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ABSTRACT

This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-
resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is
used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution
image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of
atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by
multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evalu-
ate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The
resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as
much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used
super-resolution technique to improve the CBCT image quality.
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INTRODUCTION
Cone-beam computed tomography (CBCT), which can reveal much
information related to internal organs and tissues, has been used
increasingly in medical applications in recent years. For example,
CBCT has been used in angiography CT, CT fluoroscopy, and 4D
CT [1–4]. In particular, CBCT is extremely useful for radiation treat-
ment. The application of CBCT to radiation treatment has been
developed for the use of image-guided radiotherapy (IGRT), enabling
high-accuracy radiotherapy [5, 6].

Recently, many approaches for the implementation of adaptive
radiotherapy (ART), which allows real-time treatment adaptation
based on the most recent patient anatomy, have been investigated for
use in providing higher accuracy treatment. Although CBCT images
provide the most up-to-date information for a human body, they are
adversely affected by noise and artifacts, which degrade the image

quality. The image quality is often so low that CBCT images cannot be
used directly to compute the dose distribution for treatment planning.

A conventional method using low-quality CBCT images for ART
transforms planning CT images to CBCT images using non-rigid func-
tions. The method then uses these images for re-planning [7–9].
Nevertheless, it is difficult to ensure high positional accuracy using this
method with soft tissues or flatus with particularly large positional dis-
placement between two images.

Another method for improving CBCT images suppresses scatter
or cupping artifacts. The dose distribution is computed directly from
those improved images [10–12]. However, those methods are applic-
able only to images before reconstruction. Furthermore, a specific filter
must be used to improve image quality.

As described herein, we propose an image-improving method using
a super-resolution technique for upsampling a low-resolution image
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(or noisy image) by combining it with a corresponding high-resolution
image (or clean image) [13]. Two benefits are gained when applying
this method to CBCT images. (i) No misregistration occurs between
the CBCT image and the reconstructed image, which is useful for radio-
therapy that requires high irradiation accuracy. (ii) This method can be
adapted to the reconstructed image. Therefore, no special equipment or
reconstruction technique is necessary in order to improve image quality.

An earlier study by Karimi et al. [14] examined reduction of the
radiation dose by application of a super-resolution technique to CT
images. Their method uses a few projections as low-resolution images
and numerous projections as high-resolution images. Images recon-
structed from a few projections were clarified using this technique.
Most studies using super-resolution techniques have adopted this
approach for image improvement for the same modality.

There are two fundamental differences between the study by
Karimi et al. and our study. The specifications of the CBCT used for
our study differ from the specifications of the CT used for the other
study. The CBCT image quality is much lower than the CT image
quality because of the effects of the scattered X-rays, which are greater
for larger irradiated areas.

Another important difference is the purpose of using super-
resolution. The method reported by Karimi et al. uses a few projections
as low-resolution images and numerous projections as high-resolution
images. Actually, the purpose of their study was to produce high-dose
CT images from low-dose images by application of the super-resolution
technique. By contrast, the purpose of the present study was to estimate
high-quality CBCT images from other devices, and to use planning-CT
images as high-resolution images.

We propose a method of improving CBCT image quality by appli-
cation of the super-resolution technique using images taken from two
modalities: planning CT and CBCT.

MATERIALS AND METHODS
Overview of the conventional super-resolution method

We start with a description of an overview of the conventional super-
resolution method, which usually requires numerous high-resolution

images. As a first step, the super-resolution method generates a matrix
consisting of high-resolution image bases: ‘atoms’. This matrix is called
a high-resolution dictionary (DH). The K-SVD [15] algorithm has
been used to generate the dictionary. Then, the super-resolution meth-
od generates a low-resolution dictionary (DL) from undersampling or
by adding blur to high-resolution atoms in DH. The DL represents the
low-resolution image atoms. A low-resolution image is represented as
a linear combination of low-resolution atoms. Finally, the super-
resolution image is inferred by replacing low-resolution atoms with
high-resolution ones. Consequently, a high-resolution image is gener-
ated from a low-resolution one.

