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GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3α and GSK-3β isoforms, both active under basal
conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen
synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent
advances regarding (i) GSK-3 structure, function, regulation, and involvement in several cancers, including hepatocarcinoma,
cholangiocarcinoma, breast cancer, prostate cancer, leukemia, and melanoma (active GSK-3 has been shown to induce apoptosis
in some cases or inhibit apoptosis in other cases and to induce cancer progression or inhibit tumor cell proliferation, suggesting
that different GSK-3 modulators may address different specific targets); (ii) GSK-3 involvement in autophagy modulation,
reviewing signaling pathways involved in neurodegenerative and liver diseases; (iii) GSK-3 role in oxidative stress and
autophagic cell death, focusing on liver injury; (iv) GSK-3 as a possible therapeutic target of natural substances and
synthetic inhibitors in many diseases; and (v) GSK-3 role as modulator of mammalian aging, related to metabolic
alterations characterizing senescent cells and age-related diseases. Studies summarized here underline the GSK-3
multifaceted role and indicate such kinase as a molecular target in different pathologies, including diseases associated with
autophagy dysregulation.

1. GSK-3 Structure and Regulation

GSK-3 is a serine/threonine kinase existing as two isoforms
named GSK-3α (51KDa) and GSK-3β (47KDa), expressed
inmost tissues and encoded by two different genes. According
to the bodymap analysis available at IST Online Medisapiens
(http://ist.medisapiens.com/#bodymap), the expression is
ubiquitous but shows relevant differences in different tissues.
For instance, GSK-3α is much less expressed in the nerves,
ovary, and skin, while it is expressed at higher levels in the
reticulocytes, appendix, whole blood, and pituitary gland.
On the other hand, GSK-3β is much less expressed in the
reticulocytes, dura mater, lymph node, and pancreas, while

it appears expressed at higher levels in the blood NK cells
and bone marrow granulocytes.

An alternative splice variant of GSK-3β, named GSK-
3β2, has also been reported [1]. Both isoforms are mono-
meric and comprise a highly conserved catalytic domain
(about 98% identity). Such high rate of similarity explains
why the two isoforms phosphorylate the same targets [2].
The GSK-3 three-dimensional structure resembles that of
mitogen-activated protein kinase (MAPK) family members
and the fully active conformation depends on its interaction
with the substrate which previously undergone a “priming
phosphorylation event” by other kinases [3]. The larger
mass of GSK-3α compared to GSK-3β is due to its
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glycine-rich N-terminal tail, responsible for the GSK-3α
cytoplasm localization, while GSK-3β, which lacks the
glycine-rich domain, has a nuclear and cytoplasmatic local-
ization [4, 5]. Other main differences fall in their C-termini,
showing only 36% identity in the last 76 residues of the two
isoforms. Under basal conditions, both proteins are active.
GSK-3β constitutive activation seems to occur via phosphor-
ylation in tyrosine 216 [6]. Phosphorylation in N-terminal
serine 21 and serine 9, respectively, of GSK-3α and GSK-3β
by AKT leads to their inactivation and consequently glycogen
and protein synthesis increase. The serine residue on GSK-3
has been also shown to be phosphorylated by other kinases,
such as AGC kinases, p70 ribosomal S6 kinase-1 (p70-S6K1),
p90 ribosomal S6 kinase (RSK1), and MAPK-activated pro-
tein kinase-1 (MAPKAP-K1, also known as RSK). In addition
to its posttranslational regulation through phosphorylation,
GSK-3 activitymay bemodulated through its associationwith
other proteins. In particular, GSK-3 interaction with axin has
been well studied and demonstrated to be crucial for GSK-3-
dependent regulation of canonical WNT signaling pathway
[6]. A schematic representation of GSK-3 inhibition through
phosphorylation by different kinases is shown in Figure 1.

2. Signaling Pathways Regulated by GSK-3

GSK-3 was originally demonstrated to play an important
role in regulating glycogen synthesis, as one of the molecu-
lar events involved in insulin signaling. Insulin activates

phosphatidyl-inositide 3-kinase (PI3K) which in turn acti-
vates 3-phosphoinositide-dependent protein kinase 1
(PDK1), thus leading to AKT kinase phosphorylation. The
latter phosphorylates and inhibits GSK-3, leading to dephos-
phorylation of GSK-3 substrates such as glycogen synthase
and eukaryotic initiation factor 2B (eIF2B), finally promoting
conversion of glycogen synthase to its active form and stimu-
lating both glycogen and protein synthesis [3]. Amino acids
have also been shown to inhibit GSK-3; this occurs via the
mammalian target of rapamycin (mTOR) and the down-
stream S6K1 kinase [7]. Growth factors such as EGF may
inhibit GSK-3 by both MAPK pathway and PI3-kinase/AKT
pathway, and tumor-promoting phorbol esters can inhibit
GSK-3 via MAPK cascade [8]. Furthermore, a WNT-
induced inhibition of GSK-3 has been described. In the
absence of WNTs, GSK-3 is active and phosphorylates axin,
β-catenin, and adenomatous polyposis coli (APC). Under this
condition, β-catenin undergoes ubiquitin-mediated proteo-
lytic degradation. When WNTs bind their frizzled receptors,
through the key transducer Dishevelled (DVL) phosphopro-
tein, stabilization and accumulation of β-catenin occur; this
event is dependent on GSK-3 inhibition due to phosphoryla-
tion at a residue different from that targeted by AKT [3]. In
fact, although AKT signaling leads to inhibition of GSK-3
via serine phosphorylation, AKT signaling does not cause
stabilization and accumulation of β-catenin [9, 10]. It has also
shown β-catenin accumulation in the presence of highly
active GSK-3, and this is dependent on APC or β-catenin

