by the Ethics Committee of Renmin Hospital of 
Wuhan University (WDRY2021-K084) and written informed consents were signed by all 
subjects. All clinical data were anonymized before data analysis.

Clinical data collection
Demographic characteristics were recorded as potential medical variables before surgery, 
which contained the patient’s age and sex, asthma, allergic rhinitis, patient-reported allergy, 
and previous sinus surgery. To access the severity of CT findings on the paranasal sinuses, 
the paranasal sinus CT scanning was performed before surgery and evaluated by a senior 
otolaryngologist according to the Lund-Mackay CT grading system in a blinded fashion.28 
Opacification of each sinus was graded as 0, no opacification; 1, partial opacification; and 
2, full opacification. The total ethmoid sinus score (E score), maxillary sinus score (M 
score), and E/M ratio were calculated. Since scores cannot be divided by 0 for the E/M ratio 
calculation, one point was added to each sinus score as the basal level.29 An E/M ratio > 
1 indicated that opacification of the ethmoid sinus was greater than that of the maxillary 
sinus. A blood sample was taken before FESS and measured for a certain number of potential 
clinical parameters including eosinophils count, eosinophil percent, and total IgE levels. 
Levels of FeNO and nNO were measured with a nanocoulomb NO analyzer (Sunvou, Wuxi, 
China) based on the American Thoracic Society/European Respiratory Society guidelines.20 
FeNO was measured at an aspiration flow rate of 50 mL/s, while nNO was accessed at a 
aspiration flow rate of 5 mL/s. Both were measured 3 times and the mean of the 3 values 
was used for analysis. The demographic and clinical characteristics of enrolled subjects are 
presented in Table 1.
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Input variable selection and outcome definition
Demographic and clinical factors were selected as candidate predictors to establish the 
prediction models. Variables for inclusion were carefully chosen, given the clinical relevance 
combined with feature importance or statistical significance, to ensure parsimony of the 
final model. In this work, the Boruta algorithm and univariate LR analysis were utilized to 
filter features for model building. The former is an all-relevant feature selection wrapper 
algorithm, while the latter is a traditional statistical analysis-based method. The Boruta 
algorithm offers variable importance by comparing the Z-score of each variable to that of 
the “shadow feature,”30 Shadow features were obtained from the random forest model in 
each iteration by duplicating and shuffling the real features sequentially. The Z-score of 
each attribute was calculated and any Z-score of a real feature higher than the maximal 
Z-score of shadow features was considered “important.” Boruta algorithm was performed 
using the “Boruta” package in R®.30 Univariate LR analysis was performed in the training 
cohort to identify the independent determinants of eCRSwNP, variables with a P value < 
0.05 on univariate analysis were introduced into a multivariate model. A P value < 0.05 was 
considered statistically significant.

The output value of the models was the probability of positive biopsy results ranging between 
0 (no probability of eCRSwNP) and 1 (100% probability of eCRSwNP). Tissue eosinophil 
count > 10 eosinophils per high-power field (HPF) on 3 randomly selected HPFs was recorded 
as a positive biopsy result, as described by EPOS 2020.3 Polyp specimens were processed with 
H&E staining and assessed by a pathologist blinded to the clinical data.

Model development
The entire data was divided into 2 new sets by simple random sampling, with two-thirds (n 
= 72) assigned to training sets and one-third (n = 37) assigned to test sets. Selected variables 
were entered into LR model 1 and ANN model 1, respectively. In addition, all 15 variables 
were entered into LR model 2 and ANN model 2, respectively. The output variable was the 
diagnosis of eCRSwNP. Binary LR and ANN models were developed from the training data 

70

ANN Predicts Eosinophilic CRSwNP

https://doi.org/10.4168/aair.2023.15.1.67https://e-aair.org

Table 1. Baseline characteristics of the study population
Characteristics Normal (n = 60); 1 eCRSwNP (n = 60); 2 Non-eCRSwNP (n = 49); 3 P

1 vs. 2 1 vs. 3 2 vs. 3
Gender, male 47 (78.3) 43 (71.7) 34 (69.4) 0.528 0.379 0.835
Age (yr) 35.00 (25.25–45.50) 38.50 (31.25–53.00) 44.00 (29.00–58.00) 0.142 0.039 > 0.999
Smoking 10 (16.7) 15 (25.0) 13 (26.5) 0.369 0.243 > 0.999
Drinking 6 (10.0) 9 (15.0) 6 (12.2) 0.582 0.765 0.784
Patient-reported allergy 7 (11.7) 6 (10.0) 4 (8.2) > 0.999 0.751 > 0.999
Patients with AR 0 (0) 13 (21.7) 5 (10.2) < 0.001 0.016 0.127
Patients with asthma 0 (0) 7 (11.7) 4 (8.2) 0.013 0.038 0.751
Patients with prior sinus surgery 1 (1.7) 8 (13.3) 9 (18.4) 0.032 0.005 0.597
Lund-Mackay score - 15.00 (10.25–20.00) 13.00 (9.50–20.00) - - 0.654
E/M ratio - 2.00 (1.69–3.00) 1.67 (1.00–2.00) - - < 0.001
Laboratory

PEAC (/μL) 110.00 (60.00–180.00) 365.00 (190.00–525.00) 130.00 (65.00–220.00) < 0.001 > 0.999 < 0.001
PEP (%) 1.70 (1.20–2.88) 5.65 (2.25–8.48) 2.40 (1.10–3.75) < 0.001 0.751 < 0.001
Total IgE (IU/mL) 44.20 (18.50–102.55) 151.00 (31.45–447.25) 34.20 (17.70–86.65) 0.001 > 0.999 < 0.001
FeNO (ppb) 15.00 (11.00–21.75) 25.50 (17.00–46.00) 21.00 (12.50–36.00) < 0.001 0.080 0.490
nNO (ppb) 255.00 (192.25–374.50) 283.50 (170.00–412.00) 147.00 (81.50–234.00) > 0.999 < 0.001 < 0.001

Values are presented as number (%) or median (interquartile range). Statistically significant values are identified in boldface. Bonferroni-adjusted P values were 
provided in multiple comparisons among 3 groups.
eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; non-eCRSwNP, non-eosinophilic chronic rhinosinusitis with nasal polyps; AR, allergic rhinitis; 
E/M ratio, ratio of bilateral computed tomography scores for the ethmoid sinus and maxillary sinus; PEAC, peripheral eosinophil absolute count; PEP, peripheral 
eosinophil percentage; IgE, immunoglobulin E; FeNO, fractional concentration of exhaled nitric oxide; nNO, nasal nitric oxide; ppb, parts per billion.



and tested for diagnostic ability via the receiver operating characteristic (ROC) curve in the 
test dataset. Sensitivity, specificity, and accuracy were accessed by the confusion matrixes 
of the 2 models. ANNs were developed with a single hidden layer using sigmoid activation 
functions without boosting. The learning rate of ANN was set at 0.1 and evaluated by the one-
third holdback method.