Overview of the proposed method
A schematic representation of our approach is presented in Fig. 1. As a
first step, high-resolution images and low-resolution images must be
acquired to construct dictionaries. For this study, the planning CT and
CBCT images were regarded, respectively, as high-resolution and low-
resolution images. As a second step, the dictionaries are created from
those images. Then an input CBCT image is represented as a linear
combination of the atoms in the low-resolution dictionary. Finally, the
super-resolution image is inferred by replacing the atoms in the low-
resolution dictionary with the atoms in the high-resolution dictionary.
Details of this method are described in the following sections.

Database preparation
For this study, a set of full-pelvis-region images (planning CT and
CBCT) of 30 patients with prostatic tumor was acquired using plan-
ning CT (Aquilion LB; Toshiba Medical Systems Corp.) and CBCT
(On-Board Imager; Varian Medical Systems Inc.) after anonymization.
The CBCT images were acquired 8.0 days (median; range, 7–37) after
the planning CT image acquisition. They were resized down to 140 ×
270 × 50 voxels to reduce the calculation time. Table 1 presents the
imaging parameters.

We regarded CBCT images as low-resolution images and regarded
planning CT images as high-resolution images. To generate a super-
resolution database, planning CT images were registered to corresponding

Fig. 1. Schematic representation of our proposed algorithm.
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CBCT images using B-spline deformable registration. The resulting
images are portrayed in Fig. 2. Then we extracted patches of size

×n n from planning CT and CBCT images, where n denotes
the number of elements in each patch. All patches were extracted with
overlaps to increase the number of patches. Each element in the patch
was represented as a vector ( ∈p nH and ∈p nL ) and was
arranged in a column of a matrix. Thus, we constructed the matrices

= [ ⋯ ] ∈ ×p pP t
n t

H 1
H H and = [ ⋯ ] ∈ ×p pP t

n t
L 1

L L , where t
denotes the total number of patches within an image. We assumed that
the k-th patches in these matrices (i.e., pk

H and pk
L) are extracted from

the same position of those images. By adapting this operation to all
images, we generated a high-resolution database ( = [ ⋯ ] ∈A P PsH 1

H H

 ×n st) and a low-resolution one ( = [ ⋯ ] ∈ ×A P Ps
n st

L 1
L L ), where s

denotes the total number of images, and where Pk
H and Pk

L denote the
matrix of the k-th image ( ≤ ≤k s1 ). The high-resolution database
AH structure is presented in Fig. 3.

Construction of the low-resolution dictionary
This section presents a method for generating a dictionary from a pre-
pared database AL . We assumed that input signal pL, which is
extracted from an input image (low-resolution image), can be repre-
sented sparsely by ∈q m over the dictionary ∈ ×D n m

L , as

= ( )p qD 1L
L

where ≪q n0 . Here, 0∙ denotes the number of nonzero ele-
ments in the vector, called l0-norm. In addition, q is a sparse coeffi-
cient vector representing the input signal’s coordinates with fewer
than n non-zeros.

For this study, we substituted a low-resolution database AL for pL

and substituted the matrix of combination coefficients ∈ ×C m st for q
in the equation. A conceptual scheme of this equation is depicted in
Fig. 4. The dictionary is learned under the constraint that the combin-
ation coefficient is sparse. This problem is presented by the following
equation:

= −

≤ ( )

⁎ ⁎C D A D C

C l

, argmin

subject to . 2
C D

i

L , L L 2
2

0

L

Therein, Ci denotes the i-th column of C with only l or fewer non-
zero coefficients. When the sparsity constraint is the l0-norm as in
Eq. (2), this optimization problem is classified as NP-hard [16].
Therefore, we relaxed Eq. (2) under the l1-norm constraint to solve
the problem as shown below.

′ λ= − +

= ≤ < ( )

⁎C D A D C C

D k m

, argmin

subject to 1 for all 0 . 3
C D

k

L ,
1
2 L L 2

2
1

L
2 atoms

L

Here, matoms denotes the number of atoms in DL , Dk
L represents the

k-th column of DL , and λ is a regularization parameter.
Then, we adopted functions of Mini-batch Dictionary Learning in

scikit-learn (a machine learning library in Python) [17] to optimize
Eq. (3) and to generate the low-resolution dictionary ∈⁎ ×DL

n m.
Here, regularization parameter λ is a fixed numerical value of 1.0.
Inferred ′C in Eq. (3) is no longer used in the following sections because
it is a by-product in the construction of a low-resolution dictionary.