GSK-3

AKT(i)
(ii)

(iii)
(iv)
(v)

AGCK
p70-S6K1
RSK1
MAPKAP-K1

Low glycogen synthesis
Low protein synthesis

High glycogen synthesis
High protein synthesis

Active
state

Glycogen
synthase

P

eIF2B
P

Glycogen
synthase

eIF2B

𝛽-Catenin

𝛽-Catenin

P 𝛽-Catenin degradation
and suppression of
cell proliferation

𝛽-Catenin
𝛽-Catenin stabilization
and induction of cell
proliferationP

P
Ser9/21

GSK-3

GSK-3

GSK-3

AP
C

AP
C m

ut

𝛽-Cateninmut

Inactive
state

Figure 1: GSK-3 regulation.
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mutations [11, 12]. Given the role of active GSK-3 in promot-
ing degradation of oncogenic proteins such as β-catenin, it
may acquire tumor suppressor properties. Conversely, upon
canonicalWNT signaling, inactive GSK-3 fosters cell prolifer-
ation by β-catenin stabilization thus acquiring tumor-
promoting activity (Figure 1). Since β-catenin is an essential
component of cadherin-based adhesion junctions, GSK-3 also
regulates cell adhesion via β-catenin accumulation. Interest-
ingly, it has been also shown that WNT signaling does not
directly inactivate GSK-3 but more likely disrupts the
formation of the “β-catenin destruction complex” [13].

GSK-3 can be phosphorylated and inhibited by cyclic
AMP- (cAMP-) dependent protein kinase/protein kinase A
(PKA) in the presence of high cAMP levels, following gluca-
gon or adrenaline stimulus. Remarkably, GSK-3 phosphoryla-
tion can also be achieved by incubation with cAMP-elevating
agents or cAMP analogues [14]. A schematic representation
of signaling pathways responsible for GSK-3 inhibition is
shown in Figure 2. The inhibition of GSK-3 by the different
pathways generally leads to dephosphorylation of its sub-
strates. Phosphorylation of GSK-3 substrates generally leads
to their inactivation, and many substrates require an addi-
tional “priming phosphorylation event” which is performed
by a different kinase and occurs at a site located C-
terminally to the site phosphorylated by GSK-3. Extensive
lists of GSK-3 substrates or GSK-3 binding proteins have
been reported and include amyloid precursor protein, APC,
ATP-citrate lyase, axin, axil, β-catenin, c-jun, Jun B, Jun D,
Ci155, C/EBP alpha, CRMP2, CRMP4, CREB, CTP, cyclin
D1, dystrophin, eIF2B, glycogen synthase, glucocorticoid
receptor, heat shock factor 1, hnRNP, K-casein, KRP, MAB
1B, MAP 2, MAP 2C, MITF, c-Myc, L-Myc, alpha NAC
nascent polypeptide-associated complex, NCAM, NDRG1,
NDRG2, neurofilament L, neurofilament M, neurofilament
H, Notch 1C, p21 CIP1, p53, presenilin, pyruvate DH, PP1
G-subunit, protein phosphatase inhibitor 2, stathmin, syn-
philin-1, RSK1, and Tau (https://thebiogrid.org/ and http://
www.genecards.org/).

GSK-3-dependent substrate phosphorylation may repre-
sent a signal toward their degradation. In fact, when GSK-3

phosphorylates cyclin D1 at threonine 286 and c-myc at
threonine 58 they undergo ubiquitylation and proteolytic
degradation. For such a reason, upon GSK-3 inhibition,
growth factors may lead to both cyclin D1 and c-myc stabili-
zation. Also, the transcription factor c-jun may be phosphor-
ylated by GSK-3 and this event suppresses its DNA binding
activity. Therefore, GSK-3 inhibition is able to enhance
c-jun potential to stimulate the transcription of several genes
including those involved in cell cycle progression [15].

3. Role of GSK-3 in Apoptosis

It is now clear that GSK-3 plays a pivotal role in numerous
cellular functions, other than regulator of glycogen metabo-
lism. As reported below, active GSK-3 has been shown to
induce apoptosis in some cases and to inhibit apoptosis in
other cases. Cooper and collaborators first demonstrated
that, while GSK-3 overexpression induces apoptosis in differ-
ent cell lines (i.e., pheochromocytoma PC12 cells and Rat-1
fibroblasts), overexpression of a GSK-3 inactive mutant
prevents apoptosis [16]. Other studies performed using spe-
cific GSK-3 inhibitors confirm this finding [17]. We have
previously addressed this issue in skeletal muscle tissue and
demonstrated that decreased GSK-3β serine-9 phosphoryla-
tion leads to increased active caspase-3 and cytochrome c
release [18]. GSK-3β has been shown to be directly involved
in cell death mediated by PI3K/mTOR inhibitor and by pan-
histone deacetylase (HDAC) inhibitor, in lymphoma cell
lines [19]. Interestingly, trichostatin A, a histone deacetylase
inhibitor (HDACI), induces apoptosis through GSK-3β in
MCF-7 breast cancer cells [20], and a specific GSK-3 inhibi-
tor (SB-415286) induces apoptosis in different leukemia cell
lines [21]. In neurons, GSK-3β exerts a proapoptotic action
inducing mitochondrial translocation of the proapoptotic
Bcl-2 family member Bax, which occurs after GSK-3β-
dependent phosphorylation of Bax in Ser163 [22]. Moreover,
GSK-3β inhibition significantly reduces hepatic apoptotic
cell death in response to D-galactosamine/LPS-induced liver
injury [23] and improves the survival of mice with polymi-
crobial sepsis, ameliorating liver injury, with a mechanism
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involving its ability to inhibit inflammatory response by
modulation of NF-?B and CREB activation [24]. These data
suggest that inhibition of GSK-3βmay act as a relevant com-
plementary strategy to the antibiotic treatment opening an
interesting scenario in the development of novel antimicro-
bial strategies. As a further indication of the role of GSK-3
in apoptosis regulation, GSK-3β KO mouse has been
reported to die in utero and this phenotype is likely depen-
dent on an apoptosis defect [25]. As discussed in more details
in the next section, GSK-3 may have a relevant effect on
cancer cell apoptosis, likely via β-catenin. In fact, on one
hand, it has been demonstrated that GSK-3 regulates axins,
intracellular β-catenin antagonists, and cell fate regulators,
while on the other hand inhibition of GSK-3 enhances
TRAIL-induced apoptosis [26] as well as sorafenib-induced
apoptosis in melanoma cells [27].