Assessment of the models
Area under the receiver operator characteristic (AUC) curve was used to assess model 
discrimination. The confusion matrixes of the 2 models were created based on the optimal 
cutoff values to evaluate sensitivity, specificity, positive predictive values (PPVs), negative 
predictive values (NPVs), positive likelihood ratio (PLR), accuracy, precision, and F1-score (F1). 
The calculation formula of each index was as follows: sensitivity: TP/(TP + FN), specificity; 
TN/(FP + TN), PPV and precision; TP/(TP + FP), NPV: TN/(TN + FN), PLR; Sensitivity/
(1 − Specificity), accuracy; and (TP + TN)/(TP + TN + FP + FN), F1 = 2 Precision×Sensitivity/
(Precision+Sensitivity). In the above statements, TP is true positive, FN is false negative, 
FP is false positive, TN is true negative. The Hanley-McNeil test was used to compare the 
ROC curves of different models. ROC analyses were computed by MedCalc, version 20.0.22 
(MedCalc software, Mariakerke, Belgium).

Statistical analysis
Continuous variables were explored for parametric distribution by the Kolmogorov-Smirnov 
test. As all data are non-normally distributed, continuous variables were presented as median 
and interquartile ranges. A Kruskal-Wallis test with the Dunn post hoc test was used to assess 
significant intergroup variability among 3 groups and the Mann-Whitney U test was used for 
between-group comparisons. Categorical variables were tested by the χ2 test (or Fisher’s exact 
test, if appropriate). For multiple comparisons among 3 groups, Bonferroni’s correction was 
used and adjusted P values were provided. Binary LR was evaluated using the likelihood ratio 
χ2 statistic. The odds ratio (OR) and 95% confidence intervals (CIs) were calculated for each 
parameter. All statistical analyses and machine learning modeling was carried out by JMP 
Pro, version 16.0.0 (SAS Institute Inc., Cary, NC, USA). Any P value of < 0.05 was considered 
statistically significant.

RESULTS

Demographic and clinical characteristics of the subjects
A total of 109 adult patients diagnosed with CRSwNP and 60 healthy controls were included 
in this study; study subjects were identified as having all the input and output variables 
(Fig. 1). All patients with confirmed CRSwNP were grouped after assessment of mucosal 
eosinophils by H&E staining (Fig. 2). Based on the histological criteria for eCRSwNP, 60 
patients were classified into the eCRSwNP group and 49 patients were classified into the non-
eCRSwNP group. The demographic and clinical characteristics of the subjects are given in 
detail in Table 1. The 3 groups had a similar sex ratio, drinking history, smoking, and patient-
reported allergy. Compared with controls, patients with eCRSwNP had higher comorbidity of 
asthma and allergic rhinitis as well as higher PEAC, peripheral eosinophil percentage (PEP), 
total serum IgE, and nNO levels. Patients in the non-eCRSwNP group were slightly older than 
the healthy controls but did not differ from the eCRSwNP group. In addition, non-eCRSwNP 
patients had higher nNO level as well as higher incidence of AR comorbidity and prior sinus 
history compared to controls. In the comparison between the eCRSwNP and non-eCRSwNP 
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groups, E/M ratio, PEAC, PEP, serum total IgE, and nNO level of eCRSwNP patient group 
were all significantly higher than in the non-eCRSwNP patient group, reflecting a Th2 
mediated allergic responses of the disease.
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Study subjects (n = 169)

Normal
(n = 60)

eCRSwNP
(n = 60)

Non-eCRSwNP
(n = 49)

CRSwNP patients (n = 109)

eCRSwNP
(n = 60)

Non-eCRSwNP
(n = 49)

Statistical analysis

Randomized allocation

Predictor selection

Hanley-McNeil test

1. Binary logistic regression
2. Artificial neural network

Training set (n = 72)

eCRSwNP
(n = 39)

Non-eCRSwNP
(n = 33)

Test set (n = 37)

eCRSwNP
(n = 21)

Non-eCRSwNP
(n = 16)

Fig. 1. Study flow chart. Schematic illustration of analysis flow for developing and evaluating models. 
eCRSwNP, eosinophilic chronic rhinosinusitis with nasal polyps; non-eCRSwNP, non-eosinophilic chronic 
rhinosinusitis with nasal polyps.

A B

Fig. 2. Representative hematoxylin and eosin staining of nasal polyps in CRSwNP. (A) Nasal polyps in non-
eosinophilic CRSwNP; (B) Nasal polyps in eosinophilic CRSwNP. Original magnification: 400×. 
CRSwNP, chronic rhinosinusitis with nasal polyps.