Table 1. Imaging parameters

Planning CT CBCT

Slice thickness [mm] 2.0 2.5

Pixel width [mm] range 0.877–1.074 0.651–1.172

X-ray tube voltage [kVp] 120 125

X-ray exposure [mAs] median
(range)

250 (223–600) 682 (679–724)

Fig. 2. Preparation images for database creation: CBCT image as a low-resolution image (a), planning CT image as a high-
resolution image (b), alpha blending image of CBCT image (red) and planning CT image (green) before registration (c), and
alpha blending image after registration (d).
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Construction of the high-resolution dictionary
We solved the following equation and obtained coefficient matrix *C
of sparse representation C corresponding to database AL . In this dic-
tionary learning procedure, the orthogonal matching pursuit (OMP)
[16] was used for sparse coding as

* = −
≤ ( )

⁎C A D C
C l

argmin
subject to . 4

C

i

L L 2
2

0

In that equation, Ci denotes the i-th column of C . This
equation presented above is intended to solve the objective function in
Eq. (3) as an l0-norm minimization problem for the coefficient matrix.
We can control sparsity (number of non-zero elements) by parameter l.

Finally, we constructed the high-resolution dictionary DH [13].
We assumed that the high-resolution database AH is reconstructed

using a linear combination of atoms in DH. Therefore, we sought dic-
tionary DH, which satisfies the following relation:

*~ ( )A D C . 5H H

The solution of the problem in Eq. (5) is given as the following
formula [13]:

* * *= = ( ) ( )+ −D A C A C C C . 6H H H
T T 1

Here, +C represents a Moore–Penrose inverse matrix of *C . We
generated DH from Eq. (6). The resulting image of dictionary learning
is presented in Fig. 5.

Improved image estimation
Image reconstruction to improve the image quality of CBCT was
done using the following steps.

(i) Extract patches from an input image in the manner described
in ‘Preparation of the database.’ Each patch is arranged in a
column ( ∈ ≤ ≤p k t, 1k

nin ). Here, n denotes the number
of elements in a patch. t denotes the number of patches. Then,
we obtained the set of patches =Pin [ ⋯ ] ∈ ×p pt

n t
1
in in .

(ii) Apply the OMP algorithm on Pin and find a sparse
representation matrix ∈ ×C m t , in Fig. 6 and Fig. 7.

(iii) Multiply the matrix of combination coefficientsC by high-
resolution dictionary DH, and infer a high-resolution set of
patches using = ∈ ×P D C n t

out H .
(iv) Reconstruct the super-resolution image reconstructed from

an input image by replacing the patches in Pin with the
patches in Pout and by averaging the overlapped regions.

Quantitative evaluation
For the quantitative evaluation of registration accuracy, we computed
normalized mutual information (NMI) and the Dice similarity coeffi-
cient (DSC) between the CBCT image and planning CT after regis-
tration. For similarity evaluation between images obtained from
different modalities, NMI [18] is widely used. From two body con-
tours (X and Y ), which were extracted by threshold processing,
DSC (i.e. [ ∩ ( + ])X Y X Y2 / ) was computed. The larger NMI
and DSC signify that the two images are more similar. Furthermore,
for quantitative evaluation of the output images, we computed the root

Fig. 3. Structure of high-resolution database ∈ ×A n st
H :

pk
H denotes the vector of the extracted patch from the

planning CT image ( ≤ ≤k st1 ); Pl
H denotes a matrix

having pk
H in each column ( ≤ ≤l s1 ); and AH is the

augmented matrix ( = [ ]A P P1 sH
H Hμ ).

Fig. 4. Conceptual scheme showing relations between
matrices: ∈ ×A n st

L is a low-resolution database;
∈ ×D n m

L is a low-resolution dictionary; and ∈ ×C m st is
a combination coefficient.

