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Soluble amyloid-beta oligomers (Aβo) start to accumulate in the human brain one to two

decades before any clinical symptoms of Alzheimer’s disease (AD) and are implicated

in synapse loss, one of the best predictors of memory decline that characterize the

illness. Cognitive impairment in AD was traditionally thought to result from a reduction

in synaptic activity which ultimately induces neurodegeneration. More recent evidence

indicates that in the early stages of AD synaptic failure is, at least partly, induced

by neuronal hyperactivity rather than hypoactivity. Here, we review the growing body

of evidence supporting the implication of soluble Aβo on the induction of neuronal

hyperactivity in AD animal models, in vitro, and in humans. We then discuss the impact

of Aβo-induced hyperactivity on memory performance, cell death, epileptiform activity,

gamma oscillations, and slow wave activity. We provide an overview of the cellular

and molecular mechanisms that are emerging to explain how Aβo induce neuronal

hyperactivity. We conclude by providing an outlook on the impact of hyperactivity for

the development of disease-modifying interventions at the onset of AD.

Keywords: amyloid-beta oligomers, hyperactivity, neurodegeneration, memory, epileptiform activity, gamma

oscillations, slow wave

INTRODUCTION

Synapse loss that precedes neuronal death is the strongest predictor of cognitive decline in
Alzheimer’s disease (AD) (Alzheimer’s, 2020). Although we still need to uncover all the cellular
and molecular events leading to neurodegeneration in AD, it is well-established that toxic soluble
low-molecular-weight amyloid-beta oligomers (Aβo) play an essential role in synapse loss and
strongly correlate with the clinical state of AD patients (Selkoe, 2002; Brouillette, 2014). Since
soluble Aβo start to accumulate in the brain up to two decades before the appearance of clinical
symptoms (Cline et al., 2018), understanding how Aβ pathology disturbs cell functioning and
neuronal networks would be exceedingly beneficial to develop novel therapeutic approaches to
prevent memory deficits at the onset of AD before neurodegeneration induces irreversible brain
damages that drastically compromises the quality of life of the patient.

Aβ peptides are composed of 36–43 amino acids and are produced by the proteolytic cleavage
of the transmembrane amyloid precursor protein (APP) by β- and γ-secretases (Haass et al., 2012).
Given their hydrolytic properties, Aβ peptides (especially Aβ1−42) tend to oligomerize rapidly and
dynamically until they form insoluble fibrils that aggregate into plaques.Many Aβ species have been
shown to be neurotoxic such as dimers, trimers, tetramers, nonamers, dodecamers, protofibrils,
and fibrils (Brouillette, 2014). Whereas some reports have highlighted the neurotoxic effects of
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particular Aβ intermediates with a defined size and structure,
other studies have used mixtures of various Aβ species to
measure the global impact of the different species that are found
simultaneous in the brain. Although a large amount of studies
have consistently reported the deleterious impact of soluble Aβo
on synapse function and cognitive performance using different
types of Aβ preparations in AD mouse models, in vitro, and in
humans, the primary events disturbed by Aβo which drive the
neurodegenerative process still need to be elucidated.

Cognitive impairment in AD was traditionally assumed to
originate from lower synaptic activity that eventually lead to
neurodegeneration. Multiple lines of evidence now indicate that,
particularly in the early stages of AD, synapse dysfunction and
loss are first induced by neuronal hyperactivity rather than
hypoactivity (Busche et al., 2012, 2015a). Over the past few years,
a growing body of evidence has highlighted the major role of
soluble Aβo in the induction of neuronal hyperactivity at the
onset of AD. Based on AD animal models, in vitro experiments
and human studies, Aβo-induced neuronal hyperactivity has
emerged as an early functional hallmark of AD which triggers
synaptic failure, memory dysfunction, epileptiform activity,
and neurodegeneration.

NEURONAL NETWORK HYPERACTIVITY
IN HUMANS

In human, brain activity can be investigated by functional
magnetic resonance imaging (fMRI), positron emission
tomography (PET), single-photon emission computed
tomography (SPECT), and electroencephalogram (EEG)
recordings at resting state or while executing a cognitive task.
Hippocampal hyperactivation has been detected by fMRI
during memory-encoding tasks in people with mild cognitive
impairment (MCI), a prodromal stage of AD, as well as in pre-
symptomatic individuals carrying the E280A presenilin-1 (PS1)
mutation, the most common cause of early-onset familial AD
(Dickerson et al., 2005; Celone et al., 2006; Quiroz et al., 2010;
Bakker et al., 2012; Sepulveda-Falla et al., 2012) (Table 1). Higher
hippocampal activation was also observed before any clinical
symptoms in carriers of the APOE4 allele, the most important
genetic risk factor for late-onset sporadic AD (Bookheimer et al.,
2000; Trivedi et al., 2008; Filippini et al., 2009; Kunz et al., 2015).

As the disease progresses, neuronal networks gradually switch
to hypoactivity in AD during memory encoding (Celone et al.,
2006; Persson et al., 2008; Reiman et al., 2012). Although there
is currently many different compounds such as the Pittsburgh
Compound B that can efficiently detect Aβ plaques in the brain
using imaging techniques (Chetelat et al., 2020), the level of
soluble Aβo cannot yet be directly measured in the brain of live
patients. Although we know that the level of soluble Aβo begin to
increase in the brain ∼10–15 years before any clinical symptoms
of AD (Cline et al., 2018), it still need to be established if the
hyperactivity observed in early AD patients is induced, at least
partly, by this progressive accumulation of soluble Aβo in the
brain as shown in vitro and in animal models. A way to bypass
this limitation would be to investigate the level of Aβ1−42 and

Aβ1−40 in the CSF or plasma of AD patients while measuring
hippocampal hyperactivity by imaging techniques, although this
method would only allow to investigate the global impact of Aβo
on specific brain area dysfunctions.