Predictors associated with endotypes of CRSwNP
In this study, a total of 15 demographic and clinical factors were selected as candidate 
predictors of eCRSwNP. The result of feature selection based on the Boruta algorithm is 
shown in Fig. 3A. In order of Z-scores, 5 “important” variables were nNO, PEAC, E/M ratio, 
total IgE, and PEP. Meanwhile, the univariate LR analysis revealed that nNO levels (OR, 
1.009; 95% CI, 1.004–1.015; P < 0.001), PEAC (OR, 1.003; 95% CI, 1.001–1.005; P = 0.009), 
PEP (OR, 1.171; 95% CI, 1.028–1.335; P = 0.017), total IgE (OR, 1.005; 95% CI, 1.001–1.009; 
P = 0.013), E/M ratio (OR, 1.995; 95% CI, 1.151–3.456; P = 0.014), were associated with 
endotypes of CRSwNP (Table 2). As a result, the outcome of the Boruta algorithm was 
in accord with that of the univariate analysis. The PEAC and PEP were positively and 
significantly correlated, with a Spearman correlation coefficient equal to 0.886 (P < 0.001, 
data not shown). Since PEAC showed better performance, with higher feature importance 
and a higher AUC than PEP in the training set (0.725 vs. 0.700, P = 0.438, data not shown), 
we preferred using the PEAC rather than the PEP for inclusion in the subsequent model 
construction to avoid collinearity. The multivariate LR model confirmed that nNO level (OR, 
1.015; 95% CI, 1.006–1.023; P = 0.001), PEAC (OR, 1.003; 95% CI, 1.001–1.005; P = 0.033), 
and total IgE (OR, 1.009; 95% CI, 1.001–1.017; P = 0.025) were significantly associated with 
endotypes of CRSwNP (Table 2). For the E/M ratio, it showed an OR of 1.524 with a P value 
of 0.269 in our study. Many studies have confirmed that it was an indicator of a diagnosis of 
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Fig. 3. Boruta screening feature results and diagram of artificial neural network models. (A) Feature selection based on the Boruta algorithm. The horizontal 
axis is the name of each variable and the vertical one is the Z-score of each variable. The green boxplots represent the first 5 important variables and the 
red represents unimportant variables. Blue boxplots correspond to minimal, average, and maximum Z-score of a shadow attribute, which are automatically 
generated by the algorithm and are not included in the analysis. (B) Artificial neural network model 1 with 4 input nodes: nNO, PEAC, E/M ratio and total IgE. (C) 
Artificial neural network model 2 with 15 input nodes. The output nodes of the 2 ANN models were the probability of eCRSwNP on biopsy. x: input value; b: bias; 
y: output value. 
nNO, nasal nitric oxide; PEAC, peripheral eosinophil absolute count; E/M ratio, ratio of bilateral computed tomography scores for the ethmoid sinus and 
maxillary sinus; IgE, immunoglobulin E; PEP, peripheral eosinophil percentage; FeNO, fractional concentration of exhaled nitric oxide; AR, allergic rhinitis.



eCRSwNP.15,22,23 The results of our study may be attributed to the small sample size and the 
indirect correlation of E/M ratio with eCRSwNP. Finally, 4 variables including nNO, PEAC, 
E/M ratio, and total IgE were included as indicators in the model 1 construction.

ANN and LR models
The demographic and clinical characteristics of the training and test groups are outlined 
in Supplementary Table S1. Data from the training and test sets were comparable, with no 
significant difference in baseline characteristics between the 2 groups (all P > 0.05). Four 
independent predictors of eCRSwNP including nNO, PEAC, total IgE, and E/M ratio were 
used as input variables of ANN model 1 and LR model 1, respectively. Table 3 shows the 
performance of the univariate ROC analysis for the 4 selected variables in the test dataset. 
The AUC of LR model 1 was 0.902 (95% CI, 0.758–0.975) in the test group. The sensitivity of 
LR model 1 for the prediction of eCRSwNP was 0.714 and the specificity was 0.813. LR model 
1 had a PPV of 0.833, an NPV of 0.684, and an F1 of 0.769. LR model 1 yielded an accuracy 
of 0.757, indicating the correct prediction of 28 out of the 37 patients (Table 4, Fig. 4A). 
ANN model 1 with 4 input nodes, 6 nodes in the hidden layer, and one output neuron was 
established (Fig. 3B). ANN model 1 had an AUC of 0.976 (95% CI, 0.864–1.000) in the test 
set, with sensitivity and specificity of 0.904 and 0.938, respectively. Moreover, ANN model 
1 had a PPV of 0.950, an NPV of 0.882, and the F1 was 0.927, indicating a good predictive 
power. Meanwhile, 34 out of 37 cases were correctly predicted, which reflected an accuracy 
rate of 0.919 (Table 4, Fig. 4B).
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Table 2. Univariate and multivariate analyses of clinical characteristics associated with eosinophilic chronic rhinosinusitis with nasal polyps in training dataset
Variables Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P
Gender, male 0.875 0.331–2.315 0.788
Age (yr) 1.007 0.975–1.040 0.679
Smoking 2.200 0.676–7.158 0.190
Drinking 8.258 0.975–69.96 0.053
Patient-reported allergy 1.771 0.303–10.347 0.525
Patients with AR 1.445 0.423–4.938 0.557
Patients with asthma 2.279 0.412–12.609 0.345
Patients with prior sinus surgery 0.424 0.112–1.604 0.206
Lund-Mackay score 1.030 0.955–1.111 0.442
E/M ratio 1.995 1.151–3.456 0.014 1.524 0.722–3.218 0.269
Laboratory

PEAC (/μL) 1.003 1.001–1.005 0.009 1.003 1.001–1.005 0.033
PEP (%) 1.171 1.028–1.335 0.017
Total IgE (IU/mL) 1.005 1.001–1.009 0.013 1.009 1.001–1.017 0.025
FeNO (ppb) 1.004 0.994–1.015 0.414
nNO (ppb) 1.009 1.004–1.015 < 0.001 1.015 1.006–1.023 0.001

Statistically significant values are identified in boldface.
CI, confidence interval; OR, odds ratio (unstandardized odds ratios were provided). AR, allergic rhinitis; E/M ratio, ratio of bilateral computed tomography 
scores for the ethmoid sinus and maxillary sinus; PEAC, peripheral eosinophil absolute count; PEP, peripheral eosinophil percentage; IgE, immunoglobulin E; 
FeNO, fractional concentration of exhaled nitric oxide; nNO, nasal nitric oxide; ppb, parts per billion.

Table 3. Univariate receiver operating characteristic curve analysis of predictors associated with eosinophilic chronic rhinosinusitis with nasal polyps in the test 
dataset
Univariate models Cutoff AUC (95% CI) Sensitivity Specificity PPV NPV PLR DOR
Univariate nNO 189.0 0.746 (0.576–0.874) 0.714 0.750 0.789 0.667 2.857 7.500
Univariate PEAC 280.0 0.817 (0.656–0.924) 0.667 0.875 0.875 0.667 5.333 14.000
Univariate total IgE 85.6 0.808 (0.645–0.919) 0.667 0.938 0.933 0.682 10.667 30.000
Univariate E/M ratio 2.0 0.653 (0.479–0.802) 0.667 0.625 0.700 0.588 1.778 3.333
AUC, area under the receiver operator characteristic; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; PLR, positive 
likelihood ratio; DOR, diagnostic odds ratio; nNO, nasal nitric oxide; PEAC, peripheral eosinophil absolute count; IgE, immunoglobulin E; E/M ratio, ratio of 
bilateral computed tomography scores for the ethmoid sinus and maxillary sinus.