4. Opposite Role of GSK-3 in Cancer
Progression/Setup

GSK-3 role in cancer progression is largely investigated and
still debated. In fact, in some cases, GSK-3 activity has been
associated with tumor progression, while in other cases sup-
pression of GSK-3 activity by different kinases has been asso-
ciated with cancer progression, for instance, by stabilizing
components of the β-catenin complex. GSK-3β inhibition
leads to β-catenin activation and tumor cell proliferation
[28]. However, GSK-3 is overexpressed in various cancer
conditions such as colon, liver, ovarian, and pancreatic
tumors and GSK-3β downregulation inhibits pancreatic can-
cer growth, angiogenesis, and vascular endothelial growth
factor expression [29–32]. GSK-3 role in cancer is often
dependent on GSK-3-driven mammalian target of rapamy-
cin (mTOR), a signaling molecule crucial in cell proliferation.
mTOR is found in two complexes, mTOR complex-1
(mTORC1) and mTOR complex-2 (mTORC2). Signaling
through mTORC1 is involved in tumor progression, and
remarkably, GSK-3 inhibitors have been shown to inhibit
mTORC1 activity [33]. Recently, GSK-3 involvement has
been demonstrated in a study reporting that differentiation-
inducing factor-1 displays a strong antimelanoma activity
exerted in two ways, the first (i.e., antiproliferation action)
involving a GSK-3-dependent degradation of cyclin D1 and
c-Myc and the second (i.e., antimigration and anti-invasion)
involving a GSK-3-independent mechanism [34]. Further,
GSK-3 directly induces growth and survival in human
melanoma cells, by increasing levels of the Pax3 transcription
factor [35].

According to GEO database (https://www.ncbi.nlm.nih.
gov/sites/GDSbrowser?acc=GDS1375), we observed that 63
samples of human melanoma and benign nevi reported in
the dataset GDS 1375 [36] show GSK-3α expression signifi-
cantly upregulated in melanoma biopsies as compared to
benign nevi human biopsies (1200 units versus 901 units,
p < 0 0001), while GSK-3β expression appears unmodified
(791 units versus 680 units, p < 0 2). Such observation was
confirmed by the additional data reported in IST Online
Medisapiens dataset (http://ist.medisapiens.com) collected
from the 355 samples of melanoma and healthy skin, and

all together support the hypothesis of a differential role of
GSK-3α and GSK-3β in melanoma biology.

β-Catenin regulation by GSK-3β has been shown to play
a key role in hepatocellular carcinoma (HCC). An enhanced
activation of WNT/β-catenin pathway is often found in sev-
eral types of cancers; it may be considered an early event in
hepatocarcinogenesis and correlates with an aggressive phe-
notype [37]. In addition, the liver carcinogenesis induced
by HCV has been related to the HCV core protein ability to
stabilize β-catenin by inhibiting GSK-3β [38]. Furthermore,
in HCC, several molecular mechanisms involving genetic
and epigenetic alterations have been shown [39]. One mech-
anism involves insulin and IGF-1. They inhibit GSK-3β [40],
leading to nuclear localization of β-catenin [41] which binds
its nuclear targets, such as TCF/LEF-1, and induces gene
transactivation and tumor formation [42].

Usually, AKT is activated in human cancers, including
carcinomas, glioblastoma multiforme, and various hema-
tological malignancies. Noteworthy, while activated AKT
inhibits GSK-3 through the phosphorylation of GSK-3 at
Ser21/Ser9, however, such inactivation does not always affect
β-catenin levels in the cell and does not completely inhibit
GSK-3. For instance, two pancreatic cancer cell lines, PANC1
and ASPC1, exhibit amplification of AKT and high levels of
AKT RNA and protein [43] but also highly active GSK-3β
suggesting that, although some pools of GSK-3 can be phos-
phorylated by AKT at Ser21/Ser9 and inhibited, other pools
of GSK-3 may remain active in cancer cells [31]. Moreover,
another study has shown high levels of active AKT in human
colorectal carcinomas, but levels of inactive phospho-GSK-
3β Ser9 are lower than in their normal counterparts [30].
Altogether, these studies suggest that AKT activation and
GSK-3 inhibitory phosphorylation are not always correlated
in vivo in human tumors and part of GSK-3 remains active
in cancer cells irrespective of AKT activation.

