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Abstract

The forces driving the accumulation and removal of non-coding DNA and ultimately the evo-

lution of genome size in complex organisms are intimately linked to genome structure and

organisation. Our analysis provides a novel method for capturing the regional variation of

lineage-specific DNA gain and loss events in their respective genomic contexts. To further

understand this connection we used comparative genomics to identify genome-wide individ-

ual DNA gain and loss events in the human and mouse genomes. Focusing on the distribu-

tion of DNA gains and losses, relationships to important structural features and potential

impact on biological processes, we found that in autosomes, DNA gains and losses both fol-

lowed separate lineage-specific accumulation patterns. However, in both species chromo-

some X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon

content required for X inactivation. We found that DNA loss was associated with gene-rich

open chromatin regions and DNA gain events with gene-poor closed chromatin regions.

Additionally, we found that DNA loss events tended to be smaller than DNA gain events sug-

gesting that they were able to accumulate in gene-rich open chromatin regions due to their

reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed

that mouse loss hotspots were strongly enriched for terms related to developmental pro-

cesses. However, these genes were also located in regions with a high density of conserved

elements, suggesting that despite high levels of DNA loss, gene regulatory architecture

remained conserved. This is consistent with a model in which DNA gain and loss results in

turnover or “churning” in regulatory element dense regions of open chromatin, where inter-

ruption of regulatory elements is selected against.

Author summary

Approximately 2% of a mammalian genome is protein-coding DNA, the remainder is

non-coding DNA. In mammals, this non-coding DNA fraction has undergone large

amounts of turnover since placental mammals diverged from a common ancestor. For

example, human and mouse, two species who diverged approximately 100 million years

ago, share only approximately 40% of their DNA sequence. Given that genome size has
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remained relatively constant since their divergence, this low level of ancestral DNA sug-

gests there has been large amounts of DNA gain and loss in both lineages. To understand

the cause and evolutionary impact of DNA gain and loss in mammalian genomes, we

developed novel techniques that mapped individual DNA gain and loss events across dis-

tantly related species. By tallying the amount of DNA gained and lost across genomic

regions we were able to measure its association with various genomic features. Our results

showed that DNA loss in human and mouse mainly occurs in gene-rich open chromatin

regions. In contrast DNA gain was mainly driven by transposition. In each lineage the

proportion of total gain could be assigned to distinct transposon types. This meant that

based on the differential activity of specific transposon types region-specific gain was fol-

lowing lineage-specific accumulation patterns, ultimately leading to divergent genome

evolution. In addition, we measured how genes in DNA gain and loss hotspots associated

with particular biological processes. Perhaps most strikingly, we found that mouse DNA

loss hotspots overlapped highly conserved regions containing genes involved in develop-

ment. This suggests that while the genomic environment in these regions is prone to

DNA loss events, those that interrupt regulatory elements are strongly selected against.

Introduction

Evolution as a result of natural selection has led to many streamlined forms which follow

directly from their function. However, in the case of genome evolution of complex organisms

this connection is not quite so direct. One example is the evolution of genome size. In verte-

brates, gene content has remained relatively constant, while the fraction of non-coding DNA

varies drastically [1–3]. This observation is at the heart of the C-value enigma and raises many

questions regarding the molecular drivers and evolutionary impacts of genome size variation.

The major factor contributing to the total non-coding DNA genomic fraction is transposon

load, due to mobile DNA elements that have actively replicated throughout evolution [2, 3]. In

humans, since their divergence from the common placental ancestor, transposon activity has

caused approximately 815 Mb of DNA gain, almost one third of their extant genome [4, 5].

However, this is not the only factor driving genome size evolution. DNA loss via deletion also

plays a role, with approximately 650 Mb of the human genome being lost over the same time

period [4]. Across mammals and birds these two forces operate in opposition to each other

leading to the accordion model of genome evolution, where departures from this DNA gain

and loss equilibrium cause genomes to either grow or shrink [4]. Importantly, our understand-

ing of DNA gain and loss stems from genome-wide estimates rather than detection of individ-

ual events. Therefore, the role of genome structure on widespread DNA gain and loss and its

subsequent impact on lineage-specific species evolution remains unknown.

The ‘accordion’ model of genome size evolution raises important questions regarding the

roles of natural selection and genetic drift. Genome size, like any other heritable trait, is shaped

by a combination of both of these factors [6]. However, the contribution of each mechanism in

diverse taxa remains an open question in biology, with evidence to support the impact of each

[7]. For genome evolution driven by selection there are observations of various phenotypic

correlates consistent across both mammals and birds. One example is the evolution of powered

flight in bats and birds which requires a high metabolic rate. Because metabolism is more effi-

cient in smaller cells, it has been suggested that in flying species there is particularly strong

selection pressure against genome growth [4, 8, 9]. Alternatively, observed genome size varia-

tion can result from neutral evolutionary processes. Many higher order vertebrates have low
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HS peaks mouse was downloaded from: https://

genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=

wgEncodeUwDgf. Data for RepeatMasker database

was downloaded from: http://www.repeatmasker.

org/genomicDatasets/RMGenomicDatasets.html.

Data for Lamina associated domains human was

downloaded from: http://hgdownload.soe.ucsc.

edu/goldenPath/hg19/database/laminB1Lads.txt.

gz. Data for Lamina associated domains mouse

was downloaded from: https://www.ncbi.nlm.nih.

gov/geo/download/?acc=GSE17051&format=

file&file=GSE17051%5FcLAD%5Fregions%2Ebed

%2Egz. Data for Recombination rate human was

downloaded from: ftp://ftp.ncbi.nlm.nih.gov/

hapmap/recombination/2011-01_phaseII_B37/.

Data for Recombination rate mouse was

downloaded from: http://www.genetics.org/

highwire/filestream/412790/field_highwire_

adjunct_files/11/TableS1.csv. Data for

Recombination hotspot human was downloaded

from: ftp://ftp.ncbi.nlm.nih.gov/hapmap/

recombination/2006-10_rel21_phaseI+II/hotspots/

. Data for Recombination hotspot mouse was

downloaded from: http://www.genetics.org/

highwire/filestream/412790/field_highwire_

adjunct_files/12/TableS2.csv. Data for Gene

Regulatory blocks was downloaded from: https://

static-content.springer.com/esm/art%3A10.

1038%2Fs41467-017-00524-5/MediaObjects/

41467_2017_524_MOESM2_ESM.txt. Data for

Human and mouse gene expression comparison

was downloaded from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4654840/bin/12862_2015_

534_MOESM1_ESM.xls. Data for CpG islands

human and mouse was downloaded from: http://

hgdownload.soe.ucsc.edu/goldenPath/.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006091
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&amp;g=wgEncodeUwDgf
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&amp;g=wgEncodeUwDgf
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&amp;g=wgEncodeUwDgf
http://www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html
http://www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/laminB1Lads.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/laminB1Lads.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/laminB1Lads.txt.gz
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE17051&amp;format=file&amp;file=GSE17051%5FcLAD%5Fregions%2Ebed%2Egz
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE17051&amp;format=file&amp;file=GSE17051%5FcLAD%5Fregions%2Ebed%2Egz
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE17051&amp;format=file&amp;file=GSE17051%5FcLAD%5Fregions%2Ebed%2Egz
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE17051&amp;format=file&amp;file=GSE17051%5FcLAD%5Fregions%2Ebed%2Egz
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/
http://www.genetics.org/highwire/filestream/412790/field_highwire_adjunct_files/11/TableS1.csv
http://www.genetics.org/highwire/filestream/412790/field_highwire_adjunct_files/11/TableS1.csv
http://www.genetics.org/highwire/filestream/412790/field_highwire_adjunct_files/11/TableS1.csv
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2006-10_rel21_phaseI+II/hotspots/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2006-10_rel21_phaseI+II/hotspots/
http://www.genetics.org/highwire/filestream/412790/field_highwire_adjunct_files/12/TableS2.csv
http://www.genetics.org/highwire/filestream/412790/field_highwire_adjunct_files/12/TableS2.csv
http://www.genetics.org/highwire/filestream/412790/field_highwire_adjunct_files/12/TableS2.csv
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-017-00524-5/MediaObjects/41467_2017_524_MOESM2_ESM.txt
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-017-00524-5/MediaObjects/41467_2017_524_MOESM2_ESM.txt
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-017-00524-5/MediaObjects/41467_2017_524_MOESM2_ESM.txt
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-017-00524-5/MediaObjects/41467_2017_524_MOESM2_ESM.txt
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654840/bin/12862_2015_534_MOESM1_ESM.xls
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654840/bin/12862_2015_534_MOESM1_ESM.xls
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654840/bin/12862_2015_534_MOESM1_ESM.xls
http://hgdownload.soe.ucsc.edu/goldenPath/
http://hgdownload.soe.ucsc.edu/goldenPath/


effective population sizes resulting from reduced efficiency of selection [10], suggesting that

neutral or mildly deleterious mutations such as some transposon insertions can easily reach

fixation. Moreover, as transposons quickly accumulate the probability of deletions through

non-allelic homologous recombination also increases, counteracting their initial impact on

genome growth [11, 12]. Within this context, the accordion model is an emergent property

based on transposon accumulation dynamics. Importantly, the signatures of selection for an

optimal genome size are not always consistent; the Chinese tree shrew has a high metabolic

rate but a relatively large genome of 2.86 GB [13]. This suggests that the role selection plays in

driving genome size evolution is likely taxon-specific. Further, neither mechanism takes into

account the underlying genome structure.

The genomic DNA of complex organisms is wrapped around nucleosomes and packaged

into various conformations that regulate the access of different gene regulatory factors to

their target sites. This hierarchical genome structure means that the impact and likelihood of

particular mutations is highly context-specific, resulting in regional variation in both the sus-

ceptibility and tolerance to mutations. Here, susceptibility is the likelihood of a mutation

occurring and tolerance is the degree to which the mutation does not adversely impact fit-

ness. The observed accumulation patterns of DNA gain and loss events arise from the inter-

action of region-specific susceptibility and tolerance. For example, small (� 30 bp) insertion

or deletion (indel) events in the human genome are correlated with recombination rate and

are enriched for topoisomerase cleavage sites [14, 15]. This suggests that the biological role

of certain regions may cause them to be particularly susceptible to indel mutations. In the

case of larger events such as transposon insertions, the prevailing model suggests that long

interspersed elements (LINEs) accumulate in gene-poor regions where they are most toler-

ated [16]. The evolution of genome size via DNA gain and loss is not only shaped by higher

order factors such as cell size and metabolic rate, but is intimately linked to the underlying

genome structure.

To better characterise the molecular drivers and evolutionary impacts of DNA gain and

loss, we calculated lineage-specific gain and loss rates across the human and mouse genomes.

Human and mouse were chosen specifically for three reasons. Firstly, both species have well

characterised genomes with highly accurate and well annotated assemblies [5, 17] and have

both been used frequently in comparative genomic analyses resulting in many easily accessible

pairwise alignment datasets available on the UCSC genome browser [18]. This makes it possi-

ble to compare them to a wide variety of outgroup species and detect genomic features that

associate with DNA gain and loss. Secondly, the mouse genome is significantly smaller than

the human genome, making it possible to detect a large number of lineage-specific deletion

events [17, 19]. Finally, human and mouse genomes contain similar lineage-specific transpo-

son families [17]. This means that both species share similar mechanisms for DNA gain, mak-

ing it easier to compare differences between associations with other types of genomic features.