All the 15 clinical and biological parameters were used to build LR model 2 and ANN model 2 to 
predict eCRSwNP. ANN model 2 consisted of 15 input nodes, 8 nodes in the hidden layer, and 
one output neuron (Fig. 3C). The performance of model 2 is presented in Table 4. ANN model 2 
had a high AUC of 0.970 (95% CI, 0.854–0.999), compared to that of LR model 2, with an AUC 
of 0.845 (95% CI, 0.689–0.943). The test sensitivity of LR model 2 was 0.810; specificity, 0.688; 
and accuracy, 0.757, with 28 out of the 37 patients correctly predicted (Fig. 4C). For ANN model 
2, the test sensitivity was 0.905; specificity, 0.875; and accuracy, 0.892, with 33 out of the 37 
patients correctly predicted (Fig. 4D).
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Table 4. Model performance of ANNs and LRs in test dataset
Prediction models AUC (95% CI) Sensitivity Specificity PPV NPV PLR Accuracy Precision F1
LR model 1 0.902 (0.758–0.975) 0.714 0.813 0.833 0.684 3.810 0.757 0.833 0.769
ANN model 1 0.976 (0.864–1.000) 0.904 0.938 0.950 0.882 14.476 0.919 0.950 0.927
LR model 2 0.845 (0.689–0.943) 0.810 0.688 0.773 0.733 2.591 0.757 0.773 0.791
ANN model 2 0.970 (0.854–0.999) 0.905 0.875 0.905 0.875 7.238 0.892 0.905 0.905
ANN, artificial neural network; LR, logistic regression; AUC, area under the receiver operator characteristic curve; CI, confidence interval; PPV, positive 
predictive values; NPV, negative predictive value; PLR, positive likelihood ratio.
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Fig. 4. Confusion matrixes of the LR and ANN models in the test dataset. (A) The LR model 1-based confusion 
matrix. (B) The ANN model 1-based confusion matrix. (C) The LR model 2-based confusion matrix. (D) The ANN 
model 2-based confusion matrix. 
ANN, artificial neural network; LR, logistic regression.



Model performances
ANN and LR models were evaluated in the test datasets. The diagnostic details of all models 
are shown in Table 4. ROC curves of all models based on the test sets are shown in Fig. 5. 
Current evidence was quite strong to suggest that the ANN models had better classification 
performance for the prediction of eCRSwNP. Both ANN model 1 and 2 showed better 
performance, with AUCs significantly higher than those from the respective LR models 
(0.976 vs. 0.902, P = 0.048; 0.970 vs. 0.845, P = 0.011; Supplementary Table S2). Plus, ANNs 
outperformed LRs in all the other evaluation metrics. The F1s of ANNs remained largely 
higher than the respective LR models (0.927 vs. 0.769; 0.905 vs. 0.791). Meanwhile, the PPV 
of ANNs was higher than the respective LRs model (0.950 vs. 0.833; 0.905 vs. 0.773) in the 
test cohort, resulting in a PLR of 14.476 in ANN model 1 and a PLR of 7.238 in ANN model 2, 
this reflected a good predictive power of ANN models for eCRSwNP patients. For the 2 LR 
models, PLRs remained < 5, indicating low predictive power. In addition, although ANN and 
LR models had AUCs greater than 4 univariate models, we found that only the AUC of ANN 
was statistically higher than any univariate model in the test population according to the 
Hanley-McNeil test (all P < 0.05) (Supplementary Table S2). However, the AUC for the LR 
model 1 and univariate analyses using the PEAC and IgE were not statistically different in the 
test population (P = 0.289 and P = 0.155, respectively), what is worse, there was no significant 
difference in AUC between LR model 2 and any of the 4 univariate analyses (all P > 0.05) 
(Supplementary Table S2).

Models 1 and 2 were chosen to see whether working with fewer inputs would have the same 
performance as working with all inputs. Theoretically, dealing with more inputs slows down 
algorithms, takes too many resources, and is inconvenient for practical model building. 
In our study, LR model 1 had an AUC higher than LR model 2 (0.902 vs. 0.845, P = 0.222), 
meanwhile, the ANN model 1 had an AUC slightly higher than the ANN model 2 (0.976 vs. 
0.970, P = 0.830). It would thus appear that the inclusion of more inputs did not result in 
improved model performance. It was probably the incorporation of weakly relevant variables 
which led to a decrease in the performance of model 2.
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DISCUSSION

LR and ANN are 2 of the most commonly used tools for developing predictive models for 
dichotomous outcomes in medicine.31 The current research is a preliminary study of using 
machine learning algorithms to identify eCRSwNP with multiple remarkable features. We 
collected as many clinical markers related to CRSwNP diagnosis as possible. Finally, the 
predictive significance of nNO, PEAC, total IgE, and E/M ratio was identified by the Boruta 
algorithm and univariate and multivariate analyses.

Our study demonstrated that nNO levels were lower in CRSwNP patients than in normal 
controls and that the eCRSwNP group had an elevated level of nNO compared with the 
non-eCRSwNP group, while there was no difference between patients with CRSwNP and 
rhinologically healthy population. The Boruta algorithm revealed that nNO had the highest 
Z-score, indicating that nNO was a powerful predictor for eCRSwNP diagnosis. This result 
seemed to be in accord with earlier studies.22,32 Because of compromised ostiomeatal 
patency and mucosal eosinophilic inflammation, there is an elevated nNO level locally in the 
nasal cavity, although nNO is less stable than FeNO, it is becoming a popular biomarker of 
upper airway diseases. In addition, PEAC was incorporated into modeling. Our results are 
consistent with those of previous reports that PEAC is closely related to CRSwNP, the more 
eosinophils in peripheral blood; the more likely it is to be diagnosed with eCRSwNP.16 We 
found that PEAC ranked second in the Boruta screening feature results. When PEAC was 
280.0/μL in the test set, ROC analysis achieved an AUC of 0.817, with a sensitivity of 0.667 
and a specificity of 0.875. However, PEAC is not convincing enough as a lone predictor, 
because of its susceptibility to different diseases and health states.