HYPERACTIVITY IN AD ANIMAL MODELS

Neuronal hyperactivity has been detected in many transgenic AD
mice such as the hAPP-J20, 3×Tg-AD, APP23×PS45, APP23,
and APPswe/PS1D9 mice (Busche et al., 2008, 2012, 2015a;
Rudinskiy et al., 2012; Sanchez et al., 2012; Maier et al., 2014;
Nygaard et al., 2015) (Table 1). Using two-photon Ca2+ imaging,
it was observed that 21% of cortical neurons displayed an increase
of Ca2+ influx predominantly near the amyloid plaques in the
APP23×PS45 mouse model (Busche et al., 2008). A similar level
of hyperactivity was also observed in the CA1 region of the
hippocampus in young (1–2 months of age) APP23×PS45 mice
when Aβo begin to accumulate but no plaques are detected
(Busche et al., 2012).

These results suggest that hyperactivity is an early pathological
event that depends on the accumulation of Aβo rather than
plaques per se, and that plaques might serve as a reservoir
of toxic Aβo that amplify this excessive neuronal activity
responsible, at least in part, for the marked synaptic and
neuronal losses observed around plaques (Hefendehl et al.,
2016). In parallel to this hyperactivity, another fraction (29%)
of cortical neurons were also found to be hypoactive in 6–
10 months old APP23×PS45 mice when plaques are present
(Busche et al., 2008). Since hypoactive neurones were only
found after plaque formation, it is hypothesized that initial
neuronal hyperactivity progressively switch to hypoactivity in
AD (Busche and Konnerth, 2016), although the cellular and
molecular mechanisms underpinning this shift still need to
be determined.

To determine the direct implication of soluble Aβo on
neuronal hyperactivation in vivo, exogenous Aβ species were also
injected into the brain of wild-typemice. A single injection of Aβ-
containing AD brain extracts and Aβ dimers were both found
to induce a marked neuronal hyperactivity in CA1 neurons of
wild-type mice (Busche et al., 2012; Zott et al., 2019). However, it
should be noted that overexpression of additional APP fragments
other than Aβo were also shown to induce hyperactivity and
seizures in another mouse model (APP/TTA) (Born et al., 2014).
Since it is difficult to tease apart the specific effects of each APP
metabolites that are overexpressed in transgenic mouse models,
the use of an animal model where fresh solutions of soluble Aβo
are injected chronically into the hippocampus, such as the one
we developed (Brouillette et al., 2012), could be advantageous to
investigate the specific impact of Aβo on neuronal hyperactivity
over time.

AβO-INDUCED NEURONAL
HYPERACTIVITY IN VITRO

In line with these observations in AD mouse models, a myriad of
studies performed in vitro also support the implication of Aβ on

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 January 2021 | Volume 13 | Article 600084

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Hector and Brouillette Aβ-Induced Hyperactivity in Early Alzheimer’s Disease

TABLE 1 | Neuronal hyperactivity in humans, AD animal models, and cell cultures.

Humans, animal models, and cell cultures Periods of neuronal

hyperactivity

Brain regions References

Humans MCI Prodromal AD Hippocampus Dickerson et al., 2005; Celone

et al., 2006; Bakker et al., 2012

PS1 E280A Pre-symptomatic AD Hippocampus Quiroz et al., 2010; Sepulveda-

Falla et al., 2012

APOE4 Before clinical symptoms of

AD

Hippocampus Bookheimer et al., 2000; Trivedi

et al., 2008; Filippini et al., 2009;

Kunz et al., 2015

Animal models APP23×PS45 1–2 mo old Hippocampus and cortex Busche et al., 2008, 2012

APP23, APPPS1 18 mo old Frontal cortex Maier et al., 2014

hAPP-J20 4–6 mo old Parietal cortex Sanchez et al., 2012

3×Tg-AD 8–10 mo old Cortex Nygaard et al., 2015

APPswe/PS1D9 6–7 mo old Visual cortex Rudinskiy et al., 2012

Aβ-containing AD brain

extracts, Aβ dimers

Immediately after Aβ injection

in WT mice

CA1 area Busche et al., 2012; Zott et al.,

2019

Cell cultures Aβ25−35 Immediately after Aβ

application

Rat hippocampal cultures and

slices

Brorson et al., 1995

Aβ1−42 oligomers 24 h after Aβ application Mouse hippocampal cultures Ciccone et al., 2019

Tg2576 mice Embryos (cultures) and 3 mo

old (slices)

Hippocampal cultures and

slices

Ciccone et al., 2019

Endogenously released

human Aβ

1 h after inhibition of neprilysin Rat hippocampal cultures and

slices

Abramov et al., 2009

Aβ1−40 monomers and

dimers

15min after Aβ application Hippocampal cultures and

slices

Fogel et al., 2014

Aβ-containing AD brain

extracts, Aβ dimers

Immediately after Aβ

application

Mouse hippocampal slices Zott et al., 2019

PS11E9, PS1M146V,

APPswedish mutants

5–6 weeks of differentiation hiPSC-derived neurons Park et al., 2018; Ghatak et al.,

2019

neuronal hyperexcitability using different types of Aβ solutions
(Table 1). Indeed, application of the toxic Aβ peptide fragment
consisting of amino acid residues 25 through 35 (Aβ25−35) to
rat hippocampal cultures increased the intracellular levels of
Ca2+ and the action potential activity in neurons (Brorson et al.,
1995). Another study found that synthetic Aβ1−42 oligomers
applied in primary neuronal cultures induced a dose-dependent
decrease in neuronal viability that was cause, at least partly, by
neuronal overexcitation (Sanchez-Mejia et al., 2008). Moreover,
Aβ1−42 oligomers were found to induce aberrant neuronal
activity in primary hippocampal neurons and in hippocampal
slices from 3-month-old Tg2576 mice (Ciccone et al., 2019).
Extracellular elevation of endogenously released human Aβ

induced by inhibiting its degradation also rise up the synaptic
vesicle release probability, and results in neuronal overexcitation
in rat hippocampal cultures and in acute hippocampal slices
(Abramov et al., 2009).