Data available indicate GSK-3β as a crucial gatekeeper to
maintain a regular cell proliferation rate and conditions
favorable to cell death activation. This suggests that the
persistent inhibition of GSK-3β may favor oncogenic condi-
tions. The autocrine stimulation of an IGF-1 R-dependent
signaling pathway is one of these conditions. Moreover,
GSK-3 interacts with other signaling pathways implicated
in HCC pathogenesis, such as Notch, Hedgehog (HH), and
TGF-β pathways. Many studies demonstrate the aberrant
activation of HH [44] and Notch signaling [45]. In the latter,
GSK-3 is an important component, although its role remains
controversial. In fact, in some studies, GSK-3 activity has
been reported to enhance nuclear localization and transcrip-
tional activity by phosphorylation of two domains in Notch1
intracellular portion [46]. On the other hand, other studies
report that GSK-3 phosphorylates and decreases Notch pro-
tein levels and downregulates its transcriptional activity [47].
Finally, the TGF-β pathway may have dichotomous function,
with both pro- and antitumor activities. In fact, in early steps
of hepatocarcinogenesis, TGF-β shows tumor-suppressive
properties while in late stage, it promotes tumor progression
by stimulating epithelial-mesenchymal transition (EMT), cell
invasion, and cancer metastasis [48]. In hepatocytes, TGF-β,
through a Src-dependent pathway, activates ERK5 that can
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phosphorylate GSK-3β on serine 9, inhibiting its activity
[49]. TGF-β, by inhibiting GSK-3 kinase activity, interferes
with phosphorylation of the tumor suppressor hepatocyte
nuclear factor 4 alpha (HNF4α), a transcription factor con-
trolling the expression of EMT master genes such as SNAI1;
this results in its functional inactivation and contributes to
EMT progression.

Cholangiocarcinoma (CCA) is the second most common
primary hepatobiliary cancer that originates from biliary
epithelium cells known as cholangiocytes [50, 51]. GSK-3β
plays an important role in CCA, by mediating the cross-talk
of PI3K/AKT andWNT/β-catenin pathways directly control-
ling cell growth in a cholangiocarcinoma setup [52]. Remark-
ably, GSK-3 α/β phosphorylation in serine 21/9 appears to
be strongly increased in cholangiocarcinoma tissues as
compared to normal biliary tissues and to be significantly
associated with tumor progression. Also, P-glycoprotein
(P-gp) is intrinsically overexpressed in many tumors, affect-
ing the colon, rectum, pancreas, liver, kidneys, and bile ducts
[53]. It is known to play a pivotal role in multidrug resistance
(MDR), which reduces chemotherapy efficacy in CCA [54].
For that reason, several potent P-gp-dependent MDR
reversers have been studied and the saponin mixture β-escin
combined with other drugs such as 5-FU and VCR has shown
remarkable inhibitory and synergic effects in CCA cells [55].
Interestingly, β-escin increases cholangiocarcinoma cells line
sensitivity to chemotherapy, by inducing GSK-3β phosphory-
lation and dephosphorylation at tyrosine-216 and serine-9,
respectively, leading to β-catenin degradation [55]. Finally,

prostaglandin E2 (PGE2) is known to induce cholangiocarci-
noma cell proliferation and invasion in a GSK-3-mediated
way [56]. Altogether, all these studies reveal that, although
its protumor or antitumor role is still debated depending on
the cellular context, GSK-3 may be considered a promising
molecular target in different tumors. A schematic representa-
tion illustrating the opposite models of GSK-3 involvement in
cancer is shown in Figure 3. It suggests that different GSK-3
modulators (activators or inhibitors) should be further
explored to address their specific effect in cancer treatment.

5. Role of GSK3 in Autophagy

Autophagy is a complex molecular mechanism involved
in disassembling unnecessary or dysfunctional cellular
components through double-membrane vesicles named
autophagosomes, ultimately fusing with lysosomes, leading
to their degradation through lysosome hydrolases. This pro-
cess is usually activated under nutrient deprivation [57].
Autophagy starts with the formation of an isolation mem-
brane called phagophore; then, the phagophore edges fuse to
form a double-membrane vesicle, named autophagosome,
sequestering the cytoplasmaticmaterial to be eliminated. This
process is performed through a complexmolecularmachinery
including mTOR, which therefore represents a critical
autophagy regulator [58, 59]. mTOR kinase is a sensor of
intracellular amino acids, ATP, and hormones and acts as an
autophagy inhibitor. It is inhibited by the autophagy inducer
rapamycin, controls the autophagy onset, and is responsible
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for S6K and 4EBP1 phosphorylation [60]. Two ubiquitin-like
conjugation pathways are involved in autophagosome forma-
tion, namely, the autophagy-related (ATG) 8 and ATG12
protein systems. Such two systems control phosphatidyletha-
nolamine conjugation to mammalian LC3. As a result, the
soluble LC3-I is converted to LC3-II, recruited to the autopha-
gosomal membrane; therefore, such molecule is usually
exploited to monitor autophagy [61]. Despite the large inves-
tigation regarding the role of autophagy in tumor formation
and metabolism, its precise function is still debated since it
has demonstrated both tumor-promoting and tumor-
suppressing properties [62]. Autophagy, by releasing meta-
bolic precursors necessary for macromolecular biosynthesis
or ATP generation, makes energy available to tumor cells
undergoing metabolic stress. On the other hand, autophagy
genes are frequently monoallelically deleted, silenced, or
mutated in different human tumors, thus supporting the
autophagy tumor-suppressing properties [63]. Therefore,
while during cancer initiation, autophagy may suppress
tumor progression and autophagy deregulation may contrib-
ute to genomic instability; in the later stages, it may facilitate
tumor progression supporting cancer cell survival, particu-
larly in the presence of therapy-induced stress. GSK-3 role
in autophagy regulation has been studied in the past few
years. GSK-3 inhibits autophagy through the mammalian
target of rapamycin (mTOR) complex 1 (mTORC1). In fact,
overexpression of either GSK-3α or GSK-3β activates
mTORC1 and suppresses autophagy in MCF-7 breast cancer
cells. Conversely, treating cells with GSK-3 inhibitors inhibits
mTORC1 activity and increases autophagic flux [33]. It has
been clarified that GSK-3 regulates mTORC1 by phosphory-
lating the mTOR-associated scaffold protein raptor (regula-
tory-associated protein of mTOR) on Serine 859. GSK-3
inhibition reduces mTOR and raptor interaction leading to
reduced phosphorylation of both p70S6K1 and ULK-1 and
to increased autophagic flux [64]. In human breast cancer
cells, GSK-3 overexpression increases the autophagosome
number by autophagic flux inhibition. This activity has been
directly related to reduced lysosomal acidification triggered
by GSK-3 [33]. Furthermore, GSK-3 inhibition induces
prosurvival autophagy in human pancreatic cancer cells.
This occurs through GSK-3 dependent regulation of the