For our analysis, we detected DNA gain and loss events using two distinct, yet complemen-

tary, methods from which we characterised DNA gain and loss hotspots. From this we com-

pared the genomic distributions of our hotspots to the genomic distribution of various

features associated with genome evolution and genes that participate in particular biological

processes. Our results revealed that DNA gains and losses occur in different regions across

autosomes, while DNA gains from both species are particularly enriched on the X chromo-

some where they overlap. DNA gain events generally associate with L1 accumulation and

DNA loss occurs in regions associated with biological activity such as transcription and regula-

tion. Although DNA gain and loss in human occurred mostly in different regions, they both

tended to impact on the same biological processes, while in mouse DNA loss was enriched for

developmental genes and DNA gain did not associate with any particular biological process.

Divergent genome evolution caused by regional variation in DNA gain and loss
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Materials and methods

Net data structure and feature extraction

For feature extraction, nets were obtained from the UCSC genome browser [20, 21]. Nets are a

common format for representing pairwise genome alignments. Each net contains chained

blocks of aligning sequence shared between a reference and a query genome. In order for align-

ment blocks to be chained together their ordering must be consistent between both genomes.

Often gaps between chained blocks can contain smaller chains. It is this hierarchical structuring

of the highest scoring chains at the top level with lower scoring chains filling in alignment gaps

that makes nets. Importantly, in the reference genome nets provide only a single layer of cover-

age. However, two separate nets may occasionally overlap in the query; this is usually caused by

segmental duplication in the reference. These conflicts were resolved by discarding all reference

nets that did not overlap nets generated from a query reference alignment. Following this filter-

ing process, only reciprocal best hit (RBH) nets remained. In our analysis we referred to align-

ment blocks within a chain as ‘chain-blocks’ and the spaces between chain-blocks also within a

chain as ‘chain-gaps’. The start and end coordinates in both the reference and query genome

were recorded for each chain-block and chain-gap. The programs get_gaps_net.go and

get_fills_net.go were used to extract all chain-gaps and chain-blocks respectively. Regions of

chain-gaps that were overlapped by chain-blocks in lower ranked chains were discarded. Addi-

tionally, regions that were discarded as non-RBHs or fell outside of nets were plotted against

synteny blocks to determine the loci hidden from our analysis in both species. Synteny data

was obtained from the synteny portal (http://bioinfo.konkuk.ac.kr/synteny_portal/) [22].

Identifying ancestral elements

Chain-blocks were extracted from all genomes identified as outgroups to human and mouse.

They were combined into a single file and merged using the bedtools genomecov function with

the ‘-bg’ option. This process returned a set of potential ‘ancestral elements’ along with their

corresponding coverage depth. To identify false-positives and estimate the type 1 error rate, we

used the genomic positions of a set of known lineage-specific repeat families in human and

mouse, since lineage-specific repeat insertions should not overlap ancestral elements. The per-

centage overlap of our lineage-specific repeats set with ancestral elements was measured at each

minimum coverage level. A similar approach was used to estimate the type 2 error rate; the type

2 error rate was estimated as the percentage of chain-blocks that did not overlap ancestral ele-

ments. To minimise our type 1 errors we selected a minimum coverage depth threshold inde-

pendently for both hg19 and mm10, where nucleotide positions with coverage depth below the

threshold were not considered as ancestral elements. The basis for this approach was that nucle-

otide positions in our reference genomes that aligned to a large number of outgroup species

were highly likely to share ancestry with those species. In contrast, nucleotide positions in our

reference genomes that aligned to very few outgroup species were likely errors caused by spuri-

ous alignments between complex regions that are difficult to map. Importantly, reductions in

our type 1 error caused an increase in our type 2 error. Therefore, we chose the highest possible

minimum coverage threshold, where the gain in the cumulative proportion of type 1 errors

from lower threshold values was greater than the gain in proportional increase of type 2 errors.

Identifying recent transposon insertions

For both hg19 and mm10, genomic coordinates for transposons were obtained from the

Repeat Masker database [23]. Based on their overlap with chain-blocks or ancestral elements,

individual transposons were classified as either recent or ancestral. In addition to this, the

Divergent genome evolution caused by regional variation in DNA gain and loss
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percent divergence from consensus family sequence and the proportion of total sequences of

transposon family members that overlapped ancestral elements or chain-blocks were calcu-

lated. These data were then used in linear discriminant analysis to build a transposon family

classifier. Our classifier was trained using the original individual transposon classifications.

After training, entire families were classified as either recent or ancient using the family-wise

means of the feature values. Finally, transposons from families classified as recent but overlap-

ping gaps between reference and query were classed as lineage-specific insertions.

Gap annotation and placement

Chain-gaps extracted from nets were annotated as either DNA gain or DNA loss based on two

distinct yet complementary annotation methods; the recent transposon-based method and the

ancestral element-based method. The ancestral element-based method infers the ancestral state

of a gap. For example, an mm10 gap overlapping an ancestral element would be annotated as

an mm10 loss, whereas the same gap not overlapping an ancestral element would be annotated

as an hg19 gain. The recent transposon-based method instead identifies DNA gains. In this case

an mm10 gap overlapping a recent transposon would be annotated as an hg19 gain, while an

mm10 gap not overlapping a recent transposon would be annotated as an mm10 loss.

After all chain-gaps between a reference and query were annotated in both genomes, the

remaining non-aligning sequences were ‘placed’ in the genomes they were absent from. This

process is referred to as ‘gap placement’ and is performed on the non-aligning sequence of

chain-gaps that remain in the reference genome after a reference query alignment. These non-

aligning reference sequences are absent from the query and are either the result of DNA gain

in the reference or DNA loss in the query. Using the coordinate mappings of the 50 and 30 adja-

cent chain-blocks of each chain-gap, the non-aligning reference sequence of a chain-gap is

inserted into the query genome at the corresponding position, where placed gaps are oriented

relative to the genome they are placed in. Importantly, gap placement begins by placing chain-

gaps at the bottom chain level of nets and ends by placing chain-gaps at the top chain level.

This process ensures that non-aligning sequence in overlapping chain-gap annotations caused

by hierarchical structure of nets are only placed once. Once the corresponding position of a

gap has been identified, the downstream query coordinates are incremented by the size of the

annotated chain-gap being placed. This creates a synthetic genome consisting of DNA gains

and losses that occurred across both the reference and query lineages. The total length of our

synthetic genomes is equal to the total length of the query genome and the total length of anno-

tated chain-gaps from the reference. Finally, the synthetic genomes were segmented at a win-

dow size of 200kb into distinct genomic bins where the total size of each gap annotation was

tallied. Genomic bins with less than 150 kb that did not belong to assembly gaps or non-RBH

regions were discarded. Importantly, our decision to use a synthetic genome meant that placed

chain-gaps larger than our window size would spread across window boundaries, ensuring

that genomic bins would contain no more than 200 kb of sequence.

Hotspot identification

Hotspots for reference gain, reference loss, query gain and query loss in both hg19 and mm10

were identified using the Getis-Ord local statistic found in the R package ‘spdep’ [24, 25]. The

Getis-Ord local statistic for genomic bin i is calculated as:

G�i ¼
P

wi;jxj �
�X
P

wi;j

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

w2
i;j � ð

P
wi;jÞ

2

n � 1

q ; ð1Þ
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where xj is the number of bp belonging to a particular gap annotation within bin j, wi,j is the

spatial weight between bin i and j, n is the number of bins for a particular genome, �X ¼
P

xj

n

and S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2

j
n �

�X 2

r

[26]. For the neighbourhood weight matrix W, wi,j was given a spatial

weight of 1 if bin i and bin j were considered neighbours. For bin i and j to be considered

neighbours bin j had to be within 600 kb of bin i. After calculating G�i for each bin and each

gap annotation in both genomes, all G�i values were converted to P-values and adjusted for

multiple testing using the false discovery rate (FDR). Bins were only considered hotspots if

their G�i was> 0 and had a FDR< 0.05. Additionally, bins were considered coldspots if their

G�i was < 0 and had a FDR < 0.05.

Obtaining genomic features

A set of genomic features was obtained from a range of sources to identify factors potentially

driving DNA gain and loss. GC content was calculated as the proportion of chain-blocks

per bin using the hg19 and mm10 Biostrings-based genome R packages [27–29]. CpG

islands for both hg19 and mm10 were obtained from the UCSC genome browser [18]. DNa-

seI hypersensitivity (DNaseI HS) peaks for hg19 were obtained from UCSC as part of the

DNaseI master track (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeAwgDnaseMasterSites/). The master track was generated by combining DNaseI

HS sites from across 125 cell lines produced by the University of Washington and Duke Uni-

versity ENCODE groups [30]. The Individual cell line data can be located using the acces-

sions GSE29692 and GSE32970. DNaseI HS peaks for mm10 were obtained from UCSC

as individual samples mapped to mm9 (https://genome.ucsc.edu/cgi-bin/hgFileUi?db=

mm9&g=wgEncodeUwDgf). Individual peaks from each sample were merged into a single

file, creating a single set of DNase1 HS peaks. The merged mm9 peaks were then converted

to the mm10 assembly using the UCSC liftover tool [31]. Mouse DNaseI HS peaks were gen-

erated using DNaseI digital genomic foot-printing performed by the University of Washing-

ton ENCODE group [30]. This dataset can also be obtained using the accession GSE40869.

Importantly, as part of the ENCODE pipeline, multi-mapping reads were discarded. To

remove this bias from the analysis, genome-wide mappability tracks were used so that only

uniquely mappable regions of the genome were considered. For hg19 the 36-mer mappabil-

ity track was generated using the gem-mappability program with a mismatch score of 2,

which was obtained form the UCSC genome browser [32]. For mm10 a 36-mer mappability

track was instead generated locally using the same program and same parameters. Recombi-

nation rates for human were identified as part of the HapMap project (ftp://ftp.ncbi.nlm.

nih.gov/hapmap/recombination/2011-01_phaseII_B37/) [33]. However, recombination hot-

spots were only available for earlier phases of the HapMap project (ftp://ftp.ncbi.nlm.nih.

gov/hapmap/recombination/2006-10_rel21_phaseI+II/hotspots/). The hotspots were ini-

tially mapped to hg17 and then converted to hg19 coordinates using the UCSC liftover tool.

Recombination hotspots were identified using the methods outlined in Winckler et al [34]

and McVean et al [35]. Recombination rates and hotspots in mouse were calculated in mm9

based on two separate datasets [36–38]. They were converted to mm10 using the UCSC

liftover tool. Importantly, recombination data was only available for mouse autosomes.

During enrichment tests this was taken into account by removing the sex chromosomes

from the sample space. Exons and introns for both hg19 and mm10 were extracted from

UCSC genome annotations available from TXDB R packages [39–41]. Retrotransposon

coordinates for hg19 and mm10 were obtained from the Repeat Masker database (http://

www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html) [23]. The Repeat
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Masker version used for hg19 and mm10 was open-4.0.5 with repeat library 20140131. Ret-

rotransposons were sorted into the following categories: ancient elements, ancestral L1s,

lineage-specific L1s and lineage-specific SINEs using prefixes for families of known lineage-

specific and ancestral activity [42]. Ancient elements were identified by the class names

‘SINE/MIR’ and ‘LINE/L2’. Ancestral L1s were identified using the family name prefixes

‘L1ME’, ‘L1MD’, ‘L1MC’, ‘L1MB’ and ‘L1MA’. Human lineage-specific L1s were identified

using the family name prefixes ‘L1PB’, ‘L1PA’ and ‘L1HS’. Mouse lineage-specific L1s were

identified using the family name prefixes ‘Lx’, ‘L1Md’, ‘L1_Mus’, ‘L1_Mur’ and ‘L1_Mm’.