Similarly, higher levels of extracellular human Aβ1−40

monomers and dimers augmented synaptic vesicle release which
in turn leads to hyperactivity of excitatory synapses in cultured
hippocampal neurons and acute hippocampal slices (Fogel et al.,
2014). More recently, it was shown that Aβ-containing AD
brain extracts and purified cross-linked Aβ dimers were able
to induce hyperactivity in active CA1 neurons treated with

bicuculline in wild-type mouse hippocampal slices (Zott et al.,
2019). Furthermore, increased Ca2+ transients and excessive
neuronal excitability have been observed in neurons derived
from human induced pluripotent stem cell (hiPSC) lines carrying
familial AD mutations (Park et al., 2018; Ghatak et al., 2019).

CELLULAR AND MOLECULAR
MECHANISMS UNDERPINNING
AβO-INDUCED NEURONAL
HYPERACTIVITY

Different studies have revealed various cellular and molecular
mechanisms to explain how Aβo might induce neuronal
hyperactivity (Figure 1). Several lines of evidence obtained
in AD mouse models suggest that soluble Aβo alter the
excitation/inhibition balance by decreasing the inhibitory
GABAergic function, which in turn induced an excessive
activation of the excitatory glutamatergic system in AD mice
(Busche et al., 2008; Palop and Mucke, 2010; Busche and
Konnerth, 2016; Styr and Slutsky, 2018). Indeed, hyperactivity
of the cortical neurons in APP23×PS45 mice was linked to
lower GABAergic inhibition instead of higher glutamatergic
transmission, and the activity of the hyperactive neurons was
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FIGURE 1 | Cellular and molecular mechanisms underpinning Aβo-induced neuronal hyperactivity.

found to be decreased by diazepam, a benzodiazepine that
increase the probability of opening the γ-aminobutyric acid type
A (GABAA) receptor channels (Busche et al., 2008).

These results are consistent with another study showing that
GABAA receptors localized in the temporal cortex of AD patients
have a reduction of current, a higher rate of desensitization, and
are less sensitive to GABA (Limon et al., 2012). Higher excitatory
and lower inhibitory synaptic activities have also been reported
in AD hiPSC-derived neurons (Ghatak et al., 2019). On the
other hand, aberrant excitatory neuronal activity triggers by Aβ

in the cortex and hippocampus of hAPP-J20 mice was found
to induce subsequent maladaptive inhibitory mechanisms that
reduce overexcitation (Palop et al., 2007), which could potentially
be involved in the gradual switch to hypoactivity seen in animal
models and AD patients (Celone et al., 2006; Persson et al., 2008;
Sperling et al., 2009; Reiman et al., 2012; Busche and Konnerth,
2016).

Another mechanism that could explain hyperactivity
generates by Aβo relies on the accumulation of glutamate at the
synapse. Indeed, in vivo infusion of Aβ1−42 and Aβ25−35 into
the rat cholinergic magnocellular nucleus basalis was shown to

induce extracellular glutamate accumulation (Harkany et al.,
2000). Fibrillar Aβ was also reported to decrease glutamate
reuptake by both neuronal and glial cells (Harris et al., 1996;
Parpura-Gill et al., 1997). More recently, it was found that Aβo-
dependent hyperactivity in active CA1 neurons was triggered
by impaired reuptake of synaptically released glutamate,
which in turn potentiate excitatory glutamatergic transmission
(Zott et al., 2019).

This reuptake suppression was shown to be induced by lower
levels and membrane diffusion obstruction of the astroglial
excitatory amino-acid transporter 2 (EAAT2; termed GLT-1 in
mice) (Jacob et al., 2007; Hefendehl et al., 2016; Zott et al.,
2019), a glutamate transporter that is predominant in the CA1
area and whose activity is reduced in the early stages of AD
(Masliah et al., 1996; Hefendehl et al., 2016). In line with these
observations, neuronal hyperexcitability observed in 5×FAD
mice was attenuated by increasing the expression of GLT-1 and
by reducing changes in dendrite morphology, synaptic strength,
and NMDA/AMPA receptors activity ratios after inhibiting the
nuclear factor of activated T cells 4 (Sompol et al., 2017), a protein
overactivated in the early stages of AD (Abdul et al., 2009).
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An alternative mechanism by which Aβo may deregulate
glutamate homeostasis implicates aberrant release of glutamate
stored in pre-synaptic vesicles. Soluble Aβo have been shown
to increase the release of pre-synaptic vesicles in hippocampal
neuronal cultures, whereas the activation of inhibitory GABAA

receptors by the agonist taurine was able to block the
accumulation of glutamate at the synaptic cleft (Brito-Moreira
et al., 2011). Moreover, application of Aβ1−42 oligomers on
hippocampal cultures was reported to increase the amount
of synaptic vesicles and their exocytosis by disrupting the
synaptophysin/VAMP2 complex at the pre-synaptic terminals
(Russell et al., 2012). Even a small elevation of endogenous
Aβ40 and Aβ42 peptides of different lengths and molecular
conformations was able to accelerate the vesicle exocytosis
rate and increased release probability of active neurons in
hippocampal cultures (Abramov et al., 2009). Given that both
higher and lower levels of endogenous extracellular Aβ oligomers
reduced short-term facilitation of vesicle release (Abramov et al.,
2009), these results indicate that the level of Aβ peptides needs
to be tightly control to keep the vesicle release probability in the
optimal range. Application of Aβ40 monomers or dimers was
also shown to induce hyperactivity by augmenting vesicle release
probability at excitatory synapses after promoting pre-synaptic
CA2+ influx via APP homodimerization in hippocampal cultures
and slices (Fogel et al., 2014). Interestingly, various Aβ peptides
such as Aβ1−42, Aβ1−40, Aβ1−28, and Aβ25−35 were all found to
increase potassium-evoked glutamate release from hippocampal
slices in a dose-dependent manner (Kabogo et al., 2010).