Fig. 5. Estimated high-resolution dictionary DH (left) and low-resolution dictionary DL (right). We present two sets of 200
chosen atoms from those dictionaries that have 400 atoms. Each atom is 20 × 20 pixels. Atoms of the same locations in all
dictionaries mutually correspond.
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mean square error (RMSE) and the structural similarity (SSIM) [19]
between the images improved by super-resolution and the planning
CT images.

Root mean square error
The RMSE is the standard deviation of the residuals between two
images. Here, we designate a planning CT image as ∈ ×XP I J and

∈ ×XSR I J for a super-resolution image as

∑= ( − ) ( )
=n

X XRMSE
1

. 7
i

n
i
P

i
SR

1
2

Here, n denotes the number of pixels. Also, X Xandi
P

i
SR denote the

i-th pixels of those images. In general, a smaller RMSE reflects that
fewer differences exist between two images.

Structural similarity
The SSIM is one method of evaluating the similarity between two
images.

μ μ σ

μ μ σ σ
=

( + )( + )

( + + )( + + )
( )SSIM

2 K 2 K

K K
. 8

x y xy

x y x y

1 2

2 2
1

2 2
2

Here, suffixes x and y, respectively, denote the super-resolution image
and the planning CT image. The average of all pixel values is repre-
sented by μ, the standard deviation of the pixel values by σ , the covari-
ance of two images by σxy, and fixed numbers by K1 and K2. In this
study, a higher SSIM indicates higher similarity between a super-
resolution image and a planning CT image.

Statistical analysis
For this study, Student’s paired t test was used to assess differences
between means in pixel values before and after reconstruction.
Furthermore, Welch’s t test was used to assess differences between
mean in image Improvement and Non-improvement groups. All ana-
lyses were conducted using R ver. 4.3.2. Results for which P < 0.05
were inferred as significant.

RESULTS
Registration accuracy

The registration accuracy was computed between the CBCT image
and planning CT after registration using NMI and DSC. The mean of
NMIs was 0.231 (range 0.209–0.262). That of DSCs was 0.674 (range
0.546–0.794). Table 2 presents Welch’s t test results for those evalu-
ation indexes.

Optimization of parameters in dictionary learning
We demonstrated the application of our algorithm to whole-pelvis CT
images of 30 patients. To obtain better results, we optimized the para-
meters in dictionary learning. One parameter is a patch size for extract-
ing patches from images. During the optimization procedure, we
attempted to set the patch sizes in the ranges of 5 × 5 to 50 × 50 pix-
els while maintaining all other parameters as fixed (Table 3). We eval-
uated the imaging quality using RMSE and SSIM. Figure 8 shows the
improvement of image quality by comparison of those values. The
optimum patch size is approximately 15 × 15 to 20 × 20 in Fig. 8.
Refined images with a 20 × 20 patch size are presented in Fig. 9.
These figures exhibit remarkable improvement in image quality in

Fig. 6. Conceptual scheme showing relations among
matrices: ∈ ×P n t

in is an input image; ∈ ×D n m
L is a low-

resolution dictionary; and ∈ ×C m t is a combination
coefficient.

Fig. 7. Visualization of the combination coefficients obtained by orthogonal matching pursuit by atoms = 400 and l = 20.
Mapping of the combination coefficients multiplied by the corresponding atoms in DL (left) is shown (right): mapped zero
coefficients are white; non-zero coefficients are gray.
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terms of suppression of cupping artifacts and enhancement of the
organ boundaries.

Quantitative evaluation result
Results of the quantitative evaluation of the proposed method showed
that the values of RMSE between the original CBCT images and the
planning CT images at bladder and prostate levels were 72.51–186.55
(minimum–maximum value) for all patients. The values of SSIM were
0.31–0.59. The values of RMSE between the reconstructed images and
the planning CT images were 63.79–158.72. Additionally, the values of
SSIM were 0.37–0.64. From the quantitative evaluation results, 56
regions out of 60 (two regions per patient) show image quality
improvement. Of 30 patients, 27 showed improved image quality in
both regions. Those results demonstrate that the values of RMSE and
the SSIM were 0.81 and 1.29 times at the maximum (0.90 and 1.13
times at the mean) better than those original CBCT images, respect-
ively. Furthermore, assessment of differences between means before
and after reconstruction using Student’s paired t test and 95% confi-
dence intervals (CIs) revealed that the quality of each reconstructed
image was improved significantly (Table 4). Figure 10 and Fig. 11,
respectively, present quantitative comparisons of pelvis CT images.