transcription factor EB (TFEB), that is, a master regulator
of autophagy and lysosomal biogenesis [65]. In a prostate
cancer cell model, inhibition of GSK-3β activity leads to
a significant increase of AMP/ATP ratio, a strong trigger
of AMPK activation, thus leading to autophagy induction
[66]. Inoki and colleagues have also shown thatGSK-3 inhibits
mTOR pathway by phosphorylating the tumor suppressor
TSC2 in an AMPK-priming phosphorylation-dependent
manner. Therefore, sequential phosphorylation of TSC2 by
AMPK and GSK-3 occurs and these events may lead to
mTOR pathway inhibition [67]. GSK-3 commonly accepted
involvement in autophagy regulation is schematically repre-
sented in Figure 4.

Alterations of autophagic pathways have been exten-
sively investigated in degenerative diseases and have been
shown to be the central mechanisms in the pathogenesis
of amyotrophic lateral sclerosis. Interestingly, a small het-
erocyclic GSK-3 inhibitor is able to induce the recovery of
neurological symptoms in amyotrophic lateral sclerosis
condition [68]. Autophagy impairment has been reported
in other neurodegenerative processes. In fact, upon neuro-
toxin intoxication, astrocytes undergo autophagic flux block
that can be rescued by rapamycin or by GSK-3β inhibition
[69]. GSK3 overactivity has been reported to occur in spo-
radic Alzheimer’s disease (AD) cases and therefore may
play an important role in disease progression. GSK-3 medi-
ates the hyperphosphorylation of tau (one of the brain
microtubule-associated proteins), the increased production
of β-amyloid from β-amyloid precursor protein (via β
and γ secretase-mediated cleavage), and ultimately leads to
autophagy impairment. More in detail, GSK-3α, but not
GSK-3β, has been shown to regulate β-amyloid precursor
protein cleavage resulting in the increased production of
β-amyloid plaques. Since the discovery of its involvement
in AD [70], GSK-3 has been proposed as a new target enzyme
and is expected to provide a novel avenue for therapeutic
intervention in AD. In Parkinson’s disease (PD), the GSK3-
β inhibitor lithium decreases the aggregation and phosphor-
ylation of α-synuclein and leads to increased autophagy.
Conversely, GSK3β activation depresses autophagy and
increases the total protein level and phosphorylation of α-
synuclein [71].
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Data reported in literature indicate that autophagy is
regulated by GSK-3 mostly via mTORC1. It has also been
clarified that GSK-3, in the absence of growth factors, is able
to activate the acetyltransferase KAT5/TIP60, which in turn
stimulates the protein kinase ULK1 to induce autophagy
[72]. Remarkably, GSK-3 seems to play a key role also in
stemness; in fact, inhibition of both GSK-3 and mTORC1
induces a proautophagic gene signature in hematopoietic
stem cells, which is crucial to maintain their self-renewal
ability [73].

In the liver, several autophagy pathways have been iden-
tified and characterized [74]. Selective autophagy contributes
to several physiological functions, representing a mechanism
exploited by hepatocytes in order to modulate their meta-
bolic capability [74]. Hepatic autophagy mostly depends on
the fasting–feeding cycle and is under hormones and amino
acid control [74]. Hepatic autophagy has a key role in the
adaptation to starvation, inducing glycogenolysis, lipolysis,
and protein catabolism. Furthermore, quality and quantity
control of mitochondria and peroxisomes can directly regu-
late hepatic metabolism through β-oxidation [74]. In fasting,
early-phase glucagon leads to GSK-3 inhibition and pro-
motes hepatocyte glycogenolysis in order to maintain blood
glucose levels [75]. Moreover, upon nutrient deprivation,
hepatocytes upregulate the transcription of genes related to
β-oxidation and autophagy, thus leading to lipophagy
with subsequent β-oxidation and ketone body production
[74, 76]. Of notice, differently from GSK-3β KO mice,
GSK-3α KO mice are not embryonically lethal although
they have metabolism defects such as enhanced glucose
and insulin sensitivity [77] further supporting the involve-
ment of GSK-3 in autophagy-dependent metabolic processes.
Furthermore, it has been suggested that persistent phosphor-
ylation of GSK-3β may have a fundamental impact on
glycogen metabolism and cell growth in hepatoma cells [78].