Lower reuptake and higher release of glutamate can also act
synergistically to increase the load of glutamate in the synaptic
cleft and lead to its “spillover” to activate extrasynaptic GluN2B-
containing NMDA receptors that were found to promote
neuronal death (Parsons and Raymond, 2014). Interestingly,
prolonged activation of NMDA receptors has been shown to
induce endocytosis and lysosomal degradation of the post-
synaptic GABAB receptors (Terunuma et al., 2010), which could
in turn amplify neuronal excitability by decreasing the inhibitory
action of GABA in AD. Moreover, lower axonal trafficking and
reduced expression of the pre-synaptic GABAB receptors in AD
were reported to increase Aβ formation (Dinamarca et al., 2019).
Since neuronal and synaptic activity were shown to increase the
production and secretion of Aβ (Cirrito et al., 2005; Dolev et al.,
2013; Yamamoto et al., 2015), the hyperactivity induced by Aβo
can also favor an excessive release of Aβ and consequently causes
a vicious cycle that amplifies and perpetuates the deleterious
effects of Aβo on cell function. Using a chemogenetic approach,
it was reported that chronic attenuation of aberrant neuronal
activity was able to reduce amyloid plaque formation and synapse
loss (Yuan and Grutzendler, 2016).

IMPACT OF AβO-INDUCED
HYPERACTIVITY ON CELL DEATH

By blocking glutamate reuptake and facilitating its pre-synaptic
release, soluble Aβo increased glutamate concentration at the
synaptic cleft and subsequently affect post-synaptic neurons by

overactivating glutamatergic NMDA and AMPA receptors. It
was shown that higher pre-synaptic release of glutamate induced
by soluble Aβ generated a massive entry of Ca2+ and Na+

through NMDA receptors, which in turn impaired intracellular
signaling pathways involved in synaptic plasticity and produced
deleterious effects on neurons leading ultimately to cell death
(Calvo-Rodriguez and Bacskai, 2020) (Figure 2). In physiological
condition, Ca2+ concentration is finely balanced to maintain
a lower level in the cytosol than in the extracellular space or
some cell organelles such as the endoplasmic reticulum (ER) and
lysosome. When this balance is disturbed in AD, overactivation
of Ca2+-dependent intracellular pathways impaired energy
metabolism, produced reactive oxygen species (ROS), and
oxidative stress that eventually lead to cell death (Belkacemi and
Ramassamy, 2012; Calvo-Rodriguez and Bacskai, 2020).

Using neuronal culture and entorhinal–hippocampal
organotypic slices, it was found that Aβ1−42 oligomers
dysregulated Ca2+ homeostasis and triggered neuronal death
through both NMDA and AMPA receptors by generating ROS
that derived in part from mitochondrial sources (De Felice et al.,
2007; Wang and Zheng, 2019). In vivo infusion of Aβ1−42 and
Aβ25−35 in the rat cholinergic magnocellular nucleus basalis
induced a rapid accumulation of intracellular Ca2+ in the vicinity
of the injection site followed by cell death 3 days post-injection
(Harkany et al., 2000). In human cortical cell cultures, Aβ1−38

and Aβ25−35 increased the intracellular basal level of Ca2+ and
amplified Ca2+ influx induced by excitatory amino acid (EAA),
thereby potentiating EAA-induced neuronal degeneration
(Mattson et al., 1992). Injection of Aβ-containing AD extracts in
the CA1 area was also reported to reduce neurite length and the
number of branch points in wild-type mice (Zott et al., 2019).

At the level of the plasma membrane, Aβo can also increase
the intracellular levels of Ca2+ by (1) inhibiting the Ca2+-
efflux ATPase or exchangers (Wu et al., 1997; Kim et al., 1999;
Mata, 2018), and by (2) intensifying Ca2+ influx through L-
type, T-type, and N-type voltage-gated Ca2+ channels (Ueda
et al., 1997; Ekinci et al., 1999; MacManus et al., 2000; Thibault
et al., 2012; Min et al., 2013). Moreover, Aβo were found to
increase Ca2+ release from the ER to the cytosol by enhancing
the function of ryanodine receptors and by increasing inositol
1,4,5-trisphosphate receptor (IP3) production and binding to its
receptors (Cowburn et al., 1995; Shtifman et al., 2010; Demuro
and Parker, 2013; SanMartin et al., 2017). These results are in
line with the beneficial effects observed in some AD patients with
thememantine compound, an antagonist of the NMDA receptors
that reduced Ca2+ influx into cells (Robinson and Keating, 2006).

IMPACT OF AβO-INDUCED
HYPERACTIVITY ON MEMORY
PERFORMANCE

It is well-established that in healthy individuals hippocampal
activity increased when performing different types of memory
tasks such as spatial navigation, episodic and associative memory
tasks (Sperling et al., 2003; Zeineh et al., 2003; Moser et al.,
2017). This higher neuronal activity is essential to induce
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FIGURE 2 | Impact of Aβo-induced hyperactivity on cell death. VGCC, voltage-gated Ca2+ channel; NMDAR, NMDA receptor; AMPAR, AMPA receptor; PMCA,

plasma membrane calcium ATPase NCX, Na+/Ca2+ exchanger; IP3, inositol 1,4,5-trisphosphate; IP3R, IP3 receptor; RyR, ryanodine receptor.

synaptic plasticity to encode and consolidate new information
learned while executing the task. But what happen when the
hippocampus gets overactivated? Excessive neuronal activity
in the hippocampus was first observed in animal models of
aging and has been shown to induce age-related memory
deficits (Koh et al., 2010; Thome et al., 2016; Haberman et al.,
2017). In AD, hippocampal hyperactivity can be detected in the
preclinical et prodromal stages of the disease when memory
deficits are still very subtle and can hardly be perceived by
neurocognitive exams (Mondadori et al., 2006; Filippini et al.,
2009; Bateman et al., 2012; Reiman et al., 2012). Indeed, before
clinical symptoms become apparent in APOE4 carriers, higher
hippocampal activation was associated with lower grid-cell like
representation in the entorhinal cortex when performing a virtual
spatial-memory task (Bookheimer et al., 2000; Kunz et al., 2015).