Moreover, assessment of differences between two groups (with
improvement and without improvement) using Welch’s t test and
95% CIs revealed that the evaluation indexes of original CBCT images
in the Non-improvement group showed better values than those of
the Improvement group (Table 5).

DISCUSSION
Artifacts affected CBCT images, thereby reducing their image quality
considerably. This paper presents a method for suppression of these
artifacts using a super-resolution technique, thereby improving the
CBCT image quality. The results of RMSE and SSIM in the super-
resolution images were, respectively, as much as 0.81 times and 1.29
times better than those obtained from the planning CT images with-
out the super-resolution technique. In addition, our method achieved
high positional accuracy by including the latest internal body informa-
tion at the time of CBCT imaging.

The results of the visual and quantitative evaluation (RMSE and
SSIM) confirmed the image quality improvement. However, in some
cases, the image quality was not improved greatly by quantitative
evaluation. A possible reason is that those cases have low registration
accuracy in the dictionary learning section. From Welch’s t test results,
we were unable to find a significant difference between NMI/DSC in
the Improvement and Non-improvement groups (Table 2). For three

Table 2. Assessment of differences between NMI and DSC means in images Improvement and Non-improvement groups
using Welch’s t test

n NMI DSC

Mean (min–max) P value 95% CI Mean (min–max) P value 95% CI

I 27 0.232 (0.21–0.26) 0.10 (−0.04, 0.03) 0.675 (0.55–0.79) 0.79 (−0.12, 0.15)

U 3 0.220 (0.22–0.23) 0.664 (0.59–0.70)

CI = confidence interval, I = Improvement group, U = Non-improvement group.

Table 3. Fixed parameters of dictionary learning

Parameters Values

Number of slices s 50

Number of atoms m 400

Regularization parameter λ 1.0

Iteration 5000

Fig. 8. Quantitative evaluation comparison for 30 patients.
Patch sizes range from 5 × 5 to 50 × 50. Shown are the
root mean square error (RMSE) (a) and the structural
similarity (SSIM) (b).

506 • A. Oyama et al.



patients in the Non-improvement group, however, NMI were 0.229,
0.216 and 0.215, and DSC were 0.704, 0.695 and 0.592. The NMIs in
the Non-improvement group were lower than the mean NMI (0.231).

Moreover, the DSC of one case was lower than the mean of DSC
(0.674). Therefore, we infer that the registration error influenced
those results.

Fig. 9. Example images of application to pelvis CT images (a). Images of prostate level (left column). Images of bladder level
(right column). CBCT images before processing (top row). Processed super-resolution images (middle row). Planning CT
images with the same slice as the CBCT image (bottom row). The worst result of quantitative evaluation (b).

Table 4. Assessment of differences between means in images before and after reconstruction using Student’s paired t test
(bladder, n = 30; prostate, n = 30)

n RMSE SSIM

Mean (min–max) P value 95% CI Mean (min–max) P value 95% CI

B BR 30 95.4 (72.5–186.5) 0.15 (−2.89, 17.98) 0.46 (0.31–0.57) <0.01 (−0.08, 0.02)

AR 30 87.9 (63.8–158.7) 0.51 (0.37–0.59)

P BR 30 100.8 (75.3–137.5) <0.01 (4.38, 18.46) 0.46 (0.35–0.59) <0.001 (−0.10, −0.04)

AR 30 89.3 (69.8–121.4) 0.53 (0.43–0.64)

CI = confidence interval, B = bladder, P = prostate, BR = before registration images, AR = after registration images.
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Another possible reason is that the original CBCT images before
application of the super-resolution method closely resembled the plan-
ning CT images, meaning that the original CBCT images were not
degraded to any great degree in comparison with the planning CT
images. Table 5 shows that the Non-improvement group has smaller
RMSEs and higher SSIM values than those of the Improvement group.
Therefore, the original CBCT images in the Non-improvement group
were similar to the planning CT images. Such image quality was not

improved with respect to the quantitative evaluation. Nonetheless, as
presented in Fig. 9b, the results showed suppression of the cupping
artifacts and enhancement of the organ boundaries.