Given its role in metabolic balance and organelle quality
control, an unbalance or malfunction of autophagy pathways
in hepatocytes has been associated with the pathogenesis of
several liver diseases, including nonalcoholic fatty liver dis-
ease (NAFLD), alcoholic fatty liver (AFL), viral hepatitis,
and liver cancer [79]. NAFLD is one of the most important
causes of liver-related morbidity in obese children and
adults [80–82]. Both NAFLD and AFL are characterized
by hepatocyte steatosis. In NAFLD, fatty liver is mostly
due to continuous dietary intake of excess dietary fat in
the absence of excess alcohol consumption [79, 81, 82]. Dif-
ferently, in AFL, steatosis is due to ethanol metabolism
which leads to increased production of highly reactive acet-
aldehyde, fatty acid ethyl esters, and phosphatidylethanol
[83]. Interestingly, both NAFLD and AFL are histologically
characterized by impaired autophagy associated with prom-
inent SQSTM1 protein accumulation in the form of cyto-
plasmic inclusions, histologically known as Mallory bodies
[74, 84]. It has been suggested that inhibition of GSK-3β
activity may be considered an important strategy to reverse
the imbalanced oxidation and the impaired autophagy and
ameliorate liver conditions [85].

Selective autophagy in hepatocytes may represent a
defensemechanism against lipid accumulation [86]; however,

lipotoxicity effects can prevail and suppress autophagic activ-
ity [87]. In fact, autophagy enhancement using pharmaceuti-
cal agents alleviates liver steatosis [88, 89] and contributes to
Mallory body degradation [90]. NAFLD progression involves
inflammation (nonalcoholic steatohepatitis (NASH)), fibro-
sis, and cirrhosis. In this context, the activation of hepatic
stellate cells (HSCs) plays a key role in the progression toward
fibrosis and cirrhosis [86]. Under normal conditions, HSCs
are quiescent vitamin Astoring cells; however, in a diseased
liver, HSCs are activated and change to myofibroblast-like
cells. Activated HSCs acquire proliferative, contractile, and
inflammatory properties and produce extracellular matrix
compounds, thus resulting in fibrogenesis [91]. Interestingly,
during this process, quiescent HSCs lose their lipid stores and
autophagy may act by cleaving retinyl esters within cytoplas-
mic droplets [91]. It should be noted that selective knockout
of autophagy-related genes in mouse HSCs inhibits experi-
mental induced fibrogenesis [79, 92]. Thus, autophagy may
support HSC activation resulting in enhanced fibrogenesis
[91]. Therefore, although autophagy may have beneficial
effect on hepatocyte steatosis in NAFLD, it may also induce
HSC activation resulting in enhanced fibrogenesis [74].

Besides the role in hepatocytes and HSC, autophagy
pathways are also investigated in the pathogenesis of biliary
tree disorders [93]. Fibrosing cholangiopathies are a hetero-
geneous group of diseases affecting cholangiocytes (i.e., the
parenchyma cells lining bile ducts) and comprising primary
biliary cholangitis (PBC), primary sclerosing cholangitis,
and biliary atresia [94]. Accumulation of LC3-positive vesi-
cles and p62 aggregation were described in primary biliary
cholangitis; autophagy deregulation may induce cholangio-
cyte senescence, which in turn is involved in the immune-
mediated bile duct pathologies. Cholangiocytes can acquire
a senescence-associated phenotype responsible for aberrant
expression of chemokines, cytokines, and growth factors that
can interact with pathogen-associated molecular pattern.
Moreover, since mitochondria represent a major target of
autophagy, deregulated mitochondria autophagy may be
involved in the autoimmune pathogenesis occurring in
PBC [95]. Finally, in primary sclerosing cholangitis, autoph-
agy and senescence have been associated with the occurrence
of epithelial to mesenchymal transition traits in cholangio-
cytes and biliary tree stem cells, with dysplasia features
[96]. Interestingly in the last years, a novel mechanism
implicating GSK-3β in TGF-β-induced EMT program has
been reported [97]. Given the role of GSK-3 in regulating
autophagy and its role in promoting metabolic changes
toward the anabolism, GSK-3 may be considered as a poten-
tial target to counteract liver injury associated with autoph-
agy impairment and senescence processes also in biliary
tree disorders.

6. Role of GSK-3 in Oxidative Stress and
Autophagic Cell Death

Oxidative stress occurs when the balance between reactive
oxygen species (ROS) production and elimination is altered
leading to accumulation of ROS which profoundly affects
lipids, proteins, and DNA. Mitochondria are both great
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producers and main targets of ROS; therefore, they play a
central role in oxidative homeostasis. As a consequence of
oxidative damage, mitochondrial permeability transition
(MPT), a nonselective permeabilization of mitochondria
inner membrane, may occur, usually followed by necrotic
or apoptotic cell death [98]. GSK-3 activity is induced by
ROS and it is involved in MPT. More in detail, GSK-3 is able
to direct MPT through the phosphorylation of different tar-
gets and GSK-3 inhibition is known to protect from MPT
[99]. In addition, GSK-3β inhibition has been shown to be
required for the stability of Nrf2 transcription factor, a key
regulator of the cellular defense against oxidative stress [100].

The prooxidative involvement of GSK-3 overexpression
may explain at least in part its role in the pathogenesis of
several disorders including cancer [99] as well as many
neurological disorders including bipolar disorder [101]
and AD [102].

