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ABSTRACT In barley (Hordeum vulgare L.), lateral branches called tillers contribute to grain yield and
define shoot architecture, but genetic control of tiller number and developmental rate are not well char-
acterized. The primary objectives of this work were to examine relationships between tiller number and
other agronomic and morphological traits and identify natural genetic variation associated with tiller num-
ber and rate, and related traits. We grew 768 lines from the USDA National Small Grain Collection in the
field and collected data over two years for tiller number and rate, and agronomic and morphological traits.
Our results confirmed that spike row-type and days to heading are correlated with tiller number, and as
much as 28% of tiller number variance was associated with these traits. In addition, negative correlations
between tiller number and leaf width and stem diameter were observed, indicating trade-offs between tiller
development and other vegetative growth. Thirty-three quantitative trait loci (QTL) were associated with
tiller number or rate. Of these, 40% overlapped QTL associated with days to heading and 22% overlapped
QTL associated with spike row-type, further supporting that tiller development is associated with these
traits. Some QTL associated with tiller number or rate, including the major QTL on chromosome 3H, were
not associated with other traits, suggesting that some QTL may be directly related to rate of tiller devel-
opment or axillary bud number. These results enhance our knowledge of the genetic control of tiller
development in barley, which is important for optimizing tiller number and rate for yield improvement.
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Historically, modifying shoot architecture attributes of small grain
crops, such as introduction of semi-dwarf alleles and modification of
leaf angle and inflorescence morphology, has improved grain yield
(Mickelson and Rasmusson 1994; Flintham et al. 1997; Sakamoto
et al. 2006; Tang et al. 2017; Heng et al. 2018; Nan et al. 2018). In
barley and other small grain crops, shoot architecture is largely
defined by the number and vigor of tillers, modified lateral branches

that develop from axillary meristems (AXM) located in leaf axils near
the base of the plant. Tillers in barley, like the main shoot, have the
capacity to form grain-bearing inflorescences called spikes that con-
tribute to grain yield (Cannell 1969). However, merely increasing
tiller number may not increase grain yield because it has been asso-
ciated with decreased seed number and weight and increased lodging
(Stoskopf and Reinbergs 1966; Simmons et al. 1982; Benbelkacem
et al. 1984). Furthermore, tiller number is a complex trait influenced
by photoperiod sensitivity, spike row-type, and environmental vari-
ables, including water and nitrogen availability and planting density
(Turner et al. 2005; Alqudah and Schnurbusch 2014; Liller et al. 2015;
Alqudah et al. 2016). Therefore, a more comprehensive under-
standing of the genetic basis of shoot architecture and relation-
ships with other agronomic traits is important for altering barley
shoot architecture for increased grain yield.

Tiller development (tillering) in barley has been characterized in
several high and low tillering mutants, and five genes regulating
tillering have been isolated and characterized to date. LOWNUMBER
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OF TILLERS 1 (LNT1) encodes a BEL-like homeodomain transcrip-
tion factor homologous to Arabidopsis BELLRINGER (BLR) and
mutations in LNT1 result in reduced tiller number (Dabbert et al.
2010). UNICULME4 (CUL4) is homologous to Arabidopsis BLADE-
ON-PETIOLE (BOP) genes and encodes a protein with a BROAD
COMPLEX, TRAMTRACK, BRIC-À-BRAC (BTB)-ankyrin domain;
and cul4 mutants produce very few tillers (Tavakol et al. 2015).
The eligulum-a (eli-a) mutant, was identified as a suppressor of the
uniculm2 (cul2) mutant phenotype (Okagaki et al. 2018). Typically,
cul2 mutants do not produce any tillers, but when combined with
eli-a alleles, they develop at least one tiller. ELI-A encodes a conserved
protein that may be a transposon, and, despite their ability to inhibit
the uniculm phenotype in cul2 mutants, single mutants with strong
eli-a alleles are low tillering and typically produce about half as many
tillers as non-mutants (Okagaki et al. 2018). In contrast, mutations in
INTERMEDIUM-C (INT-C) andMANY NODEDDWARF (MND) 4/6
result in high tillering phenotypes. INT-C is an ortholog of the branch-
ing inhibitor TEOSINTE BRANCHED1 (TB1) in maize and encodes a
TB1, CYCLOIDEA (CYC), PROLIFERATING CELL NUCLEAR
ANTIGEN FACTOR1/2 (TCP) transcription factor. Loss-of-function
int-c mutants have intermediate spike row-type (between 2-row and
6-row) and a moderate high tillering phenotype (Lundqvist and
Lundqvist 1988; Ramsay et al. 2011).MND 4/6 encodes a cytochrome
P450 in the CYP78A family homologous to rice PLASTOCHRON1
(PLA1), and pla1 and mnd mutants both exhibit high rates of lateral
organ initiation (Miyoshi et al. 2004; Mascher et al. 2014).