In APP knock-in mice with human APP containing three
mutations, grid cells were shown to degenerate when Aβ

depositions are emerging, and started to lose connection with
place cells in the hippocampus when mice were getting old,

which prevented the hippocampus to recreate spatial maps to
distinguish between different environments (Jun et al., 2020).
Memory deficits were also observed in APOE4 knock-in mice,
in which the APOE gene is replaced by knocking in the human
ε4 allele (Andrews-Zwilling et al., 2010). Transplantation of
interneuron precursor cells and treatment with pentobarbital
to promote the inhibitory action of GABA were both able to
attenuate these cognitive dysfunctions in APOE4 knock-in mice
(Andrews-Zwilling et al., 2010).

In presymptomatic individuals carrying the AD-associated
PS1 E280A mutation, increased activation of the right
anterior hippocampus was observed when performing a
face-name associative encoding task (Quiroz et al., 2010).
Hippocampal hyperactivity was even detected in elderly with
Aβ plaque deposition who doesn’t showed episodic memory
impairment (Mormino et al., 2012), suggesting that Aβ-
dependent hyperactivation is an early event that might be
present before memory deficits become apparent in some
hippocampal-dependent memory tasks. In cognitively normal
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elderly, higher hippocampal activation at baseline has been
shown to be correlated with increased longitudinal Aβ plaque
deposition and progressive memory decline across time (Leal
et al., 2017).

In another study, the presence of Aβ plaques in the neocortex
was associated with impaired episodic memory deficits in both
asymptomatic elderly and MCI individuals (Pike et al., 2007).
Amnestic MCI and non-demented older adults also showed
aberrant activity in the dentate gyrus and CA3 regions of the
hippocampus during a pattern-separation task, which markedly
depends on the hippocampus (Yassa et al., 2011; Bakker et al.,
2012, 2015). Moreover, MCI patients with Aβ plaque depositions
were found to have more pronounce hippocampal activation at
baseline and faster clinical progression compared to Aβ negative
MCI elderly (Huijbers et al., 2015).

Transcranial magnetic stimulation (TMS) is a non-invasive
form of brain stimulation technique that not only allow to
monitor variations in intracortical inhibition and excitation but
might also serve as a diagnostic tool and a way tomodulate cortex
activity to ameliorate memory function in AD patients. Indeed,
repetitive TMS (rTMS) applied to the dorsolateral prefrontal
cortex (DLPFC) has been shown to improve performance on
an action naming memory task in mild AD as well as object
naming in moderate to severe AD patients (Cotelli et al., 2006,
2008). A longer treatment (five times a week for 4 weeks) with
rTMS over the left DLPFC was even able to enhance language
performance of AD patients that lasted for 8 weeks after ending
the stimulations (Cotelli et al., 2011). Moreover, high-frequency
rTMS over the DLPFC improved memory performance in the
mini-mental state examination (MMSE) in patients with mild
to moderate AD, whereas high-frequency rTMS over the right
inferior frontal gyrus increased attention and psychomotor speed
of MCI and mild AD patients in the trail making test (Eliasova
et al., 2014). Another study has found that application of rTMS
for 6 weeks over the parietal P3/P4 and posterior temporal
T5/T6 areas improved cognitive function in mild to moderate
AD patients in three different neuropsychological tests (Zhao
et al., 2017). Although we still don’t know if rTMS can impact
Aβ accumulation, this technique holds great promise to tackle
neuronal hyperactivity and acts on it to improve cognitive
performance of AD patients.

Neuronal hyperactivity also affects memory performance in
various animal models. All the transgenic AD mouse models
showing network hyperexcitability such as the hAPP-J20, 3×Tg-
AD, APP23×PS45, APP23, Tg2576, and APPswe/PS1D9 mice,
were found to have memory deficits in various memory tasks
(Busche et al., 2008, 2012, 2015a; Rudinskiy et al., 2012; Sanchez
et al., 2012; Maier et al., 2014; Nygaard et al., 2015). Direct
injections of soluble Aβ1−42 oligomers into the hippocampus
also induced memory deficits that were reversed by sequestering
Aβo with transthyretin (Brouillette et al., 2012). Cognitive
functions were also improved in hAPP-J20 and 3×Tg-AD
mice by suppressing neuronal overactivation with levetiracetam,
an anti-epileptic drug that facilitate inhibitory GABAergic
neurotransmission (Sanchez et al., 2012; Nygaard et al., 2015).

Memory plasticity can be modeled by inducing long-term
potentiation (LTP) or long-term depression (LTD) in cell

cultures or animal models (Nabavi et al., 2014). Nanomolar and
micromolar levels of Aβ dimers and trimers were shown to
inhibit LTP, increase LTD and reduce dendritic spine density in
organotypic hippocampal slices (Townsend et al., 2006; Shankar
et al., 2007, 2008; Li et al., 2009). It was found that Aβo
altered LTP and LTD by decreasing neuronal glutamate reuptake,
thereby contributing to the diffusion of glutamate outside
the post-synaptic density where it can activate extrasynaptic
GluN2B-containing NMDA receptors and induced cell death
(Li et al., 2009, 2011; Hardingham and Bading, 2010). On the
contrary, smaller (picomolar) concentration of Aβ42 was shown
to enhance LTP and memory formation (Puzzo et al., 2008),
suggesting that the level of Aβ needs to be finely tuned to prevent
synaptic failure and ensuing cognitive impairment.