Exposure to inhalant allergens and other microorganisms increases IgE production in 
CRSwNP patients, exacerbating inflammatory progression. In recent years, omalizumab, a 
monoclonal antibody that targets IgE, has become more and more widely used in patients 
with sinusitis and nasal polyps.33 However, Ho et al.14 suggested that there was no significant 
correlation between tissue eosinophilia and total IgE, nor with any allergen-specific IgE. 
On the contrary, we identified that the mean serum total IgE levels were much higher in 
the eCRSwNP population than in the control and non-eCRSwNP. Univariate LR revealed an 
ideal serum IgE cutoff of 85.6 IU/mL to predict eCRSwNP with an AUC of 0.808 in the test 
cohort. It had moderate sensitivity (0.667), high specificity (0.938) and PPV (0.933). The 
feature importance of total IgE was found to be the lowest of the 4 parameters investigated, 
indicating that IgE had a low predictive value in this study cohort. Overall, the results 
demonstrated that while total IgE was relevant to eCRSwNP, its utility as a single predictive 
marker for tissue eosinophilia was still limited.

Several studies have shown that CT scanning may be helpful in the diagnosis of 
eCRSwNP.15,34,35 The opacification of the M usually reflects the pathological changes of non-
eCRSwNP, while polyposis and mucosal edema usually appear around the middle turbinate 
in eCRSwNP, indicating that inflammation mainly occurs in the anterior and posterior 
ethmoid sinuses, which is usually presented as the opacity of the ethmoid sinuses on CT 
scans.29 Therefore, a CT scan showing a high E/M ratio would be indicative of a diagnosis of 
eCRSwNP. In the present study, we identified a higher ratio in the eCRSwNP group instead 
of the non-eCRSwNP group, which was in accord with the results of previous studies.15,23 
Additionally, the Boruta algorithm confirmed the E/M ratio as an important variable. 
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According to univariate analysis, the E/M ratio had an AUC of 0.653 with a PLR of 1.778, 
indicating a relatively low predictive power of the E/M ratio in the test cohort.

Although the above 4 variables were closely related to eCRSwNP and univariate analysis 
demonstrated that they had independent predictive values, they were not sufficiently valuable 
to predict tissue eosinophils alone due to the heterogeneity of a single variable in different 
populations and its susceptibility to different health conditions. ECRSwNP has skewed Th2 
inflammation, strong allergic responses, and poor prognosis. Categorizing endotypes of 
CRSwNP is of vital importance due to its relevance to different clinical decisions. A variety of 
scoring systems and LR models were used to predict mucosal eosinophilic status; however, 
there was often no reference to verification.23,35

Machine learning is a state-of-the-art method for developing predictive algorithms in 
clinical practice; nevertheless, the application of ML in otorhinolaryngology is relatively 
new, especially in the field of rhinology. ANNs are composed of interconnected groups of 
artificial neurons and weighted connections.36 Compared to LR, the main advantage of ANN 
is that it can efficiently model different response surfaces by building enough hidden nodes 
and layers. The distribution of data in ANN models is not restricted, allowing researchers to 
make the most use of data information. ANN can be widely used in the fields of prediction 
and analysis due to its fault tolerance. What is more, the ANN model can deal with large 
amounts of data, which can help us manage complex clinical situations in clinical practice.37 
Many studies have indicated that ANNs are powerful tools for assisting the clinician in the 
diagnosis and prognosis of various diseases.38-40 Tong et al.41 stated that ANNs are convenient 
and reliable models that outperformed LR models in accurately predicting the survival of 
unresectable pancreatic cancer. However, Kawakami et al.42 indicated that the LR model 
has a superior accuracy in predicting prostate cancer than the ANN. So far, there are rarely 
applications of ANN in the field of rhinology.

Our results can be compared with those of the study of Thorwarth et al.43 that explored the 
eCRS prediction using ANN and LR models. In their study, peripheral eosinophil count, 
polyp status, and urinary leukotriene E4 (uLTE4) level were used as predictive variables and 
two-thirds of the participants were allocated to a training set (54 patients), while one-third 
were assigned to a testing set (26 patients). The predictive power of the 2 approaches was 
compared, with the results indicating that ANN did not have significantly better predictive 
value than LR. The results of that study were different from those of our study that ANN model 
1 outperformed not only the univariate analyses but also LR model 1. The heterogeneous 
input variables and patient populations might partly account for the differences between 
the 2 studies. Instead of using uLTE4 as an input variable, our study utilized commonly used 
clinical parameters selected from 15 candidate predictors, including parameters reflecting 
eosinophilic inflammation from peripheral blood, respiratory system, and radiology for 
building a model, which is more convenient for clinical use at the present stage.

In the present study, we explored the potential of using ANN with appropriate input variables 
for eCRSwNP. The ANN models had better performance than the respective LR models 
and any univariate analysis, which suggested that ANN can be used as a powerful predictive 
tool that supplements clinical judgment. Some studies demonstrated that non-significant 
variables still play important roles in prediction.42,44 Therefore, we established 2 sets of 
models with different numbers of input variables to compare model performance, to help 
with clinical decision-making. Model 1 was built on 4 strictly selected variables, while model 
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2 was built based on all 15 variables. ANN model 1 had the best performance, followed by 
ANN model 2, LR model 1, and LR model 2. We found that carefully selected inputs helped 
develop better predictive models. This is not surprising as the incorporation of some noisy 
variables interferes with the whole model. Moreover, a predictive model with fewer features 
makes it easier for practical model building and clinical practice. ANN model 1 performed the 
best and the number of characters needed to be collected was acceptable, so we recommend 
ANN model 1 to clinicians.

The presented study has some advantages as well as limitations. The advantages are as 
follows: first of all, the variables incorporated in models were non-invasive, repeatable, and 
readily available in clinical practice without adding additional clinical burden to patients. 
Secondly, ANN help predict eCRSwNP more accurately, thereby optimizing patients’ precise 
treatment and achieving personalized management. Thirdly, the baseline characteristics and 
clinical parameters in the training and test datasets were comparable, and the testing cohort 
exhibited convincing performance. Several limitations that must be noted as well. Firstly, 
the ANN is often referred to as a “black box” process,37 which has intermediate layers rather 
than a direct path from the input variables to the output variables, the results of ANN models 
are not easily interpretable. Secondly, model testing was only performed on 37 patients at 
a single center. Further research, including larger-scale and multi-institutional datasets, 
is needed to validate our model in subtyping endotypes of CRSwNP. Finally, our study 
was a cross-sectional study rather than a longitudinal one, which inevitably leads to some 
confounding factors that cannot be eliminated in the study.