Human lineage-specific SINEs were identified using the family name prefix ‘Alu’. Mouse

lineage-specific SINEs were identified using the family name prefixes ‘PB’, ‘B1’, ‘B2’, ‘B3’

and ‘B4’. Lamina associated domains (LADs) for hg19 were obtained from the UCSC

genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/laminB1Lads.

txt.gz) [43]. LADs for mouse were constitutive across several samples and were obtained

using the accession GSE17051, they were converted from mm9 assembly to mm10 assembly

using the UCSC liftover tool [44]. For each feature, except recombination rate, the per 200

kb coverage level for each bin was calculated. For genomic features that are usually consid-

ered as binary features such as CpG islands and exons, we measured the total number of

bases per bin that belong to each feature type. This in turn makes them comparable to con-

tinuous genomic features such as GC content in downstream analysis. For recombination

rate the mean rate per bin was used.

Genomic feature enrichment

Feature enrichment was detected on the basis of a permutation test. For each feature and hot-

spot in both hg19 and mm10, a background distribution was generated by calculating the dif-

ference in means between a set of resampled hotspot and non-hotspot bins 10,000 times,

resampling was performed without replacement. The background distribution was then used

to convert the differences in means between observed hotspot and non-hotspot bins into a Z-

score to allow standardisation between features and gap annotations and provide the direction

of the association. Z-scores are only shown if they are outside the range of -3 to 3.

GO term enrichment analysis

Gene ontology (GO) term enrichment was calculated using the topGO package in R [45].

Genes within each hotspot region were independently tested against the genomic background.

For enrichment, the Fisher test was used in combination with four separate algorithms: the

classic algorithm treats each term independently whereas the elim, weight and parent-child

algorithms factor in the GO inheritance structure [46–48]; the elim algorithm removes all

genes annotated to a significantly enriched GO term from all of the terms ancestors; the weight

algorithm behaves similarly, instead of removing genes from the ancestors of enriched GO

terms, it creates a more subtle effect by reducing the weight of genes annotated to the ancestors

of enriched GO terms [46]; for the parent-child algorithm, the enrichment score for a particu-

lar term takes into account the probability a random set of genes of the same size contains the

same exact parents [47]. Because the non-classic algorithms adjust the enrichment probabili-

ties they obviate the need to account for multiple testing [45]. For all non-classic algorithm a

significance threshold of 0.05 was applied. Whenever a significance threshold was used with

the classic algorithm, P-values were adjusted for multiple testing by calculating the FDR and a

significance threshold of 0.05 was used.
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Dating DNA gain and loss events

For hg19 and mm10, DNA gain and loss events were dated according to whether or not they

were supported by an alignment gap from an ingroup species. In this case the ingroup species

belonged to two main groups, human-related ingroup species and mouse-related ingroup spe-

cies. The human-related ingroup species in order of relatedness to human were chimpanzee,

baboon, tarsier and mouse lemur. The mouse-related ingroup species in order of relatedness

to mouse were rat, kangaroo rat, and pika. These ingroup species were chosen as they each rep-

resented distinct lineages and divergence times between either human or mouse. The diver-

gence times for each ingroup species were calculated using the “estimated divergence time”

found on TimeTree [49]. Moreover, these species were also chosen as their net chain align-

ments contained only reciprocal best-hit alignments. For each ingroup species their whole

genome alignments between both hg19 and mm10 were obtained from the UCSC genome

browser. Alignment gaps between each ingroup species and human, and each ingroup species

and mouse were extracted using the program get_gaps_net.go. In the case where human was

used as a reference and mouse as a query, DNA gain events were dated by overlapping them

with alignment gaps between human and human-related ingroup species. Comparisons

between human and human-related ingroup species were made in order of most closely to

least closely related to human, early DNA gain events were dated first and later DNA gain

events were dated last. For example, hg19 DNA gain events overlapping gaps in the chimpan-

zee alignment were dated as occurring after human and chimpanzee divergence. From the

remaining DNA gain events, those that overlapped gaps in the human and baboon alignment

were then dated as occurring after human and baboon divergence and prior to human and

chimpanzee divergence. This process of dating DNA gain events using human and ingroup

species alignments occurred until all that remained were unsupported DNA gain events. These

events were dated as occurring after human and mouse divergence and prior to human and

mouse lemur divergence. Importantly, dating DNA loss events followed a slightly different

procedure. This was because DNA from human DNA loss events is absent from hg19 and

instead located in mm10. This meant that human DNA loss events were dated using align-

ments gaps between the human-related ingroup species and mm10. In contrast to dating

DNA gain events, comparisons between mm10 and human-related ingroup species went in

order of least related to human to most related to human. This was because DNA loss events

that occurred early during human lineage specification are shared across all human-related

ingroup species, while DNA loss events that occurred recently are only shared with recently

diverged species.

Software and data analysis

All statistical analyses were performed using R including the packages GenomicRanges,

RMySQL, dplyr and Bioconductor [41, 50–53]. Code used to perform analyses can be found

at: https://github.com/AdelaideBioinfo/regionalGenomeTurnover.

Results

Detecting DNA gain and loss events

Across genomes and throughout evolution DNA is frequently gained and lost by the processes

of insertion and deletion. To identify individual events and quantify DNA gain and loss at a

regional level in hg19 and mm10, we obtained pairwise alignment data between both genomes

in the form of nets from the UCSC genome browser (Methods) [18, 21]. By taking advantage

of the data’s hierarchical structure we were able to estimate DNA gain and loss in regions that
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have undergone rearrangements. We processed our data in three distinct steps; 1) extract fea-

tures (Fig 1a), 2) annotate gaps (Fig 1b and 1c) and 3) place gaps (Fig 1d).

For step 1, chain-gaps and chain-blocks were extracted from nets considering only chain-

gaps of at least 10 bp in size (Fig 1a) (Methods). Our approach allowed us to keep track of each

feature’s position in both the reference and query genome. This is especially important since it

is not possible to identify deletions when the corresponding coordinates between species are

lost. After extracting features we found that approximately 111 Mb of hg19 and 174 Mb of

mm10 were not contained within nets (Table 1). Alignment gaps that did not belong to any

nets in human and mouse tended to overlap regions between two conserved synteny blocks

(S1 and S2 Figs). With the remaining features extracted from hg19 and mm10, we used the

corresponding coordinates between reference and query to identify features that were recipro-

cal best hits (RBHs). This removed features in the reference genome that mapped to similar

locations in the query, which are likely the result of segmental duplication. After filtering out

non-net and non-RBH regions, 1014.3 Mb of chain-blocks and 1465.8 Mb of chain-gaps

remained in hg19, and 994.4 Mb of chain-blocks and 1191.5 Mb of chain-gaps remained in

mm10 (Table 1). Since our processed nets for each genome are supposed to only contain RBH

features, it is expected that the coverage of chain-blocks should be equal between hg19 and

mm10. To determine the source of this discrepancy, we analysed the number of chain-gaps

below our minimum size cut off and found that when these were taken into consideration the

difference in chain-block size was reduced to approximately 1 Mb.

Next, for step 2 we annotated chain-gaps as either lineage-specific DNA gain or DNA loss.

To annotate gaps we used two complementary methods, an ancestral elements-based method

and a recent transposon-based method. The ancestral element-based method uses outgroup

species to annotate gaps by inferring their ancestral state (Fig 1b). For example, if a particular

sequence between a reference and outgroup is conserved but presents as a gap in the query it is

likely that this sequence was lost from the query. Alternatively, if this particular sequence in

the reference presents as a gap in both the query and the outgroup it is likely that this sequence

was instead gained in the reference. An important consideration for identifying ancestral ele-

ments is the type 1 (false positive) and type 2 (false negative) error rates, where type 1 errors

are lineage-specific regions annotated as ancestral elements and type 2 errors are ancestral

regions annotated as lineage-specific. To reduce our type 2 error rate we obtained the genomes

of a large range of human and mouse outgroup species from the UCSC genome browser (S2

Table). Across all of our outgroup species we extracted all the chain-blocks and merged over-

lapping intervals to create our ancestral elements. This strategy increased the chance of finding

ancestral DNA in our reference that may have been lost in one or more of our outgroup spe-

cies. For both hg19 and mm10 we found that total genome coverage of ancestral elements

reached asymptotic levels at approximately 18 outgroup species (S3 Fig). However, this strat-

egy also came with the trade-off of increasing our type 1 error rate. To control error rates we

measured how type 1 and type 2 errors responded to changes in coverage depth of outgroup

chain-blocks at each position in hg19 and mm10 (S4 Fig). Based on these results we annotated

human ancestral elements at an outgroup coverage depth� 6 and mouse ancestral elements at

an outgroup coverage depth� 4 (S4 Fig). This strategy removed > 85% ancestral elements

overlapping known lineage-specific repeats in mouse and> 95% of ancestral elements over-

lapping known lineage-specific repeats in human. For remaining chain-blocks, we found that

94.2% in human and 85.2% in mouse were supported by our annotated ancestral elements

(Table 1). Our very low error rate in human indicates that we were able to accurately deter-

mine the amount of mm10 DNA loss and hg19 DNA gain. However, our error rates in mm10

suggest that ancestral regions alone are insufficient to accurately estimate hg19 DNA loss and

mm10 DNA gain.
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Fig 1. Detecting DNA gain and loss events between two species. Chain-gaps and chain-blocks are extracted from nets between reference and query (a). The resulting

chain-gaps are essentially sequences from the reference genome that do not align to anything in the query genome. Chain-blocks are extracted from nets between

reference and outgroup species as ancestral elements. Ancestral elements are then used to annotate chain-gaps as either gain or loss (b). Chain-gaps are annotated as

query loss if they overlap ancestral elements or as reference gain if they do not. This is the ancestral element method for annotating gaps. The recent transposon

method instead uses transposons classified as recent or ancestral to annotate gaps (c). Transposons are extracted from Repeat Masker files containing various classes of

repetitive elements. Chain-gaps are annotated as reference gain if they overlap recent transposons or as query loss if they do not. After gaps are annotated they are

placed within each genomic background creating a synthetic genome (d). Annotated chain-gaps are placed according to the edge coordinates of their adjacent chain-

blocks within the same chain. Shown in the final two panels are chain-gaps extracted from the reference placed within the query genome. The different colours of the

query chain-blocks show that gap annotations in the reference are placed on different chromosomes in the query. Differences in annotations are the results of

conflicting information either resulting from incorrect identification of ancestral elements or recent transposons. Shading is used throughout the figure to help

differentiate the ancestral element method from the recent transposon method.

https://doi.org/10.1371/journal.pcbi.1006091.g001
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To complement and overcome potential shortcomings of the ancestral element-based

method of estimating DNA gain and loss, we adopted a recent transposon-based method. We

identified transposon families with lineage-specific activity and used them to annotate gaps as

lineage-specific DNA gain or loss (Fig 1c). For example, recent transposon sequences in hg19

that overlap gaps in mm10 are annotated as hg19 gains, where ancestral transposon sequences

in hg19 that overlap gaps in mm10 are annotated as mm10 losses. This approach has been

used previously to identify DNA loss in the mouse and human lineages [17, 54].