Oxidative stress is often associated with different types of
liver injury and plays an important role in the mechanism of
acute liver failure (ALF) [103]. The effects of oxidative stress
are balanced by antioxidant activities with a variety of enzyme
and nonenzyme-mediated mechanisms. Active oxygen-
scavenging systems include enzymes such as superoxide
dismutase (SOD), glutathione peroxidase (GSH-PX), and
catalase, while nonenzymatic antioxidants include GSH,
vitamin C, and vitamin E [104]. SOD and GSH activity in
ALF is significantly lower as compared to normal controls.
The oxidation status enhances paralleling ALF progression,
whereas the antioxidants are reduced, resulting in a severe
oxidative stress in ALF and in the progression of liver injury
[85]. Oxidative stress regulates hepatocyte injury and death,
and GSK-3β appears to be critical for their regulation in
ALF. GSK-3β activity is depressed at an early stage of ALF
and then goes back to high levels in the advanced ALF, further
suggesting that GSK-3β may have a role in ALF progression.
In hepatic ischemia/reperfusion (I/R) injury, that is, the most
common cause of acute hepatic failure (after liver transplanta-
tion, hepatectomy, trauma, and shock), reperfusion following
prolonged ischemia is related to the mitochondrial dysfunc-
tion, which induces liver apoptosis [105]. The impairment of
oxidative phosphorylation and induction of MPT are critical
determinants for such mitochondrial dysfunction [106] and
are dependent on GSK-3β activity [107]. It has also been
demonstrated that propofol, a drug used to induce and main-
tain anesthesia, may protect several tissues from I/R injury
[108] supporting their mitochondrial function, thanks to
GSK-3β inhibition which restrainsMPT, preventing the cyto-
chrome C release, mitochondrial swell, and mitochondrial
membrane potential collapse [105].

GSK-3 has been also reported to play a role in regulating
autophagic cell death. Under such condition, extensive
autophagy does not provide cytoprotection but triggers cell
death. Overexpression of Aurora-A kinase, a serine/threonine
protein kinase, enhances mTORC1 activity by antagonizing
GSK-3β activity, thus conferring resistance to autophagic cell
death [109]. Furthermore, in a model of mesangial cells, cad-
mium has been demonstrated to be able to induce autophagic
cell death through a GSK-3-regulated signal-transduction
pathway. Serine 9 phosphorylation (i.e., the phosphorylation

leading to the GSK-3β inhibition) decreases after cadmium
treatment and, in turn, a specific GSK-3β inhibitor decreases
cadmium-induced autophagic cell death. Remarkably, GSK-3
activation after cadmium treatment is a consequence of ROS
elevation and a ROS scavenger is able to counteract autopha-
gic cell death [110, 111]. Conversely, activation of AKT and
GSK-3β inhibition suppresses cytodestructive autophagy in
hippocampal neurons [112]. Furthermore, in neural stem
cells, following insulin withdrawal, both pharmacological
and genetic inactivation of GSK-3β significantly decreases
autophagic cell death [113]. In addition, GSK-3β-mediated
phosphorylation of BCL2 family member MCL1 has been
demonstrated to induce axonal autophagy and axonal degen-
eration [114]. Altogether, these data indicate that besides
controlling oxidative stress cellular response, GSK-3 may be
also involved in prodeath autophagy.

7. GSK-3β-Specific Inhibitors: Using GSK-3 as a
Pharmacological Target

Modulation of GSK-3 activity via pharmacological interven-
tion may represent a valuable strategy to control autophagy
and other conditions. In fact, GSK-3 is emerging as a possible
therapeutic target for many diseases, and selective GSK-3
inhibitors are now available. Numerous studies show that
GSK3 action supports cancer cells and suggest that its inhibi-
tion may have therapeutic benefits. However, as highlighted
above, GSK-3 role in tumor development is still controver-
sial. Many GSK-3 inhibitors have been developed and may
have an application in GSK-3 overexpressing tumors [115].
The cation lithium is the first inhibitor to be discovered.
Other metal anions such as copper, beryllium, mercury,
and zinc have also been shown to interfere with GSK-3
activity. Other known GSK-3 inhibitors are chemical com-
pounds including natural substances as well as synthetic
ATP-competitive inhibitors, non-ATP-competitive inhibi-
tors, and substrate-competitive inhibitors [66, 116]. An issue
regarding ATP-competitive inhibitors may concern their
lack of specificity; namely, they interfere with the phosphor-
ylation of many substrates, giving potential oncogenic effects
[3]. Some GSK-3 inhibitors have been used in clinical trials
and are well-tolerated in cancer patients [117]. Significant
clinical improvements have been shown in cutaneous T-cell
lymphoma patients treated with valproate, which inhibits
either GSK-3 isoforms [118].

Different therapeutic strategies to treat leukemia have
been shown to involve mechanisms leading to GSK-3 activa-
tion often by suppressing PI3K/AKT pathway. For instance, a
specific AKT inhibitor induces apoptosis in T-cell acute lym-
phoblastic leukemia (ALL) through a mechanism partially
dependent on GSK-3 activation [119]. A GSK-3 inhibitor
named PDA-66 shows some promise in preclinical studies
using ALL cells [120] while GS-87, a highly specific inhibitor
of GSK3, has been shown to induce differentiation of AML
cells [121]. Nevertheless, the potential differentiating effect
of GSK3 inhibitors needs to be further explored. The selective
GSK-3α and GSK-3β inhibitor LY2090314 shows very high
cytotoxic activity in melanoma cells, both resistant and
nonresistant to BRAF inhibitor. Such activity was strongly
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associated with β-catenin stabilization. In vivo confirmation
of such data further support the potential efficacy of GSK-3
inhibitors in melanoma [122].