As the disease progresses and cognitive decline worsens,
hippocampal activation decreased gradually at the basal level
and when AD patients performed a task-related hippocampal
activity (Dickerson et al., 2005; Pariente et al., 2005; Celone et al.,
2006). In a prospective study it was found that MCI individuals
shifted from hippocampal hyperexcitability to hypoactivation
at the baseline level over time, and that deterioration of
memory performance was associated with the rate of decrease
in hippocampal activity (O’Brien et al., 2010). Collectively, these
studies suggest that high neuronal activity induced, at least in
part, by Aβ accumulation is a very early phenomenon in AD
pathogenesis that has a deleterious impact on memory abilities.

IMPACT OF AβO-INDUCED
HYPERACTIVITY ON EPILEPTIFORM
ACTIVITY

Since neuronal hyperactivation is characterized by an increase in
frequency and amplitude of neuronal firing, it is not surprising
to observe abnormal level of synchronization between excitatory
glutamatergic neurons that fired together at the same time,
which in turn increased the incidence of epileptiform activity
and seizure observed in AD patients and AD animal models.
Although the prevalence rates vary considerably between studies
(1.5–64%) because of limitation and methodological issues to
detect non-convulsive epileptiform activity, a rate of 64% has
been observed in cohorts monitored carefully at all stages of AD
(Friedman et al., 2012).

Interestingly, seizures have been shown to occur more
frequently in younger AD patients (Vossel et al., 2013; Sherzai
et al., 2014), when neuronal hyperactivity is more prominent. In
patients with early-onset AD that developed the disease before
65 years old, seizures were detected in 45% of cases (Samson
et al., 1996). A seizure rate of 28% was also observed in people
with familial AD carrying mutations in APP, PS1, or PS2 genes
(Shea et al., 2016). In a prospective study of 8 years, seizures
were observed in 84% of patients with Down’s syndrome who
developed AD because of the duplication of chromosome 21 that
contains the APP gene (Lai and Williams, 1989). The higher and
earlier accumulation of Aβ in familial cases of AD and Down’s
syndrome supports the notion that neuronal hyperactivation
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induced by soluble Aβo is involved in epileptogenic activity seen
at the onset of AD.

In the more common form of sporadic AD, epileptiform
activity might be more prominent than previously recognized.
Indeed, it was first found that only 2% of AD patients had
subclinical non-convulsive epileptiform activity when recording
EEGs for 30min in awake patients (Liedorp et al., 2010).
However, a more recent study detected subclinical epileptiform
activity in 42% of the cases (four times more often than
in healthy controls), using 24h EEGs in combination with
1 h magnetoencephalography (MEG) (Vossel et al., 2016).
Interestingly, 90% of epileptiform activity occurred during sleep,
and AD patients with subclinical epileptiform activity showed
a faster rate of cognitive decline (Vossel et al., 2016). Using
intracranial recording, clinically silent hippocampal seizures and
epileptiform spikes were also observed during sleep in two
AD patients without a history or EEG evidence of seizures
(Lam et al., 2017).

These results are in line with the manifestation of non-
convulsive seizure activity and epileptiform spike discharges
observed using EEGs in various AD transgenic models. Like
in humans, most of the epilepsies seen in AD mice are non-
convulsive, with the exception of mice overexpressing human
APPswe and PS11E9 which have recurrent motor seizures
(Minkeviciene et al., 2009; Palop and Mucke, 2010; Um et al.,
2012). In hAPP-J20 and APPswe/PS11E9 mice, pathological
elevation of Aβo has been shown to elicit hyperexcitability and
spontaneous non-convulsive epileptic activity, including spikes
and sharp waves, in cortical and hippocampal networks (Palop
et al., 2007; Minkeviciene et al., 2009).

As in humans, spontaneous epileptiform discharges were
found to arise mainly during resting periods in hAPPJ20 mice
(Verret et al., 2012). Enhancing inhibitory GABA current by
restoring the level of voltage-gated sodium channels subunit
Nav1.1 was shown to reduce network hypersynchrony, memory
deficits, and premature mortality in hAPP-J20 mice (Verret et al.,
2012). Aβ1−42 oligomers were also found to up-regulate the level
of Nav1.6 subtype, which contribute to neuronal hyperexcitability
observed in primary hippocampal neurons and in hippocampal
slices from 3-month-old Tg2576 mice (Ciccone et al., 2019).
In APPswe/PS11E9 mice, electrographic and motor seizures
were prevented by deleting the cellular prion protein, which was
shown to interact with Aβ and triggered dendritic spine loss (Um
et al., 2012).

EFFECT OF AβO-INDUCED
HYPERACTIVITY ON GAMMA
OSCILLATIONS AND SLOW WAVE
ACTIVITY

Normal neuronal synchrony is critical to generate oscillatory
rhythmic activities within a certain range that allow
different brain regions to communicate efficiently together
in function of the brain state. Brain rhythms are formed
when neuronal ensembles depolarized (most often with firing)
and hyperpolarized their membrane potentials together in

synchronized repeating sequences (Buzsaki and Watson, 2012).
Five widely recognized brain waves have been characterized in
function of their frequencies; delta (1–4Hz), theta (4–8Hz),
alpha (8–12Hz), beta (12–30Hz), and gamma (30–150Hz)
oscillations. Each brain waves have been associated with
a particular brain state, where delta oscillations are more
prominent during non-rapid eye movement (NREM) sleep
whereas gamma oscillations are mostly detected when
concentration is required, and tend to be localized to neuronal
networks directly implicated in the task (Timofeev and
Chauvette, 2017; Adaikkan and Tsai, 2020). For example, the
amplitude (power) of gamma oscillatory activity was shown
to be increased in the hippocampus during memory encoding
and to predict effective memory formation in humans and mice
(Jensen et al., 2007; Sederberg et al., 2007; Matsumoto et al.,
2013; Yamamoto et al., 2014).