In order to annotate gaps using the recent transposon method, we first had to identify

transposon insertions that occurred after mouse and human diverged from their common

ancestor. Because transposon families have undergone distinct bursts of activity at particular

points in time, we decided to classify transposon families as either ‘recent transposons’ or

‘ancestral transposons’, and use members of those respective classifications to annotate our

chain-gaps. The main challenge in this approach is identifying lineage-specific activity of

transposons. Generally, transposon families are considered to be ancestral transposon families

when they are shared between two species. However, there is a possibility some ancestral trans-

poson families may have been active during the period of human and mouse divergence and

continued replicating in each lineage independently. This means families that would have

been otherwise classified as ancestral transposons may have actually undergone varying

amounts of lineage-specific transposition.

To overcome the problem of misclassifying the activity of otherwise ancestral transposon

families, we used linear discriminant analysis to build a transposon family classifier for both

human and mouse. We initially obtained transposon coordinates from the Repeat Masker

database and classified individual transposons as ‘ancestral transposons’ if they overlapped

ancestral elements or chain-blocks and as ‘recent transposons’ if they did not. Next, we trained

our classifier using two separate variables. The first variable was each transposon’s percent

divergence from their family consensus sequence, often used as an indicator of transposon age

[55, 56]. The second variable was the proportional overlap between each transposon family

and ancestral elements or chain-blocks as measured by bp coverage. After training we used

our classifier to group each family based on the family-wise means for the variables above (S5

Fig). We identified 656 recent human transposon families and 689 recent mouse transposon

families. Our results suggest that at least 176 families were active during human and mouse

divergence leading to a mixture of both ancestral and lineage-specific insertions (S1 Table).

Moreover, the percent divergence of these families is consistent with transposon activity

occurring after the evolution of ancestral transposons and prior to the evolution of lineage-

specific transposons (S6 Fig). Surprisingly, we also identified some transposon families that

were not shared between human and mouse, and yet were annotated as ancestral. However,

these families were usually small and together they covered less than 1 Mb of their respective

Table 1. Processing of net files.

Genomic regions (Mb) hg19 mm10

Sequenced genome (Mb) 2897.0 2653.0

Gaps outside of nets (Mb) 111.1 174.0

Non-RBH chains (Mb) 306.1 293

Ancestral elements (Mb) 1726.0 1021.0

Remaining chain-blocks (Mb) 1014.3 994.4

Remaining chain-blocks \ ancestral elements (%) 94.2 85.2

Remaining chain-gaps (Mb) 1465.8 1191.5

https://doi.org/10.1371/journal.pcbi.1006091.t001
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genomes (S1 Table). In addition, our results for mm10 indicate potential drawbacks in using

the ancestral element-based method for annotating gaps; percent divergence from consensus

for some recent transposon families is similar to ancestral transposon families. While this is

consistent with an elevated rate of substitution in the rodent lineage, it suggests that a large

number of regions in mm10 that share ancestry with our outgroup species may have diverged

beyond the alignment threshold (S5 Fig). Collectively, these results demonstrate the difficulty

of identifying recent transposon insertions based on family name alone. For this reason we

decided to annotate chain-gaps using our newly classified recent transposon families, which

were classified using a combination of family-wide and transposon-specific factors in conjunc-

tion with comparative genomic approaches.

DNA gain and loss annotation accuracy

Using both the ancestral element and recent transposon based methods, we annotated a large

number of chain-gaps with varying levels of consistency. In hg19, both methods were largely

consistent in identifying human-specific DNA gains and mouse-specific DNA loss. However,

in mm10 there was less agreement between the methods; while the majority of mouse lineage-

specific DNA gains identified by both methods tended to overlap, the majority of human line-

age-specific DNA loss did not (Table 2). This is most likely due to limitations for detecting

ancestral elements in mm10. We found that only 85% of mm10 chain-blocks were supported

by ancestral elements as opposed to 95% in hg19 (Table 1), suggesting that many ancestral ele-

ments were not identified using our outgroup species. This is a key weakness in our approach;

if there is an underlying error for detecting human DNA loss in mm10, it means that we

would also be overestimating the amount of DNA gain in mm10. However, by using two dis-

tinct yet complementary methods, we are able to identify potential sources of error and esti-

mate their impact. One explanation for missing ancestral elements may be that DNA gain and

loss events that occurred in either the mouse or human clade overlap DNA gain and loss

events that occurred across a large number of our outgroup species. However, as stated above,

nucleotide divergence rates may also play a role. Some regions in mm10 may have diverged so

much that it is impossible to perform a pairwise alignment with our outgroup species. Despite

the above mentioned inconsistencies between the methods in mm10, it is clear that the amount

of DNA loss in human is much smaller than the amount of DNA loss in mouse and the

amount of DNA gain for both. The difference in loss rates for human and mouse is mostly

Table 2. hg19 and mm10 gap annotation. Chain-gaps were annotated using both the ancestral element and recent transposon method. Each number represents gap anno-

tations in Mb.

hg19 chain-gaps

Recent transposon Ancestral element

hg19 gain mm10 loss Total

hg19 gain 685.0 37.8 722.8

mm10 loss 168.0 575.0 743.0

Total 853.0 612.8 1465.8

mm10 chain-gaps

Recent transposon Ancestral element

mm10 gain hg19 loss Total

mm10 gain 720.6 11.5 732.1

hg19 loss 356.1 103.4 459.5

Total 1076.7 114.9 1191.6

https://doi.org/10.1371/journal.pcbi.1006091.t002
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consistent with a high deletion rate in the mouse genome that has caused it to shrink in size

since divergence with human [17, 19].

To further characterise the results from each method we compared the length distributions

of their gap annotations. For DNA gain events in hg19 and mm10, the ancestral element method

displayed a much higher frequency of small elements than the recent transposon method. This

may be caused by spurious alignments between similarly structured recent transposons found in

reference and outgroup species, effectively separating the annotation gain events into smaller

pieces. Moreover, the recent transposon method identified much higher frequencies of DNA

gain events that correspond to full length consensus sequences of known transposon families

(Fig 2a and 2b). Conversely, the length distributions for DNA loss events identified by each

method were much more similar, especially in mm10. In hg19 the frequency of events detected

by the ancestral element method were much lower than those detected by the recent transposon

method (Fig 2c and 2d). This is consistent with the low number of ancestral elements in the

mouse genome. However, the high level of consistency for both methods in identifying hg19

DNA gain and mm10 DNA loss where there is good support for outgroup species is highly

encouraging. It indicates that the recent transposon method is a reasonably effective method in

identifying DNA gain and loss in species where it is difficult to detect ancestral elements. Con-

sistent between both methods is size distribution difference between DNA gain and loss. DNA

gain events are mostly over 100 bp in length while DNA loss events are mostly under 100 bp.

In both hg19 and mm10 we annotated a large number of gain and loss events using two dis-

tinct methods. However, to measure the total amount of DNA turnover at particular loci, gaps

annotated in a query genome needed to be mapped to a reference genome. Hence, gap annota-

tions were placed using the reference and query coordinates we extracted from our nets in step

1 (Methods) (Fig 1d). To account for the placement of gaps from one genome into another, we

adjusted the genomic coordinates at the target loci, resulting in a synthetic genome for both

species (Methods). Each synthetic genome contains both hg19 and mm10 annotated gaps in

either an hg19 or mm10 genomic background. Finally, our resulting dataset consists of 4 syn-

thetic genomes; mm10 with gap annotations based on the ancestral element method, mm10

with gap annotations based on the recent transposon method, hg19 with gap annotations

based on the ancestral element method and hg19 with gap annotations based on the recent

transposon method. Collectively, these results demonstrate that it is possible to identify loca-

tions for the majority of DNA gain and loss events since human and mouse divergence. Using

our identified DNA gain and loss events it is possible to characterise genome-wide patterns of

DNA gain and loss and to begin to determine how DNA turnover may impact on mammalian

genome evolution.

Genome-wide characteristics of DNA gain and loss

Genome size evolution in mammals follows an accordion model, where DNA gain is counter-

acted by DNA loss to maintain a relatively constant genome size [4]. To characterise how

DNA gain and loss interacts with genome structure, we used our synthetic genomes to analyse

the genomic distribution of DNA gain and loss events in hg19 and mm10. We began by seg-

menting synthetic genomes into 200 kb non-overlapping bins and tallying the total bp cover-

age of each type of gap annotation. Several bin sizes were tested, however we found that at 200

kb the total sum of gap annotations per bin averaged approximately 150 kb and all bins were

less than 200 kb (S10 Fig). This meant that 200 kb could provide good genomic resolution and

no single type of gap annotation would span the entire width of a single bin. Bins with less

than 150 kb of DNA not belonging to RBH nets were removed and our tallies were normalised

to reflect DNA gain and loss amounts per 200 kb. Additionally, because gap annotations from
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both species can be placed within a single genome, we are able to directly compare their geno-

mic distributions.

Using our binned synthetic genomes we compared the variation and average amount of

regional DNA gain and loss identified using each method. Our results showed that variation in

regional DNA gain or loss was reasonably consistent across both methods (Fig 3). For DNA

gain this was also quite large, in 200 kb genomic bins the amount of DNA gain in human and

mouse spanned a range greater than 70 kb, indicating that some regions underwent much

greater levels of DNA gain than others. While bin-wise variation in gain and loss rates was

Fig 2. Length distributions of identified DNA gain and loss events. hg19 gain (a), hg19 loss (b), mm10 gain (c) and mm10 loss (d) events were identified

using both the recent transposon and ancestral element method. Peaks for hg19 and mm10 gain, especially those detected by the recent transposon method,

correspond to know lengths of transposon families.

https://doi.org/10.1371/journal.pcbi.1006091.g002
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consistent across methods, the average amount of DNA turnover was not. This makes it diffi-

cult to reliably calculate the regional amount of DNA turnover or genome growth. However,

despite these inconsistencies, bin-wise levels of DNA gain and loss were highly correlated

across all cases, with the exception of hg19 DNA loss (Fig 3a) (S7 and S8 Figs). Surprisingly,

given that mm10 DNA gain is essentially the inverse of hg19 DNA loss, mm10 gain calcula-

tions are fairly consistent with respect to each method. This is because there has been a much

higher level of mm10 DNA gain than hg19 DNA loss, causing calculations for the total amount

of hg19 DNA loss to be much more sensitive to incorrect annotation (Table 2). Following this,

we investigated regional DNA gain and loss dynamics by identifying DNA gain and loss geno-

mic hotspots. Hotspots were identified by calculating G�i for each bin (Methods). For our

hotspot identification, we used a neighbourhood size of 600 kb (3 neighbouring bins) both

upstream and downstream of the bin in question. Before deciding to use 600 kb in our analysis

we tested several other neighbour distances. Our results showed that at a neighbour distance

of 3 bins, G�i scores show a relatively strong correlation with raw signal and also display a rea-

sonably smooth signal (S11 Fig). More importantly, by plotting the locations of hotspots at

different neighbour distances, we observed a strong tendency for hotspots to grow in size as

neighbourhood distance increased (S12 Fig). We converted our G�i values to P-values and cal-

culated the false discovery rate (FDR). Bins whose G�i was positive with FDR< 0.05 were con-

sidered hotspots. Hotspots were identified for each type of gap annotation found using both

gap annotation methods in both synthetic genomes. We found that the size of the hotspot

overlap between each gap annotation method for hg19 gain, mm10 gain and mm10 loss was

larger than the sum of non-overlapping hotspots (Fig 3b). Using the hotspot intersect between

gap annotation methods, we further characterised regional variation of DNA gain and loss

across hg19 and mm10. For the remainder of the analysis the terms ‘DNA gain hotspots’ and

‘DNA loss hotspots’ refer to the hotspot intersect between each gap annotation method, except

for hg19 DNA loss hotspots which instead refer to hg19 DNA loss hotspots identified through

the recent transposon method. For mm10 DNA loss, mm10 DNA gain and hg19 DNA gain,

the intersect was used as it provided a sample of genomic regions where regional DNA gain

and loss dynamics were highly supported by both methods. For hg19 DNA loss we used hot-

spots that were identified using the recent transposon method because the ancestral based

method was shown to largely underestimate the total amount of ancestral DNA.