In conclusion, nNO, PEAC, total IgE, and E/M ratio were independent predictors for the 
prediction of tissue eosinophilia in eCRSwNP patients. A convenient and reliable ANN in this 
study has shown promise in predicting CRSwNP endotypes, and the model testing showed 
that the prediction accuracy of ANN was superior to that of the LR model. Our model may 
help clinicians use a non-invasive approach for identifying disease endotypes at early stages.

ACKNOWLEDGMENTS

The authors thank all participants in this study for their enthusiastic cooperation.

SUPPLEMENTARY MATERIALS

Supplementary Table S1
Comparison of baseline characteristics by training and test datasets

Click here to view

Supplementary Table S2
Values of P for comparison of area under the receiver operator characteristic between all 
prediction models in the test cohort

Click here to view

79

ANN Predicts Eosinophilic CRSwNP

https://doi.org/10.4168/aair.2023.15.1.67https://e-aair.org

https://e-aair.org/DownloadSupplMaterial.php?id=10.4168/aair.2023.15.1.67&fn=aair-15-67-s001.xls
https://e-aair.org/DownloadSupplMaterial.php?id=10.4168/aair.2023.15.1.67&fn=aair-15-67-s002.xls


REFERENCES

 1. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, et al. Chronic rhinosinusitis 
in Europe--an underestimated disease. A GA2LEN study. Allergy 2011;66:1216-23. 
PUBMED | CROSSREF

 2. Shi JB, Fu QL, Zhang H, Cheng L, Wang YJ, Zhu DD, et al. Epidemiology of chronic rhinosinusitis: results 
from a cross-sectional survey in seven Chinese cities. Allergy 2015;70:533-9. 
PUBMED | CROSSREF

 3. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European position paper on 
rhinosinusitis and nasal polyps 2020. Rhinology 2020;58:1-464. 
PUBMED | CROSSREF

 4. Sella GC, Tamashiro E, Sella JA, Aragon DC, Mendonça TN, Arruda LK, et al. Asthma is the dominant 
factor for recurrence in chronic rhinosinusitis. J Allergy Clin Immunol Pract 2020;8:302-9. 
PUBMED | CROSSREF

 5. Ishitoya J, Sakuma Y, Tsukuda M. Eosinophilic chronic rhinosinusitis in Japan. Allergol Int 2010;59:239-45. 
PUBMED | CROSSREF

 6. Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H, et al. Diversity of TH cytokine profiles in patients 
with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 
2016;138:1344-53. 
PUBMED | CROSSREF

 7. Wang W, Gao Y, Zhu Z, Zha Y, Wang X, Qi F, et al. Changes in the clinical and histological characteristics 
of Chinese chronic rhinosinusitis with nasal polyps over 11 years. Int Forum Allergy Rhinol 2019;9:149-57. 
PUBMED | CROSSREF

 8. Luo X, Xu Z, Zuo K, Deng J, Gao W, Jiang L, et al. The changes of clinical and histological characteristics 
of chronic rhinosinusitis in 18 years: was there an inflammatory pattern shift in southern China? World 
Allergy Organ J 2021;14:100531. 
PUBMED | CROSSREF

 9. Wang ET, Zheng Y, Liu PF, Guo LJ. Eosinophilic chronic rhinosinusitis in East Asians. World J Clin Cases 
2014;2:873-82. 
PUBMED | CROSSREF

 10. Jiang WX, Cao PP, Li ZY, Zhai GT, Liao B, Lu X, et al. A retrospective study of changes of histopathology of 
nasal polyps in adult Chinese in central China. Rhinology 2019;57:261-7. 
PUBMED | CROSSREF

 11. McHugh T, Snidvongs K, Xie M, Banglawala S, Sommer D. High tissue eosinophilia as a marker to predict 
recurrence for eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Int Forum 
Allergy Rhinol 2018;8:1421-9. 
PUBMED | CROSSREF

 12. Konno W, Kashiwagi T, Tsunemi Y, Goto K, Haruna S. Long-term postoperative control of eosinophilic 
chronic rhinosinusitis recurrence by inserting a steroid-eluting, sinus-bioabsorbable device reduces the 
dosage of oral steroid. Auris Nasus Larynx 2019;46:365-73. 
PUBMED | CROSSREF

 13. Ho J, Hamizan AW, Alvarado R, Rimmer J, Sewell WA, Harvey RJ. Systemic predictors of eosinophilic 
chronic rhinosinusitis. Am J Rhinol Allergy 2018;32:252-7. 
PUBMED | CROSSREF

 14. Ho J, Earls P, Harvey RJ. Systemic biomarkers of eosinophilic chronic rhinosinusitis. Curr Opin Allergy 
Clin Immunol 2020;20:23-9. 
PUBMED | CROSSREF

 15. Meng Y, Lou H, Wang C, Zhang L. Predictive significance of computed tomography in eosinophilic 
chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2016;6:812-9. 
PUBMED | CROSSREF

 16. Zhong B, Yuan T, Du J, Tan K, Yang Q, Liu F, et al. The role of preoperative blood eosinophil counts in 
distinguishing chronic rhinosinusitis with nasal polyps phenotypes. Int Forum Allergy Rhinol 2021;11:16-23. 
PUBMED | CROSSREF

 17. Yu L, Jiang Y, Yan B, Fang G, Wang C, Zhang L. Predictive value of clinical characteristics in eosinophilic 
chronic rhinosinusitis with nasal polyps: a cross-sectional study in the Chinese population. Int Forum 
Allergy Rhinol 2022;12:726-34. 
PUBMED | CROSSREF

 18. McHugh T, Levin M, Snidvongs K, Banglawala SM, Sommer DD. Comorbidities associated with eosinophilic 
chronic rhinosinusitis: a systematic review and meta-analysis. Clin Otolaryngol 2020;45:574-83. 
PUBMED | CROSSREF