Given that Aβo-induced hyperactivity favors hypersynchrony,
which in turn affects brain waves, one could expect that brain
rhythms are altered at the onset of AD. In fact, gamma power has
been shown to be reduced in MCI and AD patients (Herrmann
and Demiralp, 2005; van Deursen et al., 2008), as well as in
various AD mouse models (Verret et al., 2012; Goutagny et al.,
2013; Iaccarino et al., 2016; Mably et al., 2017; Mondragon-
Rodriguez et al., 2018). Interestingly, it was found recently
that restoring slow gamma oscillation (40Hz) in a non-invasive
manner by simply exposing ADmice to 1 h of 40Hz tons per day
for a week was sufficient to reduce amyloid and tau pathologies
not only in the auditory cortex but also in the hippocampus,
to activate microglia, and to improve cognitive performance
(Martorell et al., 2019). A stronger microglia response and
a larger reduction of amyloid plaques were also found by
combining auditory with visual stimulation to induce 40Hz
gamma waves (Martorell et al., 2019). Moreover, optogenetic
stimulation of medial septal parvalbumin neurons at 40Hz
was reported to restore hippocampal slow gamma oscillations
power and to ameliorate spatial memory in hAPP J20 mice
(Etter et al., 2019).

Slow wave activity (SWA)—comprising slow oscillations
(0.6–1Hz) and delta waves—that is present during NREM
sleep was also found to be disrupted in the early stages of AD
(Lee et al., 2020). It is well-established that NREM sleep is
particularly important to consolidate memories newly acquired
during the awake state, and that SWA is critical to transfer
novel information from the hippocampus to long-term memory
storage across cortical areas (Steriade et al., 1993; Clemens et al.,
2005; Diekelmann and Born, 2010). In individuals with MCI,
lower delta and theta power during sleep was associated with
declarative memory impairments, and more fragmentation
of slow-wave sleep was observed relative to healthy elders
(Hita-Yanez et al., 2012; Westerberg et al., 2012). It was shown
that disruption of NREM SWA and deficits in hippocampus-
dependent memory consolidation correlated with the level of
Aβ plaque deposition in the medial prefrontal cortex of older
adults (Mander et al., 2015). Cortical Aβ burden was also able to
predict the lower amplitude of slow oscillations in elderly (Winer
et al., 2019). Moreover, reduce slow-wave sleep was associated
with higher level of Aβ in the plasma of MCI individuals
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(Sanchez-Espinosa et al., 2014). Interestingly, restoring slow
oscillations by transcranial direct current stimulation was shown
to improve memory performance in patients with early AD
(Ladenbauer et al., 2017).

In line with these human studies showing the involvement
of Aβ on SWA impairment at the onset of AD, disruption
of SWA was also detected in mouse models of β-amyloidosis.
SWA has been shown to be markedly disrupted in the
hippocampus, neocortex and thalamus of APP23×PS45 mice
and in wild-type mice injected with synthetic Aβ (Busche
et al., 2015b). Slow wave power was also decreased in young
and older APPswe/PS11E9 mice (Kastanenka et al., 2017,
2019). Moreover, both the APP/PS1 and Tg2576 mouse models
exhibited an age-dependent decreased in delta and theta
power (Kent et al., 2018), whereas 3×Tg-AD mice showed
slow waves at lower frequency (Castano-Prat et al., 2019).
Remarkably, restoring slow oscillations using a GABA receptors
agonist (benzodiazepine), a suppressor of Aβ production (β-
secretase), or by optogenetic manipulation have all been shown
to rescue memory deficits in various AD mouse models
(Busche et al., 2015b; Kastanenka et al., 2017; Keskin et al.,
2017).

TREATMENTS TO COUNTERACT
NEURONAL HYPERACTIVATION IN AD

Since Aβo-induced hyperactivity is an early pathological event
that precedes plaque formation when soluble low-molecular-
weight Aβo begin to accumulate in the human brain up to
two decades before the symptomatic phase of the disease
(Cline et al., 2018), acting on this detrimental phenomenon
might prove beneficial to develop therapeutic approaches to
prevent or at least slow down the disease progression. Since the
excitation/inhibition balance has been shown to be compromised
at the onset of AD primarily because of insufficient GABAergic
inhibition (Busche et al., 2008; Palop and Mucke, 2010; Busche
and Konnerth, 2016; Styr and Slutsky, 2018), using drugs that
are capable of restoring the GABAergic system might potentially
lower the hyperactivity triggers by Aβo and consequently
AD pathogenesis.

The GABAA receptors agonist taurine was found to attenuate
neuronal hyperactivity by decreasing glutamate level released at
the synapse (Brito-Moreira et al., 2011) (Table 2). Hyperactivity
was also reduced in cortical neurons of APP23×PS45 mice
by increasing the inhibitory effect of GABA with diazepam

TABLE 2 | Treatments to counteract neuronal hyperactivation in AD.