Regional patterns of DNA gain and loss indicate lineage-specific divergence

The accordion model of genome evolution suggests DNA gain and loss is largely balanced

across the entire genome. Whether the individual events are balanced at the local scale remains

unknown. We analysed the genomic distribution of hg19 and mm10 gain and loss hotspots by

focusing on the within-species overlap and the across species overlap. The within species over-

lap was designed to investigate whether DNA gain and loss is balanced on a regional level,

indicating that despite large amounts of DNA turnover, local genome structures stay intact.

The across species overlap was designed to investigate whether DNA gain and loss associated

with lineage specific divergence in genome architecture. We found that almost 4% of human

loss hotspots overlapped human gain hotspots and approximately 6% human gain hotspots

overlapped human loss hotspots (Fig 4) (S13 Fig). These results showed that DNA gains and

losses in human at a regional scale have occurred independently. Conversely, less than 1% of

gain and loss hotspots in mouse overlapped each other, with a significant negative association.

These results suggest that regional DNA gain and loss in both species is largely unbalanced.

For the across species comparison, we found significant levels of overlap between DNA-loss

hotspots and negative associations between all other hotspot types at varying levels of statistical
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Fig 3. Comparison of gap annotation methods in binned synthetic genomes. Amount of DNA gain and loss per 200 kb in each bin

for both hg19 and mm10 (a). For each gap annotation, contour lines begin at a 2D kernel density estimate of 2−10 and increase at regular

intervals of 4−10, except for hg19 which increase at regular intervals of 1.6−9. Sizes of regions in Mb identified as hotspots for DNA gain

or loss using the G�i statistic in each genome (b).

https://doi.org/10.1371/journal.pcbi.1006091.g003
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significance depending on genomic background. This demonstrates that DNA loss dynamics

in both hg19 and mm10 share some degree of conservation while DNA gain dynamics are

mostly lineage-specific, suggesting that the acquisition of new DNA may be driving lineage-

specific divergence of genome structure.

To further characterise the distribution of hg19 and mm10 gain and loss hotspots, we

plotted them against both genomic backgrounds. hg19 and mm10 gain hotspots were most

enriched on chromosome X (Fig 4) (S13 Fig). This is consistent with chromosome X as a hot-

spot for L1 insertion, a particularly large transposon with high levels of lineage specific activity

that contributes to X inactivation [57]. For gain and loss hotspots themselves, hg19 gain hot-

spot regions were much more dispersed than other types of hotspot regions (Fig 4) (S13 Fig).

Since DNA loss across both species overlaps significantly, this adds to the lineage-specific

behaviour of DNA gain dynamics, where regional DNA gain in mouse is more concentrated

than in human. Interestingly, DNA loss hotspots in the hg19 genomic background appear

more concentrated towards telomeres, suggesting that chromosomal location may play a role

in DNA loss dynamics (Fig 4). However, it is worth noting that this observation did not occur

in the mm10 genomic background (S13 Fig). One explanation is that telomeres in mouse are

quite recent as mouse chromosomes have undergone a high frequency of breakage and fusion

events since divergence from a common ancestor [58]. In addition to analysing DNA gain and

loss hotspot genomic distributions, we repeated the analyses but instead focused on the geno-

mic distribution of DNA gain and loss coldspots (S14, S15 and S16 Figs). The most significant

result was again on chromosome X, which was strongly enriched for DNA loss coldspots in

human and mouse. This is consistent with low levels of homologous recombination observed

on X chromosomes across mammals [59–61], as recombination is the primary mechanism

that causes DNA loss [62]. Due to their evolutionary significance, we also analysed levels of

DNA gain and loss surrounding chromosomal rearrangement breakpoints that were previ-

ously identified by Lemaitre et al [63]. We found that DNA gain and loss rates surrounding

human/mouse chromosomal rearrangement breakpoints were similar to genome-wide levels

(S9 Fig). Together, our results demonstrate that regional lineage-specific DNA gain and loss

dynamics are relatively context-specific.

DNA gains and losses associate with distinct genomic environments

Various genomic structures and epigenetic states are known to shape and modify mutational

landscapes across genomes [64]. Therefore, we examined whether gain and loss hotspots were

correlated with a range of genomic features. The genomic features we analysed are non-ran-

domly distributed and known to play various roles in genome biology. By investigating their

association, we may begin to develop insight into the molecular drivers of DNA turnover. To

measure the correlation between genomic features and particular gap annotations we per-

formed feature enrichment analysis with 10,000 permutations (Methods). The analysis was

performed for both mm10 gain and loss and hg19 gain and loss in both the genomic back-

grounds. Using both genomic backgrounds we were able to analyse the genomic features from

regions in a query genome that have been deleted from a reference. We specifically chose

genomic features that could be found in both genomes as indicators for distinct aspects of

genome biology. Intron density, exon density, DNaseI hypersensitivity (DNaseI HS) peaks,

CpG islands, GC content and lamina-associated domains (LADs) are all indicators of genome

activity [18, 30, 43, 44]. Most of these features, excluding LADs, are associated with gene dense

areas and are linked to their expression or regulation [65]. LADs themselves are instead associ-

ated with gene-poor regions and gene silencing [43, 44]. We also investigated various groups

of transposons whose genomic distributions have been previously characterised and used to
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investigate genome-wide DNA gain and loss rates. Lineage-specific L1s and SINEs are both

major sources of DNA gain via retrotransposition, they both also have distinct accumulation

profiles that are similar across both species [17]. Lineage-specific L1s tend to accumulate in

gene-poor regions while lineage-specific SINEs accumulate in gene rich regions. Ancestral

Fig 4. Genomic distribution of gain and loss hotspots for hg19 and mm10 plotted against hg19 synthetic genome. Grey regions

indicate bins with< 150 kb of RBH nets and black vertical lines represent 50 Mb on non-synthetic genome. Inset table represents

percent overlap of gain and loss hotspots. The percentages were calculated using the hotspots labelled in each row as the

denominator. ‘�’ and ‘��’ represent p-values below 0.05 and 0.01 respectively based on the Fisher statistic. The odds ratio for each

fisher test is reported within the brackets. An odds ratio> 1 represents a positive association and an odds ratio< 1 represents a

negative association. DNA gain and loss hotspots, except for hg19 DNA loss, were identified by using both the recent transposon

and ancestral element method and taking the intersect. For hg19 DNA loss, only the recent transposon method was used.

https://doi.org/10.1371/journal.pcbi.1006091.g004
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L1s, and ancient elements (MIRs and L2s) have been used previously to indicate levels of DNA

loss. Since these elements inserted prior to species divergence, they both provide signatures of

ancestral DNA. Differences in the numbers of these elements in similar regions across species

can indicate DNA loss [17, 19]. Finally, we investigated the genomic distribution of recombi-

nation hotspots and genome-wide profiles of recombination rates [33, 36]. We considered

recombination as an indicator of genome instability, as meiotic recombination increases the

potential for heritable genomic rearrangements [66]. Importantly, it is worth noting that

recombination hotspots and recombination rates in mm10 are autosomal only. This was due

to limited data availability for mouse.

Among our features we observed distinct profiles for DNA gain and loss that were largely

consistent across both genomes. For DNA loss from both genomes and in both genomic back-

grounds we found a strong positive associations with indicators of gene-rich/active genomic

regions (Fig 5). This is surprising as biologically active genomic regions are likely to contain

many important functional elements. However, it has recently been shown that these regions

are particularly prone to genomic instability leading to evolutionary genomic rearrangements

[67]. This also suggests DNA loss is linked to an open chromatin state as it is strongly nega-

tively associated with LADs. In the hg19 genomic background we also found that ancient ele-

ments were positively associated with mm10 DNA loss (Fig 5). While ancient elements have

been used as indicators of DNA loss, we did not expect they would be quite so strongly associ-

ated with it. Moreover, in hg19 ancient elements are negatively associated with DNA loss and

have been predicted to play important roles in gene regulation [68]. In addition, the high DNA

loss rate in these regions may lead to overestimates of the genome-wide DNA loss rate in

mouse, as these elements have previously been used as markers for calculating deletion rates

[5, 17]. Our results also showed that DNA loss in hg19 and mm10 in the hg19 genomic back-

ground was positively associated with genomic recombination (Fig 5). This is consistent with

previous analyses that have identified an association between DNA loss and recombination

[69]. Interestingly, we did not observe any association with recombination in the mm10 geno-

mic background. This may be due to the decreased resolution used to calculate recombination

rates and identify recombination hotspots in mouse compared to human [33, 36]. For DNA

gain hotspots we found that their associations with genomic features was less consistent across

both species than DNA loss hotspots (Fig 5). For sources of DNA gain, mm10 and hg19 DNA

gains were both positively associated with lineage-specific L1s. However, while lineage-specific

SINEs were associated with hg19 DNA gain, in mm10 they were associated with DNA loss

(Fig 5). This paradoxical finding is likely caused by two separate contributing factors. The first

is that lineage-specific SINEs in mouse are not a major contributor to DNA gain compared to

human, as their overall coverage levels are much lower [17]. The second is that lineage-specific

SINEs accumulate in gene-rich open chromatin areas which also happen to strongly associate

with DNA loss [70]. These differences in sources of DNA gain may explain divergence patterns

in both species DNA gain dynamics; lineage-specific SINEs are associated with gene-rich/

active genomic regions and lineage-specific L1s are associated with gene-poor silent regions

such as LADs. Ultimately, this suggests that DNA is accumulating/turned over in different

regions at different rates by otherwise conserved mechanisms of DNA gain. Collectively, our

results show that DNA gain and loss is associated with specific genomic contexts, leading to

differences in genome structure.

Potential evolutionary impacts from DNA gain and loss

DNA gain and loss is non-random and may be a function of mammalian genome structure.