The proposed method based on the super-resolution technique
achieved higher positional accuracy than a conventional method using
a non-rigid function [7–9]. As shown in Fig. 12, it is noteworthy that
our method was able to include the latest internal body information at
the time of CBCT imaging, e.g. indicating position changes due to

Fig. 10. Quantitative comparison of qualities of pelvis CT images with scatter plots of root mean square error (RMSE) (left)
and structural similarity (SSIM) (right) for 30 patients. Image quality was evaluated at the prostate and bladder. Markers
show that RMSE and SSIM were improved by application of the proposed method to images. CBCT = cone beam CT image,
SR = super-resolution image.

Fig. 11. Root mean square error (RMSE) (left) and structural similarity (SSIM) (right) for 30 patients: pelvis CT images at
different slice levels.
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flatus or organ movement of the patient. Therefore, this method can
play an important role in radiation therapy that requires highly accur-
ate irradiation.

Although we demonstrated the capabilities of our method using
whole-pelvis CT images in this study, our method is not restricted to
pelvic images. The quality of CBCT images taken from areas of the
body other than the pelvis is also expected to be improved using diction-
aries constructed from their CBCT images and planning CT images.

Several candidates for improving image quality exist. One approach
is to increase the number of images for dictionary composition. For
this study, we used a set of patient images per dictionary. The set
included 50 images, providing a set of 1 287 750 patch-pairs. In gen-
eral, the image quality becomes higher when using more data for dic-
tionary learning [13]. If more images are used for learning, then it will
be possible to construct a dictionary that can provide higher accuracy.
In addition, the reconstructed image quality will be improved by
increasing the number of atoms in the dictionary, which would also
require increased computation time for the reconstruction [14].

Another approach is to acquire better registration accuracy. The
conventional super-resolution method does not rely on the assump-
tion that misregistration exists between image pairs used for dictionary
learning. Therefore, misregistration might engender erroneous corres-
pondence of atoms and might influence the reconstructed image qual-
ity. For this study, planning CT images were registered to corresponding
CBCT images using B-spline deformable registration, but a limit was
imposed to ensure high positional accuracy in soft tissues or flatus, as
shown in Fig. 2. Even though registration was not perfect, our meth-
od showed a marked improvement in CBCT image quality, as shown
in Fig. 9. Better registration accuracy will engender better perform-
ance of the algorithm.

Our study revealed that the super-resolution technique improves
CBCT images from the corresponding planning CT images. This
study specifically examined a CBCT image quality improvement tech-
nique. The proposed method is applicable not only to parts of the
body other than the pelvis, but also to images obtained using other
modalities.

Table 5. Assessment of differences between means in images of the Improvement and Non-improvement groups using
Welch’s t test

n RMSE SSIM

Mean (min–max) P value 95% CI Mean (min–max) P value 95% CI

B I 28 96.2 (72.5–186.5) 0.32 (−31.24, 54.44) 0.46 (0.31–0.57) 0.53 (−0.17, 0.13)

U 2 84.6 (77.2–92.0) 0.47 (0.45–0.49)

P I 28 102.3 (79.3–137.5) <0.05 (7.95, 39.25) 0.46 (0.35–0.59) <0.05 (−0.08, −0.03)

U 2 78.7 (75.3–82.1) 0.51 (0.51–0.52)

CI = confidence interval, B = bladder, P = prostate, I = Improvement group, U = Non-improvement group.

Fig. 12. Checkerboard images: upper left, a checkerboard of the CBCT image and planning CT image after registration; lower
left, a checkerboard of the CBCT image and output image; right, an enlarged view of the part flatus in the left images.
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