80

ANN Predicts Eosinophilic CRSwNP

https://doi.org/10.4168/aair.2023.15.1.67https://e-aair.org

http://www.ncbi.nlm.nih.gov/pubmed/21605125
https://doi.org/10.1111/j.1398-9995.2011.02646.x
http://www.ncbi.nlm.nih.gov/pubmed/25631304
https://doi.org/10.1111/all.12577
http://www.ncbi.nlm.nih.gov/pubmed/32077450
https://doi.org/10.4193/Rhin20.401
http://www.ncbi.nlm.nih.gov/pubmed/31425833
https://doi.org/10.1016/j.jaip.2019.08.007
http://www.ncbi.nlm.nih.gov/pubmed/20657162
https://doi.org/10.2332/allergolint.10-RAI-0231
http://www.ncbi.nlm.nih.gov/pubmed/27544740
https://doi.org/10.1016/j.jaci.2016.05.041
http://www.ncbi.nlm.nih.gov/pubmed/30499225
https://doi.org/10.1002/alr.22234
http://www.ncbi.nlm.nih.gov/pubmed/33995817
https://doi.org/10.1016/j.waojou.2021.100531
http://www.ncbi.nlm.nih.gov/pubmed/25516863
https://doi.org/10.12998/wjcc.v2.i12.873
http://www.ncbi.nlm.nih.gov/pubmed/30801072
https://doi.org/10.4193/Rhin18.070
http://www.ncbi.nlm.nih.gov/pubmed/30091850
https://doi.org/10.1002/alr.22194
http://www.ncbi.nlm.nih.gov/pubmed/30241892
https://doi.org/10.1016/j.anl.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/29862828
https://doi.org/10.1177/1945892418779451
http://www.ncbi.nlm.nih.gov/pubmed/31688152
https://doi.org/10.1097/ACI.0000000000000602
http://www.ncbi.nlm.nih.gov/pubmed/27060677
https://doi.org/10.1002/alr.21749
http://www.ncbi.nlm.nih.gov/pubmed/32634298
https://doi.org/10.1002/alr.22636
http://www.ncbi.nlm.nih.gov/pubmed/34569170
https://doi.org/10.1002/alr.22901
http://www.ncbi.nlm.nih.gov/pubmed/32243094
https://doi.org/10.1111/coa.13536


 19. Hu Y, Cao PP, Liang GT, Cui YH, Liu Z. Diagnostic significance of blood eosinophil count in eosinophilic 
chronic rhinosinusitis with nasal polyps in Chinese adults. Laryngoscope 2012;122:498-503. 
PUBMED | CROSSREF

 20. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical 
practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J 
Respir Crit Care Med 2011;184:602-15. 
PUBMED | CROSSREF

 21. Kambara R, Minami T, Akazawa H, Tsuji F, Sasaki T, Inohara H, et al. Lower airway inflammation in 
eosinophilic chronic rhinosinusitis as determined by exhaled nitric oxide. Int Arch Allergy Immunol 
2017;173:225-32. 
PUBMED | CROSSREF

 22. Lv H, Liu PQ, Xiang R, Zhang W, Chen SM, Kong YG, et al. Predictive and diagnostic value of nasal nitric 
oxide in eosinophilic chronic rhinosinusitis with nasal polyps. Int Arch Allergy Immunol 2020;181:853-61. 
PUBMED | CROSSREF

 23. Zhu M, Gao X, Zhu Z, Hu X, Zhou H, Liu J. The roles of nasal nitric oxide in diagnosis and endotypes of 
chronic rhinosinusitis with nasal polyps. J Otolaryngol Head Neck Surg 2020;49:68. 
PUBMED | CROSSREF

 24. Yoshida K, Takabayashi T, Imoto Y, Sakashita M, Narita N, Fujieda S. Reduced nasal nitric oxide levels in 
patients with eosinophilic chronic rhinosinusitis. Allergol Int 2019;68:225-32. 
PUBMED | CROSSREF

 25. Imbalzano E, Orlando L, Sciacqua A, Nato G, Dentali F, Nassisi V, et al. Machine learning to calculate 
heparin dose in COVID-19 patients with active cancer. J Clin Med 2021;11:219. 
PUBMED | CROSSREF

 26. Checcucci E, Autorino R, Cacciamani GE, Amparore D, De Cillis S, Piana A, et al. Artificial intelligence 
and neural networks in urology: current clinical applications. Minerva Urol Nefrol 2020;72:49-57. 
PUBMED | CROSSREF

 27. Crowson MG, Ranisau J, Eskander A, Babier A, Xu B, Kahmke RR, et al. A contemporary review of 
machine learning in otolaryngology-head and neck surgery. Laryngoscope 2020;130:45-51. 
PUBMED | CROSSREF

 28. Lund VJ, Kennedy DW. Staging for rhinosinusitis. Otolaryngol Head Neck Surg 1997;117:S35-40. 
PUBMED | CROSSREF

 29. Sakuma Y, Ishitoya J, Komatsu M, Shiono O, Hirama M, Yamashita Y, et al. New clinical diagnostic criteria 
for eosinophilic chronic rhinosinusitis. Auris Nasus Larynx 2011;38:583-8. 
PUBMED | CROSSREF

 30. Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw 2010;36:1-13. 
CROSSREF

 31. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for 
predicting medical outcomes. J Clin Epidemiol 1996;49:1225-31. 
PUBMED | CROSSREF

 32. Frendø M, Håkansson K, Schwer S, Ravn AT, Meteran H, Porsbjerg C, et al. Exhaled and nasal nitric oxide 
in chronic rhinosinusitis patients with nasal polyps in primary care. Rhinology 2018;56:59-64. 
PUBMED | CROSSREF

 33. Gevaert P, Saenz R, Corren J, Han JK, Mullol J, Lee SE, et al. Long-term efficacy and safety of omalizumab 
for nasal polyposis in an open-label extension study. J Allergy Clin Immunol 2022;149:957-965.e3. 
PUBMED | CROSSREF

 34. Hopkins C, Browne JP, Slack R, Lund V, Brown P. The Lund-Mackay staging system for chronic 
rhinosinusitis: how is it used and what does it predict? Otolaryngol Head Neck Surg 2007;137:555-61. 
PUBMED | CROSSREF

 35. Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel scoring system and 
algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy 2015;70:995-1003. 
PUBMED | CROSSREF