However the evolutionary impact of DNA gain and loss is mainly determined by whether or
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not it affects particular phenotypes. To identify potentially impacted phenotypes we performed

gene ontology (GO) enrichment analysis on genes in DNA gain and loss hotspots for biological

process GO terms [48]. Because we are interested in identifying whether DNA gain and loss

may have driven lineage-specific divergence we compared the significance levels of GO term

Fig 5. Association between genomic features and DNA gain or loss. Z scores are calculated using background distribution generated from 10000

permutations (Methods). A positive association indicates that a particular gap annotation and genomic feature co-locate. Alternatively, a negative

association indicates that the gap annotation and genomic feature occupy distinct genomic regions. DNaseI HS peaks [30], recombination hotspots

[33, 36], LADs [43, 44], CpG islands [18], gene annotations [39, 40] and Retrotransposons [23] were measured in each bin as coverage per 200 kb.

Recombination rates were measured as the mean bin-wise recombination rate [33, 36]. GC content was measured as the proportion of G or C

nucleotide residues in chain-blocks per bin [27, 28]. Genomic features are classified intro groups of feature indicators based on distinct aspects of

genome biology they are known to associate with. The dendrogram represents spatial clustering of genomic features across both genomes,where two

tightly clustered genomic features in the dendrogram are genomic features that tend to be co-located. The dendrogram was generated from a

correlation matrix that consisted of pair-wise correlations between each feature across both binned genomes.

https://doi.org/10.1371/journal.pcbi.1006091.g005
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enrichment between our hotspot types. To do this we performed correlation analysis using the

-log10 P-values for GO term enrichment as determined using a Fisher test combined with the

‘classic’ GO term enrichment algorithm (Methods) [45]. Surprisingly our results showed the

highest level of similarity between hg19 DNA gain and hg19 DNA loss (Fig 6) (S17 Fig). This

is interesting because the overlap between hg19 gain and loss was not statistically significant

(Fig 4) (S13 Fig). Moreover, when we compare hg19 DNA loss with mm10 DNA loss; gap

annotations with a significant degree of overlap (Fig 4) (S13 Fig), we found that GO terms

were not as similar, particularly in the mm10 genomic background (S17 Fig). Alternatively,

enriched GO terms found in mm10 DNA gain hotspots appeared distinct from GO terms

enriched in other DNA gain and loss hotspots. These results echo our above findings from

comparing hotspot overlap, where mm10 gains were least likely to significantly overlap other

hotspot types (Fig 4) (S13 Fig).

To confirm our findings and examine the GO terms themselves, we calculated the propor-

tion of significant terms that were descendants (child terms) of a high-order parent term.

Child terms were identified as statistically significant at a FDR< 0.05 based on a Fisher test

using the classic algorithm. Additionally, we extracted the 10 highest ranked terms discovered

using the Fisher test combined with 3 other algorithms designed to reduce false positives gen-

erated by the inheritance problem (described in Methods) (S3, S4, S5 and S6 Tables) [46, 47].

Statistically significant terms for hg19 gain and loss mostly belonged to cellular processes, met-

abolic processes, single organism processes and biological regulation (Fig 7). For mm10, DNA

Fig 6. Over representation of biological process GO terms in gain and loss hotspots in hg19. The axes are marked

according to -log10 P-values. The size of points represents the total number of annotations for each GO term. In red is

the Pearson correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1006091.g006
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Fig 7. Significant biological process GO terms in hg19 background. Parent terms were the top level biological process

GO terms while child terms were those beneath each parent term. Only Parent terms whose children make up> 5% of all

terms in the genome are shown. Child terms were identified as significant at a FDR< 0.05 based on a Fisher test using the

‘classic’ algorithm. The Y axis represents the proportion of significant child terms belonging to a particular parent

(observed), divided by the proportion of all child terms in the genome that belong to that same parent term (expected).

Also shown is the number of non-redundant GO terms and genes annotated with significant GO terms for each gap

annotation.

https://doi.org/10.1371/journal.pcbi.1006091.g007
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loss hotspots were enriched for similar terms, including developmental processes, which were

particularly enriched in the mm10 genomic background (S18 Fig). However, mm10 gain in

the hg19 background was only enriched for a single term and in the mm10 background mm10

gain was not enriched for any terms. The difference in these results is consistent with how

DNA gain and loss events in human and mouse associate with regions of varying gene density

and biological activity (Fig 5).

Interestingly, while the genomic distributions of each hotspot type differed, their associated

significant GO terms were highly similar. This may be caused by genes that contribute to

similar biological processes being tightly clustered and located within regions that consist of

overlapping hotspot types. To determine if this was the case we compared non-redundant sta-

tistically significant child terms and gene annotations across each hotspot type (S19 Fig). We

found that the vast majority of genes annotated with significant GO terms were unique to a

particular hotspot type. In contrast to this, the GO terms themselves were usually shared across

hotspot types. This suggests that DNA gain and loss tend to associate with different genes that

contribute to the same biological processes. Together our results show that particular biologi-

cal processes are either prone to DNA gain or loss or are instead highly robust and able to

withstand high levels of genomic turnover.

To determine whether or not increased DNA gain or loss likely had an evolutionary impact

we compared human and mouse gene expression divergence. Gene expression divergence

levels were obtained from [71] and were measured in terms of the number of commonly co-

expressed genes between human and mouse one to one orthologs. We also considered ortho-

logs which were outliers based on their levels of differential connectivity [71]. The number of

genes within each group are shown in S7 Table. We found that for genes in human and mouse

DNA gain and loss hotspots and developmental process genes in mouse DNA loss hotspots

(identified using GO terms) there was no significant association with conserved or divergent

expression patterns (S8 Table). In addition, we also measured how genes in DNA gain and loss

hotspots associate with gene regulatory blocks (GRBs), genomic regions preserved between

mammals and birds that are enriched for highly conserved elements [72]. Interestingly, we

found that developmental genes in mm10 DNA loss hotspots were strongly enriched in GRBs

(FDR< 0.001) (S8 Table), indicating that despite high levels of DNA turnover in these regions

the regulatory architecture of developmental genes remains largely intact. Collectively, these

results suggest that increased rates of DNA turnover have had little impact on altering gene

expression patterns, since the majority of DNA turnover in these regions surrounding devel-

opmental genes has likely not interrupted regulatory element architecture.

Spatio-temporal dynamics of DNA gain and loss

Mouse and human diverged approximately 90 MYA. Over this period of time approximately

60% of their genomes have been turned over. However, changes in the rate of DNA turnover

across this time-frame so far remains unknown. To better understand the spatio-temporal

dynamics of DNA gain and loss, we dated individual DNA gain or loss events using a series of

ingroup species that each mark specific divergence events between either human or mouse

(Methods). Specifically, we dated gain or loss events that were annotated using the recent trans-

poson method. Our results showed that both hg19 and mm10 underwent similar temporal pat-

terns of DNA gain and loss. After the initial divergence event between human and mouse, both

genomes underwent their highest rates of DNA loss which continued to slow down throughout

their evolution (Fig 8a and 8b). Before humans diverged from their common ancestor with the

mouse lemur, the human genome had lost approximately 275 kb (S20 Fig), and before mice

had diverged from their common ancestor with the pika, the mouse genome had lost

Divergent genome evolution caused by regional variation in DNA gain and loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006091 April 20, 2018 23 / 36

https://doi.org/10.1371/journal.pcbi.1006091


Fig 8. Rate of DNA gain and loss that occurred in Mb per million years (MY) since the human (a) and mouse (b)

divergence event. Levels of DNA turnover reflect the rate of DNA gain or loss that can be attributed to each branch

pictured below in the phylogenetic trees. Divergence times for the phylogenetic trees were calculated using time tree’s

“estimated divergence time” [49]. Overlap between DNA gain and loss hotspots in the mm10 genomic background

specific to each divergence event (c). Significant positive and negative associations based on Fisher’s exact test
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approximately 450 kb (S20 Fig). In both species this initial period of DNA loss constituted

more than half of the total DNA loss they each experienced since divergence from each other

(Table 2). This helps support our earlier observation about DNA loss being concentrated at

telomeres in the hg19 genomic background shown in Fig 4. Since the majority of DNA loss

occurred quite early after human and mouse diverged, their karyotypes were likely similar to

the current human karyotype. This is likely true for two reasons; 1) there would not have been

much time for a large number of chromosomal rearrangements to occur between these early

ancestral human and mouse genomes, 2) and that since divergence with the boreoeutherian

ancestor the human genome has undergone only a small number of chromosomal rearrange-

ments meaning that many human telomeric regions are ancestral [58, 73]. Additionally, since

over this time period DNA loss was greater than DNA gain, the results suggest that the human

and mouse genomes both shrank in size before they began to grow due to transposon accumu-

lation. Interestingly, humans underwent a recent burst of DNA gain after their divergence with

chimpanzee which is consistent with rates of human-specific Alu and L1 activity [74] (Fig 8a).

To understand the relationship between both the spatial and temporal dynamics of DNA

gain and loss, we analysed the genomic distribution of DNA gain and loss events that occurred

between each divergence event. First, we identified DNA gain and loss hotspots using the hot-

spot identification procedure described in the methods section. Next, the genomic distribution

for each set of time-specific DNA gain and loss hotspots were then compared by performing

Fisher’s exact test based on their overlap, hotspot overlaps were considered significant if their

FDR was < 0.05. This analysis showed consistent results across both the hg19 (Fig 8c) and

mm10 genomic backgrounds (S20 Fig). Overall, within species, we found that most successive

time-periods of DNA gain or loss showed no statistical significant association with DNA turn-

over from the previous time-period. However, across species and between distant evolutionary

time-periods there are particularly strong spatial associations. For example, it appears that

only recent hg19 DNA gains tend to associate with DNA losses across multiple time-periods,

which is consistent with recent SINE activity in human evolution [74] following insertion

into gene-rich regions that are prone to DNA loss. Similarly to hg19, recent mm10 gains also

strongly associated with mm10 losses from a range of time-periods. However in contrast to

hg19, older mm10 DNA gain and loss events show strong negative associations with each

other (Fig 8). Interestingly, hg19 loss hotspots and mm10 loss hotspots across different time-

periods occasionally show negative associations. This is at odds with our earlier findings in Fig

4 that show a positive association between hg19 loss and mm10 loss. These results again indi-

cate that genomic distributions of DNA loss have been dynamic throughout evolution. How-

ever, it is important to realise that the majority of DNA losses occurred early after human and

mouse divergence, and at this early time-point hg19 and mm10 DNA loss hotspots show a pos-

itive genomic association (Fig 8). Collectively, our results show that the regional distribution

of DNA gains and losses over time have been highly dynamic and most likely the result of

complex interactions between genome organisation, genome biology and transposon activity.

Discussion

Genome-wide DNA gain and loss dynamics

Estimating the total amount of DNA turnover across two separate lineages over a time span of

approximately 90 million years is a challenging task [49]. After this divergence period as little

(FDR< 0.05) are coloured according to their log2 odds ratio (OR). Numbers on each plot’s x and y axis represent time

periods which individual DNA gains and losses were assigned to.

https://doi.org/10.1371/journal.pcbi.1006091.g008
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as 40% of the extant human genome shares ancestry with mouse, suggesting that at least 60%

has been turned over in either lineage. In order to understand gain and loss dynamics we must

be able to correctly assign this non-aligning portion of the human genome as either human

gain or mouse loss. Chinwalla et al [17] and Hardison et al [54] used an approach similar to

our recent transposon based method. They used a set of lineage-specific transposons in human

and mouse to identify regions of DNA gain. From this, the remaining non-aligning portion of

one genome was assumed to be lost from the other. To confirm this approach, Chinwalla et al
[17] checked to see if their inferred genome-wide rates of DNA loss were consistent with local

estimates. They used the following equation;

GE ¼ GA þ GG � GL; ð2Þ

where GE is the size of the extant genome, GA is the size of the ancestral genome, GG is the

amount of lineage-specific genome gain and GL is the amount of lineage-specific genome loss.