While different GSK-3 inhibitors have been evaluated in
several pathologies and are well-tolerated in leukemia and
pancreatic cancer patients, no clinical trials have been
performed or are currently ongoing in HCC patients. Only
preclinical studies are available on GSK-3 inhibitors in
HCC. Indeed, developing novel GSK-3 inhibitors might be
crucial to identify novel GSK-3 substrates and novel GSK-3
functions specific for one of the two isoforms. GSK-3
inhibitors have been tested in neurodegenerative condi-
tions [123]. Unfortunately, sodium valproate [124] and
tideglusib (a non-ATP competitive GSK-3 inhibitor) have
both shown no significant effect in progressive supranuclear
palsy [125, 126] while contrasting results are raised for
tideglusib-treated Alzheimer’s disease patients in two differ-
ent clinical trials [127, 128]. Nevertheless, significant clinical
improvements have been shown in valproate-treated patients
affected by chronic migraine [129].

8. Does GSK-3 Counteract Mammalian Aging?

The GSK-3 ability to regulate numerous cellular processes
through a number of signaling pathways important for cell
proliferation, stem cell renewal, apoptosis, and development
is widely accepted [130]. Because of its multifunctional role,
GSK-3 strongly affects the first stages of human diseases as
well as regulates age-related pathologies. Four main theories
underlying aging molecular process are now generally
accepted. Three of them are based on telomere loss, somatic
mutation, and mitochondrial action. These hypotheses take
into account, respectively, telomere shortening dysfunction,
forms of DNA damage exciding DNA repair capacity, and
mutation of mitochondrial DNA impairing ATP production.
The fourth theory regards the waste accumulation, that is, it
hypothesizes the aging results from toxic protein accumula-
tion and alteration of degradative mechanisms such as
lysosome-mediated autophagy [131, 132].

Metabolic alterations such as mitochondrial dysfunction,
as previously mentioned, characterize senescent cells display-
ing structural features such as enlarged volume, increased
granularity, and oxidative stress, all falling under GSK-3
control. Kim and colleagues [133] demonstrated that differ-
ent anabolic processes, such as lipogenesis, glycogenesis,
and protein synthesis increase during senescence in primary
cell cultures. Consequently, the mass of senescent cells is
augmented. Such increase is accompanied by ROS overpro-
duction caused by defective respiration [134]. Oxidative
stress induces and maintains the senescence cellular pheno-
types since mitochondrial DNA is susceptible to oxidative
damage. GSK-3 inactivation through phosphorylation plays
a key role in these aging processes; in fact, GSK-3 is directly
involved in glycogen accumulation as well as in protein syn-
thesis activation, characterizing senescent cells [135]. The
correlation between mitochondrial defects and metabolic
changes related to age as well as the link with GSK-3 has been
demonstrated by Kim and colleagues [133] using immortal-
ized human liver cell, Chang cells, exposed to deferoxamine

to induce senescence. Deferoxamine augmented GSK-3
phosphorylation at both serine 9 of GSK-3β and serine 21
of GSK-3α causing strong glycogen accumulation. Remark-
ably, the increase of the intracellular organelles like lyso-
somes and mitochondria [136], endoplasmic reticulum, and
Golgi as well as total cell lipid content, represents a defense
response to oxidative stress and a senescence factor. Namely,
SREBP1 transcription factor expression, the major modula-
tor of lipogenic enzyme modulator [137], is a GSK-3 target
and increases in cell senescent systems. According to this
finding, Kim and colleagues [133] observed that GSK-3 inhi-
bition augmented cellular lipogenesis and membranous
organelle mass. Grune and colleagues described an increase
in the nonmembranous organelles [138]. This effect is related
to a higher cellular anabolism during senescence, when cells
are exposed to persistent oxidative stress with potential
damage of cellular organelles.

Hence, GSK-3 inhibition leads to intracellular ROS
overproduction thus stimulating mitochondrial damage.
Furthermore, GSK-3 controls master factors in anabolic
activation (namely, eIF2B, glycogen synthase, and SREBP1).
Therefore, GSK-3 can be considered a main factor of the
metabolic changes towards the anabolism shift observed
in senescence.

Interestingly, some medicinal plants display antiaging
effects shown to be linked to GSK-3 pathway regulation. In
particular, several natural or nutraceutical products are sug-
gested to have health-ameliorating effects or antiaging and
anticancer effects. Such effects are modulated by PI3K/
PTEN/AKT/mTORC1/GSK-3 signaling axis. Namely, three
medicinal plant-derived substances are involved in the
above-cited regulation: curcumin (CUR) Curcuma longa,
berberine (BBR) Berberiscoptes, and resveratrol (RES), the
latter especially present in red grapes. CUR acts by increasing
the total level of GSK-3β in NCCIT human embryonic
carcinoma cells with apoptosis induction, and a plethora
of studies in the last years underlined the favorable impact
of CUR on PI3K/PTEN/AKT/mTORC1/GSK-3 pathway in
different types of cancer [139] and pathologies such as
neurological diseases [140], obesity [141], diabetes [142],
and cardiovascular disease [143]. BBR and RES act on
PI3K/PTEN/AKT/mTORC1/GSK-3 pathway with beneficial
effects on diabetes, cardiovascular diseases, neurological
disorders, and cancer [144].

In conclusion, dietary or pharmacological administration
of these compounds may represent, at least to some extent,
potential alternatives to conventional drugs and still under-
lies the efficacy of GSK-3 modulation in counteracting
aging-related pathologies.

9. Conclusions

Altogether, the studies summarized in the present review
show that GSK-3 controls numerous cellular processes, plays
an important role in autophagy regulation, and is involved
in many human diseases. Further investigating substrate
specificity and regulation of GSK-3 activity has important
implications for potential therapeutic intervention.
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