 36. Hu X, Cammann H, Meyer HA, Miller K, Jung K, Stephan C. Artificial neural networks and prostate 
cancer--tools for diagnosis and management. Nat Rev Urol 2013;10:174-82. 
PUBMED | CROSSREF

 37. Harbaugh RE. Editorial. Artificial neural networks for neurosurgical diagnosis, prognosis, and 
management. Neurosurg Focus 2018;45:E3. 
PUBMED | CROSSREF

 38. Ma RN, He YX, Bai FP, Song ZP, Chen MS, Li M. Machine learning model for predicting acute respiratory 
failure in individuals with moderate-to-severe traumatic brain injury. Front Med (Lausanne) 2021;8:793230. 
PUBMED | CROSSREF

81

ANN Predicts Eosinophilic CRSwNP

https://doi.org/10.4168/aair.2023.15.1.67https://e-aair.org

http://www.ncbi.nlm.nih.gov/pubmed/22252861
https://doi.org/10.1002/lary.22507
http://www.ncbi.nlm.nih.gov/pubmed/21885636
https://doi.org/10.1164/rccm.9120-11ST
http://www.ncbi.nlm.nih.gov/pubmed/28848094
https://doi.org/10.1159/000479387
http://www.ncbi.nlm.nih.gov/pubmed/32690852
https://doi.org/10.1159/000509211
http://www.ncbi.nlm.nih.gov/pubmed/32962755
https://doi.org/10.1186/s40463-020-00465-y
http://www.ncbi.nlm.nih.gov/pubmed/30348485
https://doi.org/10.1016/j.alit.2018.09.005
http://www.ncbi.nlm.nih.gov/pubmed/35011959
https://doi.org/10.3390/jcm11010219
http://www.ncbi.nlm.nih.gov/pubmed/31833725
https://doi.org/10.23736/S0393-2249.19.03613-0
http://www.ncbi.nlm.nih.gov/pubmed/30706465
https://doi.org/10.1002/lary.27850
http://www.ncbi.nlm.nih.gov/pubmed/9334786
https://doi.org/10.1016/S0194-5998(97)70005-6
http://www.ncbi.nlm.nih.gov/pubmed/21371840
https://doi.org/10.1016/j.anl.2011.01.007
https://doi.org/10.18637/jss.v036.i11
http://www.ncbi.nlm.nih.gov/pubmed/8892489
https://doi.org/10.1016/S0895-4356(96)00002-9
http://www.ncbi.nlm.nih.gov/pubmed/29166423
https://doi.org/10.4193/Rhin17.111
http://www.ncbi.nlm.nih.gov/pubmed/34530020
https://doi.org/10.1016/j.jaci.2021.07.045
http://www.ncbi.nlm.nih.gov/pubmed/17903570
https://doi.org/10.1016/j.otohns.2007.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25945591
https://doi.org/10.1111/all.12644
http://www.ncbi.nlm.nih.gov/pubmed/23399728
https://doi.org/10.1038/nrurol.2013.9
http://www.ncbi.nlm.nih.gov/pubmed/30453456
https://doi.org/10.3171/2018.8.FOCUS18438
http://www.ncbi.nlm.nih.gov/pubmed/35004766
https://doi.org/10.3389/fmed.2021.793230


 39. Shi YL, Liu JY, Hu XJ, Tu LP, Cui J, Li J, et al. A new method for syndrome classification of non-small-cell 
lung cancer based on data of tongue and pulse with machine learning. Biomed Res Int 2021;2021:1337558. 
PUBMED | CROSSREF

 40. Chu CS, Lee NP, Adeoye J, Thomson P, Choi SW. Machine learning and treatment outcome prediction for 
oral cancer. J Oral Pathol Med 2020;49:977-85. 
PUBMED | CROSSREF

 41. Tong Z, Liu Y, Ma H, Zhang J, Lin B, Bao X, et al. Development, validation and comparison of artificial 
neural network models and logistic regression models predicting survival of unresectable pancreatic 
cancer. Front Bioeng Biotechnol 2020;8:196. 
PUBMED | CROSSREF

 42. Kawakami S, Numao N, Okubo Y, Koga F, Yamamoto S, Saito K, et al. Development, validation, and 
head-to-head comparison of logistic regression-based nomograms and artificial neural network models 
predicting prostate cancer on initial extended biopsy. Eur Urol 2008;54:601-11. 
PUBMED | CROSSREF

 43. Thorwarth RM, Scott DW, Lal D, Marino MJ. Machine learning of biomarkers and clinical observation to 
predict eosinophilic chronic rhinosinusitis: a pilot study. Int Forum Allergy Rhinol 2021;11:8-15. 
PUBMED | CROSSREF

 44. Wu CF, Wu YJ, Liang PC, Wu CH, Peng SF, Chiu HW. Disease-free survival assessment by artificial neural 
networks for hepatocellular carcinoma patients after radiofrequency ablation. J Formos Med Assoc 
2017;116:765-73. 
PUBMED | CROSSREF

82

ANN Predicts Eosinophilic CRSwNP

https://doi.org/10.4168/aair.2023.15.1.67https://e-aair.org

http://www.ncbi.nlm.nih.gov/pubmed/34423031
https://doi.org/10.1155/2021/1337558
http://www.ncbi.nlm.nih.gov/pubmed/32740951
https://doi.org/10.1111/jop.13089
http://www.ncbi.nlm.nih.gov/pubmed/32232040
https://doi.org/10.3389/fbioe.2020.00196
http://www.ncbi.nlm.nih.gov/pubmed/18207312
https://doi.org/10.1016/j.eururo.2008.01.017
http://www.ncbi.nlm.nih.gov/pubmed/32472743
https://doi.org/10.1002/alr.22632
http://www.ncbi.nlm.nih.gov/pubmed/28117199
https://doi.org/10.1016/j.jfma.2016.12.006

	Development, Validation and Comparison of Artificial Neural Network and Logistic Regression Models Predicting Eosinophilic Chronic Rhinosinusitis With Nasal Polyps
	INTRODUCTION
	MATERIALS AND METHODS
	Clinical data collection
	Input variable selection and outcome definition
	Model development
	Assessment of the models
	Statistical analysis

	RESULTS
	Predictors associated with endotypes of CRSwNP
	ANN and LR models
	Model performances

	DISCUSSION
	SUPPLEMENTARY MATERIALS
	Supplementary Table S1
	Supplementary Table S2

	REFERENCES