Quantitative trait loci (QTL) associatedwith tiller number have been
found in coincident locations with genes regulating photoperiod sen-
sitivity or spike row-type (Laurie et al. 1995; Karsai et al. 1997; Wang
and Chee 2010; Naz et al. 2014; Alqudah et al. 2016; Nice et al. 2017).
Photoperiod sensitivity in barley is largely determined by variation in
PHOTOPERIOD-H1, an ortholog of Arabidopsis PSEUDO RESPONSE
REGULATOR 7 (PRR7). Plants with a dominant allele (Ppd-H1) are
typically photoperiod sensitive and flower in response to long days, and
plants with recessive alleles (ppd-H1) are typically photoperiod in-
sensitive (Turner et al. 2005; Digel et al. 2015). Photoperiod sensitiv-
ity in barley is also influenced by variation in other genes, including
VERNALIZATION-H3 (VRN-H3) (Yan et al. 2006; Faure et al. 2007;
Loscos et al. 2014), VRN-H1 (von Zitzewitz et al. 2005; Loscos
et al. 2014), several CONSTANS-like genes (Campoli et al. 2012a;
Mulki and von Korff 2016), and the barley ortholog of Antirrhinum
CENTRORADIALIS (HvCEN) (Comadran et al. 2012). Photoperiod
sensitivity impacts tiller number through influencing the timing and
duration of shoot elongation, as tillering typically stops shortly after
shoot elongation begins (García del Moral and García del Moral 1995;
Miralles 2000).

The negative association between spike row-type and tiller number
is usually attributed to a finite pool of resources that can be allocated
to different developmental processes (Kirby and Jones 1977). Barley
spikelets contain three florets, one central and two lateral, all of which
are fertile and produce seeds in six-row barley (6-rows); whereas in
two-row barley (2-rows) only the central floret is fertile. As a conse-
quence of increased lateral spikelet fertility, 6-rows producemore, often
smaller seeds than 2-rows, and they also tend to produce fewer tillers
(Alqudah and Schnurbusch 2014, 2015; Liller et al. 2015). Spike row-type
is primarily determined by variation in SIX-ROWED SPIKE 1 (VRS1),
which encodes a homeodomain leucine zipper protein (Komatsuda
et al. 2007), or VRS4, which encodes an ortholog of the maize tran-
scription factor RAMOSA2 (Koppolu et al. 2013), both of which are
inhibitors of lateral spikelet development. Plants with dominantVRS1
or VRS4 alleles are typically 2-rows, whereas plants with recessive

alleles are typically 6-rows. Although axillary buds are initiated dur-
ing embryonic and early seedling development, it is likely that tiller
and floret development coincide. VRS1 and VRS4 are both expressed
in lateral florets at the glume primordia stage (Waddington Stage 2.5)
(Komatsuda et al. 2007; Koppolu et al. 2013; Sakuma et al. 2017),
which occurs when plants have 3.5-6 leaves and are actively devel-
oping tillers (Waddington et al. 1983; Digel et al. 2015). Variation in
other genes that influence inflorescence morphology, including
VRS3 (van Esse et al. 2017; Bull et al. 2017) and INTERMEDIUM
genes (Lundqvist and Lundqvist 1988; Ramsay et al. 2011), have
also been shown to have pleiotropic effects on tiller number (Liller
et al. 2015).

Besides the apparent trade-off in tiller number observed in 6-rows
vs. 2-rows, few studies have described trade-offs between tiller num-
ber and other traits in barley or other small grain crops, and results
have been inconsistent. For example, Kebrom et al. (2012) reported
that removing tillers in wheat could induce development of larger
spikes with more seeds. However, results from another study that
examined yield and yield-related traits in barley under different seed-
ing densities over two years indicated that there was no trade-off
between tillers per plant and seeds per spike (Stoskopf and Reinbergs
1966). They found that the seeding density at which seeds per spike
was highest was the same density at which productive tiller number
per plant was highest. Furthermore, when they compared 20 high-
yielding lines and 20 low-yielding lines, they found that average seeds
per spike was higher in high-yielding lines but that average tiller
number was not different. Simmons et al. (1982) compared yield of
barley lines with different tillering capacities under different seed-
ing densities, and they noted that there was no clear association
between grain yield and tillering capacity; however, they did note
that higher tillering genotypes tended to have thinner stems, making
them more prone to lodging.

To date, most studies on the genetic control of tillering in barley
have used forward genetics, as with the previously mentioned tillering
mutants, or bi-parental mapping approaches (e.g., Arifuzzaman et al.,
2014; Gyenis et al., 2007), which limit detection of natural genetic
variation and the number of alleles that can be examined. However, a
recent genome-wide association study identified QTL associated with
tiller number and genetic interactions between tiller number and
spike row-type and photoperiod sensitivity at five developmental
stages in a mapping panel of diverse spring barley accessions
(Alqudah et al. 2016). This study was conducted in a greenhouse,
probably limiting the number of tillers that could be achieved,
especially by high tillering accessions. Therefore, we believe that ex-
amining genetic control of tiller number and relationships between
tiller number and other traits in field-grown barley over multiple
years, with a different set of lines, and with a large set of genomic
markers will contribute to a more comprehensive picture of natural
genetic variation and gene-environment interactions associated with
tiller number.