For human and mouse they solved the equation for GL where they estimated ancestral genome

size within a range similar to the extant human genome size. This was chosen because it was

similar to the average genome size for mammalian outgroup species. Estimates showed that

DNA loss in mouse was almost double that of human, and consistent with the difference in the

number of non-aligning non-recent transposon bases in each genome. While these estimates

were consistent with expectations based on the assumption that non-aligning non-recent

transposon regions were ancestral, their ancestral state remained unverified. Conversely, our

ancestral based approach aimed to directly verify the ancestry status of non-aligning regions

between human and mouse. This was achieved by using a wide variety of outgroup species

alignments not available to Chinwalla et al [17] and Hardison et al [54] at the time of their

analysis. In human, our results revealed that indeed many of the non-aligning non-recent

transposon bases overlapped ancestral elements. However, approximately 168 Mb remained

ambiguous (Table 2) which was more than double the 5.8% of the total non-aligning human

genome, the fraction of known ancestral bases not supported by ancestral elements (Table 1).

As stated in the results, this discrepancy was most likely caused by incorrect identification of

DNA gain events or misidentification of ancestral elements. It is important to realise that the

ancestral element-based approach has its limits, as orthologous sequences between species

have the potential to diverge beyond recognition. This was the most likely reason that ancestral

element detection in mouse was so much lower than in human, as the genome-wide substitu-

tion rate in mouse is approximately twice that of human.

An alternative way to verify the recent transposon based method was to use our estimated

DNA loss rates to solve for GA and to compare this to other estimates of ancestral genome

sizes. After the mouse genome was completed many other mammalian genome projects also

reached completion, allowing for the development of ancestral genome reconstruction tech-

niques. While ancestral genome reconstruction is based on alignment it is much less suscepti-

ble to errors than our detection of ancestral elements. Instead of performing alignments

directly between human or mouse and each individual outgroup species, it uses alignments

between groups of more closely related species to build a phylogeny of ancestral states [73, 75].

Recently, Kim et al [76] estimated an ancestral euarchontoglires genome of 2.67 Gb in an anal-

ysis involving 19 placental mammals. Using Eq 2 and solving for GA with extant genome sizes

from Table 1 and gain and loss rates calculated by the recent transposon method (Table 2), we

get estimated ancestral genome sizes of 2.64 Gb and 2.66 Gb for human and mouse respec-

tively. Together our findings in the context of various other methods support the use of recent

transposons to analyse DNA gain and loss dynamics.
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While the recent transposon method provides an accurate estimate of DNA gain and loss

dynamics it is important to realise these estimates are only a lower bound on the the total

amount of DNA turnover since divergence. This is because both our analysis and previous

analyses relied heavily on the assumption of parsimonious genome evolution, where lineage-

specific gain and loss patterns are based on the fewest possible evolutionary changes. Unfortu-

nately, in our case the assumption of parsimonious genome evolution is likely to cause various

events to be hidden. For example, if a particular region underwent lineage-specific DNA gain

that was subsequently lost, both the gain and loss events will not be detected. Additionally,

DNA loss occurring in both lineages at the same loci would also go undetected. Depending

on the frequency and magnitude of the above events we have likely underestimated the total

amount of DNA gain and loss. A possible way to overcome this problem is to adopt model

based approaches similar to those used in phylogenetic analyses. These approaches use a sub-

stitution model along with maximum likelihoods or Bayesian inference to allow for varying

rates of evolution across lineages and sites [77]. However, given our current lack of under-

standing of the non-coding portion of the genome such an approach for estimating DNA turn-

over is likely to yield highly questionable results.

Evolutionary impact of large scale DNA gain and loss

During genome evolution the spectrum of possible mutations is extremely broad, ranging

from single nucleotide substitutions all the way up to Mb-sized rearrangements and transloca-

tions. Importantly, the genomic distribution of events at each level of the mutation spectrum is

non-random and highly context-dependent. Moreover, the regional susceptibility and toler-

ance to a particular mutation type is a mixture of various genomic and epigenomic features

and selective pressures [64]. To understand the evolutionary impacts and trajectories of DNA

gain and loss dynamics we analysed their genomic distributions in the context of various geno-

mic features and biological processes.

In mammals synteny is highly conserved due to the frequent reuse of chromosome rear-

rangement breakpoints throughout their evolution [58]. Since chromosome rearrangement

breakpoints were located outside of nets, many DNA gain and loss events went undetected (S1

and S2 Figs). Instead, we most likely identified regions where gain and loss dynamics impacted

on local architecture, such as the genomic distances between neighbouring genes or intron

size. However, due to the difficulty in mapping DNA gain and loss events across large evolu-

tionary time scales, the impact of DNA gain and loss at this scale remains largely unknown.

Our strategy has therefore allowed us for the first time to measure regional variation in DNA

gain and loss across genome structures that have been resistant to large structural rearrange-

ments. Our results revealed that DNA gains and losses in human and mouse were associated

with the same kinds of features; DNA gains were most associated with L1 accumulation in

gene poor regions with low biological activity while DNA losses occurred mostly in highly

active gene-rich regions. Previous analyses have shown that genome organisation between

human and mouse is largely conserved, where lineage-specific L1s and SINEs tend to accumu-

late in similar regions in different species [70]. Our results suggest that rather than certain

types of events driving genome divergence, it is instead the rate at which each particular event

type occurs that drives divergence. For example, mouse has a much higher deletion rate than

human and a larger number of active L1s. This would suggest that particular regions in the

mouse are growing or shrinking much more than in the human genome while their sequence

composition remains similar. Alternatively, DNA gain rates were especially enriched on the X

chromosome in both species with some degree of regional overlap (Fig 4) (S13 Fig). This is

consistent with the high concentration of L1s that play a role in X inactivation [57].
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Despite the amount of structural divergence between human and mouse, it is difficult to

identify how much impact this might have on evolution at the level of phenotype. Interest-

ingly, Human DNA gains and losses and mouse DNA losses all occurred near genes involved

in fundamental cellular/metabolic processes. Because cellular/metabolic process genes likely

evolved earlier in animals and probably have house keeping functions, their regulation is

also likely highly conserved [78]. This suggests that for the most part the accumulation of

DNA gains and losses have had little impact on phenotypic change. However, for some

mouse DNA losses the case may be different, as in the mm10 genomic background they

mostly occurred near genes involved in developmental processes. Developmental processes

may be linked to traits that could have potentially undergone divergence, such as mouse-spe-

cific morphological characteristics. While this is an attractive idea, an analysis of regulatory

element evolution shows that lineage-specific regulatory innovation for development

occurred prior to human and mouse divergence [78]. Moreover, we observed that develop-

mental genes associated with mm10 DNA loss hotspots were in genomic regions enriched

for conserved elements that likely contribute to conservation of gene regulation [72]. There-

fore, throughout mammalian evolution regulatory elements for development and cellular

processes have likely remained intact while nearby DNA has been frequently turned over.

This has important implications for calculating the “functional” proportion of mammalian

genomes, depending on the methods used and how the term itself is applied, this value

ranges widely. Using transcription and DNA binding to identify functional DNA, the

ENCODE consortium estimated that as much as 80% of the human genome might be func-

tional [30]. Alternatively, evolutionary approaches have been used to identify functional

regions as those that are likely to have a measurable biological impact on cell function if per-

turbed. These kinds of approaches suggest that no more than 25% of the human genome is

functional [79, 80]. Ultimately, given that we are able to detect little phenotypic impact

where there are vast amounts of DNA turnover, our findings support lower estimates for the

functional proportion of the human genome.

Conclusion

There are four key points from our results. First, hot spots for DNA gains and losses occur in

different compartments; loss hotspots in open chromatin/regulatory regions and gain hotspots

in heterochromatin. Because DNA loss is caused by repair of DNA Double Stranded Breaks

(DSB) [81], this means that L1 ORF2p activity can both cause DNA gains and losses as a cause

of DSB. However, this does not mean that gains and losses do not occur in the same regions.

Second, mouse SINEs are strongly associated with DNA loss, indicating that losses in regula-

tory regions are accompanied by SINE insertions suggesting that there is extensive “churning”

or turnover of sequences in these regions. The observed differences in associations between

lineage-specific SINEs and gain and loss in mouse and human are likely due to differential

expansion of LINEs vs SINEs in the two lineages. Thus, regional/species specific variation in

DNA gain and loss are primarily driven by clade specific/recent transposons interacting with

open chromatin either in the male germ line, female germ line or early embryo. Third, the X

chromosome is largely devoid of loss hotspots, but has many gain hotspots, consistent with a

continuing selection for insertion of L1 elements required for X inactivation. Fourth, the

observed autosomal divergence of gain and loss hotspot patterns in proximity to genes sup-

ports a model in which developmental/regulatory mechanisms (based on GO term results) are

robust to large amounts of transposon driven DNA gain and loss. This has implications for

our views regarding the “functional” proportion of the genome that is under selection and

contributing to phenotypic divergence.
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Supporting information

S1 Fig. Genomic regions filtered from hg19. Gaps outside of nets� 10 kb are shown in black

above each chromosome. non-RBH regions� 10 kb are shown in red below each chromo-

some. Assembly gaps are plotted in black within chromosomes. Syntenic blocks are coloured

according to which chromosome they belong to in mm10. The trace running through each

syntenic block represents its mm10 chromosomal position and orientation, running top to

bottom (50 to 30).

(TIFF)

S2 Fig. Genomic regions filtered from mm10. Gaps outside of nets� 10 kb are shown in

black above each chromosome. non-RBH regions� 10 kb are shown in red below each chro-

mosome. Assembly gaps are plotted in black within chromosomes. Syntenic blocks are col-

oured according to which chromosome they belong to in hg19. The trace running through

each syntenic block represents its hg19 chromosomal position and orientation, running top to

bottom (50 to 30).

(TIFF)

S3 Fig. Coverage depth of chain-blocks extracted from outgroup species. Coverage depth is

measured by number of overlapping outgroup species. Ancestral DNA % is the proportion of

total bp in hg19 and mm10 that overlap at least one chain-block extracted from an outgroup

species.

(TIFF)

S4 Fig. Error profile and coverage depth for identifying ancestral elements. Minimum cov-

erage depth threshold for identifying ancestral elements is plotted against total proportion of

identified type 1 errors and the proportional increase in type 2 error rate. Type 1 errors are

identified as known recent transposons that overlap chain-blocks extracted from outgroup

species. Type 2 errors are identified as chain-blocks between hg19 and mm10 that do not over-

lap chain-blocks extracted from outgroup species. Type 2 error increase is the reduction in the

overlap between outgroup and ingroup (hg19 and mm10) chain-blocks as minimum coverage

depth threshold increases. For hg19 and mm10 we chose a minimum coverage depth of 6 and

4 respectively.

(TIFF)

S5 Fig. Transposon family classification with linear discriminant analysis. Each rectangle

represents the members of a transposon family under our prior recent and ancestral classifica-

tion. For example, a rectangle coloured black represents the members of a particular transpo-

son family that do not overlap ancestral elements. Rectangle width is the interquartile range of

percent divergence from consensus and rectangle height is proportional to total genome cover-

age. The dotted line is the classification boundary determined by linear discriminant analysis.