Compounds Types Models Effects References

Taurine GABAA receptors

agonist

Aβ1−42 oligomers in

hippocampal cultures

hyperactivity by glutamate

release

Brito-Moreira et al., 2011

Diazepam Benzodiazepine APP23×PS45 mice hyperactivity opening of

GABAA receptor channels

Busche et al., 2008

GABA Neurotransmitter APP mice Restore slow oscillations Kastanenka et al., 2017,

2019

Midazolam Benzodiazepine APP23×PS45 mice, Aβo

injected mice

Rescue the frequency and

long-range coherence of slow

waves

Busche et al., 2015b

Clonazepam Benzodiazepine APP23×PS45 mice Rescue slow waves and

sleep-dependent memory

consolidation

Busche et al., 2015b

GNE-0723 Modulator of

NMDAR-GluN2A

hAPP-J20 mice low-frequency oscillations,

network hypersynchrony, and

memory deficits

Hanson et al., 2020

NB-360 Inhibitor of β-secretase

BACE

APP23×PS45 mice prefibrillary Aβ, hyperactivity,

and memory deficits

Keskin et al., 2017

LY-411575 Inhibitor of γ-secretase APP23×PS45 mice soluble Aβ levels, hyperactivity,

and cognitive deficits

Busche et al., 2012

Levetiracetam Anti-epileptic hAPP mice epileptiform activity,

hyperactivity, hypersynchrony,

DNA double-strand breaks;

memory performance

Sanchez et al., 2012;

Suberbielle et al., 2013,

2015; Nygaard et al., 2015

Humans with MCI hyperactivity; memory

performance

Putcha et al., 2011; Bakker

et al., 2012

Pyruvate and

3-β-hydroxybutyrate

supplement

Dietary energy

substrates

APPswe/PS11E9 mice Prevent energy metabolism

deficits, hyperactivity, epileptiform

activity

Zilberter et al., 2013

Protofibrillar Aβ1−42 in

hippocampal slices

Rescue network activity, synaptic

function, LTP and energy

metabolism

Zilberter et al., 2013
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(Busche et al., 2008). Topical application of GABA directly on the
somatosensory cortex was reported to restore slow oscillations
in APP mice (Kastanenka et al., 2017, 2019), whereas the
topical application of the GABAA agonist midazolam rescued
the frequency and long-range coherence of slow waves in
the frontal and occipital cortex of APP23×PS45 mice and
in wild-type mice infused with Aβo (Busche et al., 2015b).
Moreover, intraperitoneal injection of the benzodiazepine
clonazepam, which increase GABAergic function by acting on
GABAA receptors, has been shown to rescue slow waves and
sleep-dependent memory consolidation in APP23×PS45 mice
(Busche et al., 2015b).

Recently, a positive allosteric modulator called GNE-0723
that can boost the activity of NMDAR containing GluN2A
subunit contained in both excitatory pyramidal neurons
and inhibitory interneurons has been tested in hAPP-J20
mice (Hanson et al., 2020). This compound was found
to decrease aberrant low-frequency oscillations (12–20Hz),
network hypersynchrony, and memory deficits in hAPP-J20
mice, suggesting that this drug is able to reinstate the
excitation/inhibition balance. Inhibitors of β-secretase BACE and
γ-secretase, two enzymes involved in the production of Aβ,
have also been shown to decrease Aβo-induced hyperactivity
and cognitive impairments in APP23×PS45 mice (Busche
et al., 2012; Keskin et al., 2017). However, given the clinical
trial failures obtained so far with these types of compounds,
additional experiments are requested to develop more Aβ

specific BACE and γ-secretase inhibitors and to find the
appropriate doses and time of administration for an efficient
therapeutic intervention.

Levetiracetam (Keppra) is an atypical anti-epileptic drug that
is assumed to decrease impulse conduction across excitatory
synapses by inhibiting pre-synaptic Ca2+ channels, and by
acting on the synaptic vesicle protein SV2A (Lynch et al.,
2004; Vogl et al., 2012). Interestingly, levetiracetam not
only decreased epileptiform activity in hAPP mice, but also
lower neuronal hyperactivation and hypersynchrony, improved
memory performance, and reduced neuronal DNA double-
strand breaks in AD mouse models (Sanchez et al., 2012;
Suberbielle et al., 2013, 2015; Nygaard et al., 2015). In MCI
individuals, treatment with a low dose of levetiracetam for two
weeks was found to attenuate hippocampal hyperactivation and
to ameliorate performance in a pattern-separation memory task
(Putcha et al., 2011; Bakker et al., 2012).

Since higher level of glucose is required to provide the
increase of energy associated with neuronal hyperexcitability,
several cellular energy deficiencies have also been detected at
the onset of AD (Velliquette et al., 2005; Guglielmotto et al.,
2009; Avila et al., 2010). To compensate for this neuronal energy
supply deficiency, an energy substrate-enriched diet (standard
diet supplemented with pyruvate and 3-β-hydroxybutyrate) was
administered for 5 weeks to APPswe/PS11E9 mice (Zilberter
et al., 2013). By restoring the level of glycogen in the brain of these
AD mice, this treatment was able to prevent energy metabolism
deficits, neuronal hyperexcitability, and epileptiform activity.
Moreover, alterations in network activity, synaptic function,
LTP, and energy metabolism induced by protofibrillar Aβ1−42 in

hippocampal slices were rescued by using artificial cerebrospinal
fluid supplemented with pyruvate and 3-β-hydroxybutyrate
(Zilberter et al., 2013).

CONCLUSION

A myriad of studies performed in humans, cell cultures, hiPSC
lines carrying familial AD mutations, AD mouse models, and
wild-type mice injected with soluble Aβo indicate that neuronal
hyperactivity is an early detrimental event in AD pathogenesis.
Multiple lines of evidence strongly suggest that the accumulation
of soluble low-molecular-weight Aβo plays a major role in
neuronal hyperexcitability observed at the onset of AD, although
other factors might also contribute, such as tau, other APP
metabolites, APOE4, glial responses, neuroinflammation, and
oxidative stress. Encouragingly, a growing body of evidence
indicates that neuronal hyperactivity may be potentially reversed,
which could prevent cell death, improve cognitive impairments,
decrease epileptiform activity, restore gamma oscillations, and
slow wave activity. Decreasing the abnormal accumulation of
soluble Aβo to avoid an excess of glutamate at the synaptic
cleft and re-establishing the balance between synaptic excitation
and inhibition might prove useful to ameliorate memory
performance in the early stages of AD and prevent, or at least slow
down, the neurodegenerative process that progressively takes
place in the course of AD.
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