Rectangles above the line are transposon families classified as recent and rectangles below the

line are transposon families classified as ancestral.

(TIFF)

S6 Fig. Transposon family period of activity and percent divergence from consensus.

Transposons identified as recently active were classified as recent by our classifier and belong

to families not shared between human and mouse. Transposons identified as active during

divergence were classified as recent by our classifier and belong to families shared between

human and mouse. Transposons identified as active within the ancestor were classified as

ancestral by our classifier and belong to families shared between human and mouse. Transpo-

sons classified as ancestral by our classifier that belong to families not shared between human
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and mouse are not shown.

(TIFF)

S7 Fig. Rank comparison of gap annotation methods per 200 kb bin in hg19 genomic back-

ground.

(TIFF)

S8 Fig. Rank comparison of gap annotation methods per 200 kb bin in mm10 genomic

background.

(TIFF)

S9 Fig. DNA gain and loss rates surrounding human and mouse rearrangement break-

points in the hg19 genomic background.

(TIFF)

S10 Fig. Sum of all gap annotation types per genomic bin for various bin sizes.

(TIFF)

S11 Fig. The impact of using different neighbour distances for calculating G�i . The neigh-

bour distances is shown in red. A neighbour distance of 3 indicates that 3 bins upstream and 3

bins downstream of a particular bin are considered it’s neighbours. R2 is the coefficient of

determination between our G�i values and the actual bin-wise density for a specific gap annota-

tion. “roughness” is calculated as the standard deviation of the differences between adjacent

bins, lower values indicate the degree of smoothing caused by increasing the neighbour dis-

tance.

(TIFF)

S12 Fig. Examples of DNA gain and loss hotspots at various neighbour distances. Neigh-

bour distances are indicated in the top left corner of each plot in blue. Hotspots for human

and mouse DNA gain and loss are shown in red.

(TIFF)

S13 Fig. Genomic distribution of gain and loss hotspots for hg19 and mm10 plotted against

mm10 synthetic genome. Grey regions indicate bins with� 150 kb of RBH nets and black ver-

tical lines represent 50 Mb on non-synthetic genome. Inset table represents percent overlap of

gain and loss hotspots. The percentages were calculated using the hotspots labelled in each row

as the denominator. ‘�’ and ‘��’ represent p-values below .05 and .01 respectively based on the

Fisher statistic.

(TIFF)

S14 Fig. Comparison of gap annotation methods in binned synthetic genomes. Regions

identified as coldspots (Mb) for DNA gain or loss using the G�i statistic in each genome.

(TIFF)

S15 Fig. Genomic distribution of gain and loss coldspots for hg19 and mm10 plotted

against hg19 synthetic genome. Grey regions indicate bins with� 150 kb of RBH nets and

black vertical lines represent 50 Mb on non-synthetic genome. Inset table represents percent

overlap of gain and loss coldspots. The percentages were calculated using the coldspots labelled

in each row as the denominator. ‘�’ and ‘��’ represent p-values below .05 and .01 respectively

based on the Fisher statistic.

(TIFF)

S16 Fig. Genomic distribution of gain and loss coldspots for hg19 and mm10 plotted

against mm10 synthetic genome. Grey regions indicate bins with� 150 kb of RBH nets and
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black vertical lines represent 50 Mb on non-synthetic genome. Inset table represents percent

overlap of gain and loss coldspots. The percentages were calculated using the coldspots labelled

in each row as the denominator. ‘�’ and ‘��’ represent p-values below .05 and .01 respectively

based on the Fisher statistic.

(TIFF)

S17 Fig. Over representation of biological process GO terms in gain and loss hotspots in

mm10. The axes are marked according to -log10 P-values. The size of points represents the

total umber of annotations for each GO term. In red is the Pearson correlation coefficient.

(TIFF)

S18 Fig. Significant biological process GO terms in mm10 background. Parent terms were

the top level biological process GO terms while child terms were those beneath each parent

term. Only Parent terms whose children make up> 5% of all terms in the genome are shown.

Child terms were identified as significant at a FDR< 0.05 based on a Fisher test using the ‘clas-

sic’ algorithm. The Y axis represents the proportion of significant child terms belonging to a

particular parent (observed), divided by the proportion of all child terms in the genome that

belong to that same parent term (expected). Also shown is the number of non-redundant GO

terms and genes annotated with significant GO terms for each gap annotation.

(TIFF)

S19 Fig. Comparison of significant biological process GO terms and annotated genes. GO

terms were identified as significant at a FDR < 0.05 based on a Fisher test using the ‘classic’

algorithm. Annotated genes are genes that have been annotated with at least one of the signifi-

cant GO terms. GO term lists and gene lists in each set are non-redundant.

(TIFF)

S20 Fig. Spatio-temporal DNA gain and loss. Amount of DNA gain and loss in Mb that

occurred since the human (a) and mouse (b) divergence event. Levels of DNA turnover reflect

the amount of DNA gain or loss that can be attributed to each branch pictured below in the

phylogenetic trees. Divergence times for the phylogenetic trees were calculated using time

tree’s “estimated divergence time”. Overlap between DNA gain and loss hotspots in the mm10

genomic background specific to each divergence event (c). Significant positive and negative

associations based on Fisher’s exact test (FDR < 0.05) are coloured according to their log2

odds ratio (OR). Numbers on each plot’s x and y axis represent time periods which individual

DNA gains and losses were assigned to.

(TIFF)

S1 Table. hg19 and mm10 classification of transposon families. Transposon classification

compares our LDA classifier against shared and lineage-specific transposon family names. Pre-

sented is the total Mb transposon coverage with number of families in brackets.

(TIFF)

S2 Table. List of outgroup genomes used to identify ancestral elements in hg19 and mm10.

(TIFF)

S3 Table. Top 10 biological process GO terms for genes located in hg19 gain hotspots. P-

values for each GO term were calculated using the fisher statistic combined with one of four

separate algorithms that each take the GO hierarchy into account (described in Methods).

(TIFF)

S4 Table. Top 10 biological process GO terms for genes located in hg19 loss hotspots. P-

values for each GO term were calculated using the fisher statistic combined with one of four
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separate algorithms that each take the GO hierarchy into account (described in Methods).

(TIFF)

S5 Table. Top 10 biological process GO terms for genes located in mm10 gain hotspots. P-

values for each GO term were calculated using the fisher statistic combined with one of four

separate algorithms that each take the GO hierarchy into account (described in Methods).

(TIFF)

S6 Table. Top 10 biological process GO terms for genes located in mm10 loss hotspots. P-

values for each GO term were calculated using the fisher statistic combined with one of four

separate algorithms that each take the GO hierarchy into account (described in Methods).

(TIFF)

S7 Table. Gene content of various genomic regions in human and mouse. mm10 loss devel-

opmental genes are genes in mouse loss hotspots that are annotated with developmental pro-

cess GO terms. GRBs (gene regulatory blocks) are regions in the human genome that are

enriched for conserved elements. Top 10% CCGs (commonly co-expressed genes) are the

genes with the highest amount of co-expressed orthologs shared between human and mouse,

these genes are likely to have conserved expression between both species. Bottom 10% CCGs

are the genes with the least amount of co-expressed orthologs shared between human and

mouse, these genes are likely to have divergent expression patterns between both species. Dif-

ferentially connected genes are genes with the highest amount of differential connectivity

between human and mouse, these are genes with non-conserved expression patterns. All

human and mouse orthologs are one to one.

(TIFF)

S8 Table. Shared genes between overlapping regions. For each region comparison the per-

centage of genes found in gap annotation hotspots was reported. The statistical significance of

each overlap was measured using a Fisher’s exact test. Shown in bold font is the odds ratio and

shown in brackets is the FDR.

(TIFF)

S1 Text. URLs for accessing the data that was used throughout the analysis.

(TXT)
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76. Kim J, Farré M, Auvil L, Capitanu B, Larkin DM, Ma J, et al. Reconstruction and evolutionary history of

eutherian chromosomes. Proceedings of the National Academy of Sciences. 2017; 114(27):E5379–

E5388. https://doi.org/10.1073/pnas.1702012114

77. Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nature reviews Genetics. 2012;

13(5):303. https://doi.org/10.1038/nrg3186 PMID: 22456349

78. Lowe CB, Kellis M, Siepel A, Raney BJ, Clamp M, Salama SR, et al. Three periods of regulatory innova-

tion during vertebrate evolution. science. 2011; 333(6045):1019–1024. https://doi.org/10.1126/science.

1202702 PMID: 21852499

79. Graur D. An upper limit on the functional fraction of the human genome. Genome biology and evolution.

2017; 9(7):1880–1885. https://doi.org/10.1093/gbe/evx121 PMID: 28854598

80. Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the human genome is constrained: variation in

rates of turnover across functional element classes in the human lineage. PLoS genetics. 2014; 10(7):

e1004525. https://doi.org/10.1371/journal.pgen.1004525 PMID: 25057982

81. Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA dou-

ble-strand breaks. Journal of molecular biology. 2006; 357(5):1383–1393. https://doi.org/10.1016/j.jmb.

2006.01.089 PMID: 16490214

Divergent genome evolution caused by regional variation in DNA gain and loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006091 April 20, 2018 36 / 36

https://doi.org/10.1038/ng.658
http://www.ncbi.nlm.nih.gov/pubmed/20818382
https://doi.org/10.1016/j.celrep.2015.02.046
https://doi.org/10.1016/j.celrep.2015.02.046
http://www.ncbi.nlm.nih.gov/pubmed/25801028
https://doi.org/10.1073/pnas.0511238103
http://www.ncbi.nlm.nih.gov/pubmed/16477033
https://doi.org/10.1371/journal.pgen.1002680
http://www.ncbi.nlm.nih.gov/pubmed/22570634
https://doi.org/10.1093/gbe/evx179
https://doi.org/10.1093/gbe/evx179
http://www.ncbi.nlm.nih.gov/pubmed/28945883
https://doi.org/10.1186/s12862-015-0534-7
http://www.ncbi.nlm.nih.gov/pubmed/26589719
https://doi.org/10.1038/s41467-017-00524-5
http://www.ncbi.nlm.nih.gov/pubmed/28874668
https://doi.org/10.1101/gr.5383506
http://www.ncbi.nlm.nih.gov/pubmed/16983148
https://doi.org/10.1073/pnas.1310914110
https://doi.org/10.1101/gr.2800104
http://www.ncbi.nlm.nih.gov/pubmed/15574820
https://doi.org/10.1073/pnas.1702012114
https://doi.org/10.1038/nrg3186
http://www.ncbi.nlm.nih.gov/pubmed/22456349
https://doi.org/10.1126/science.1202702
https://doi.org/10.1126/science.1202702
http://www.ncbi.nlm.nih.gov/pubmed/21852499
https://doi.org/10.1093/gbe/evx121
http://www.ncbi.nlm.nih.gov/pubmed/28854598
https://doi.org/10.1371/journal.pgen.1004525
http://www.ncbi.nlm.nih.gov/pubmed/25057982
https://doi.org/10.1016/j.jmb.2006.01.089
https://doi.org/10.1016/j.jmb.2006.01.089
http://www.ncbi.nlm.nih.gov/pubmed/16490214
https://doi.org/10.1371/journal.pcbi.1006091