In our study, a mapping panel consisting of 384 2-row and
384 6-row spring barley accessions from the National Small Grain
Collection was examined. The panel was grown in the field and data
on tiller number and rate and agronomic and morphological traits
were obtained. To identify genetic variation associated with tiller
number and developmental rate, the panel was genotyped using
Genotyping-By-Sequencing (GBS) and a 50K SNP array (Bayer
et al. 2017). Our objectives were to (1) quantify the genetic inter-
actions between tillering and spike row type and photoperiod
sensitivity; (2) identify potential trade-offs between tiller number
and agronomic and yield-related traits; and (3) genetically map
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natural variation associated with tillering and characterize the extent
to which it overlaps genetic variation associated with related traits.

MATERIALS AND METHODS

Line selection, field design, and growing conditions
A diversity panel containing 768 accessions (Table S1) from the
National Small Grains Collection (NSGC) was developed for phe-
notypic analyses and genome-wide association studies (GWAS). The
panel, split equally between 2-rows and 6-rows, was selected first by
including the parents of a barley nested association mapping (NAM)
population (Hemshrot et al. 2019; Smith, unpublished results) and
then based on their contribution to polymorphism information con-
tent (PIC), as determined by Muñoz-Amatriaín et al. (2014). NAM
parents are part of the NSGC and were included in this study pri-
marily to inform use of specific NAM families for future genetic
studies. All accessions grown in 2014 and 2015 were the same except
for seven lines that did not flower in 2014 were replaced with different
lines in 2015.

The panel was grown in the field in St. Paul,MN in 2014 and 2015 in
a Type 2 modified augmented design (Lin et al. 1983; Lin and
Poushinsky 1985; May et al. 1989) containing 56 blocks, with
one half containing 2-rows and the other half containing 6-rows
(Figure S1). Individual blocks contained 15 rectangular 1.5 m by
0.3 m plots (five plots by three plots), with the central plot always
containing a primary repeated check, cv. Conlon for 2-rows and cv.
Rasmussen for 6-rows (Figure S1). Eight, randomly chosen blocks
also contained two repeated secondary checks, assigned randomly
to plots within the block. PI584962 and PI614939 were used as
secondary checks for 2-rows, and PI327860 and CIho7153 were
used as secondary checks for 6-rows. All other plots contained one
of the 768 accessions from the mapping panel. To confirm trait cor-
relations with tiller number and other traits from the 2014 and
2015 trials, in 2016, 54 lines split equally between 2-rows and
6-rows were randomly chosen from NAM parent accessions grown
in both years (Table S1). The 54 accessions and the primary checks
Conlon and Rasmussen were grown in a complete, randomized block
design with three replicates. Data collected from the 2016 experiment
were also used to assess correlation of tiller number within the same
line and year, as lines in 2014 and 2015 were not replicated. In all
years, adjacent plots of non-vernalized winter wheat separated plots
containing barley to control weeds, prevent shading, and allow space
for lodging. Plots containing barley were machine planted with
30 seeds per plot and one week after emergence were thinned to
ten plants per 1.5 m-long plot with regular spacing between plants.
This planting density, which is lower than normal, was necessary to
count tillers on individual plants, as plants grew together at higher
densities in a pilot study examining 20 and 30 plants per plot. Fur-
thermore, this low planting density allowed plants to reach higher
tillering capacities, which was important for evaluating trade-offs.

Phenotyping, trait value adjustment, and
phenotypic analyses
Vegetative traits measured included tiller number, plant height, leaf
width (2015 only), and stemdiameter (2014and2015only). In 2014and
2015, tillers were counted on the same plants (ten in 2014 and five in
2015) per row weekly, beginning at two weeks past-emergence (2WPE)
and ending at 7WPE. Productive tillers, tillers with grain-bearing spikes
atplantmaturity,were countedafter spikeswere fullyemergedandwhen
plants first showed signs of senescence (yellowing of awns and flag
leaves). Tillering rate was calculated by dividing the maximum tiller

number by the time in weeks that maximum tiller number occurred.
Other metrics of tillering rate were determined by calculating the
differences between mean tiller number between two consecutive
weeks and by calculating the slope of a line fit to mean tiller number
between at least three consecutive weeks. Leaf width (2015 only) and
plant height were measured at the same time that productive tillers
were counted (at maturity). Plant height was calculated as the mean
height (cm) of the tallest shoots of all plants from soil level to the top
of the spike, not including the awns. Leaf width was calculated as
the mean width (mm) at the widest point of the second leaf below the
flag leaf on the tallest shoot of all plants. This leafwas chosen because it
was consistently green at maturity. The tallest stem of all individual
plants in a rowwere harvested after senescence and dried in an oven at
37� for 72 hr. Dried stems were scanned, and the diameters (mm)
were measured at the widest point of the last internode (below the
peduncle) and averaged for each accession using Image J software
(version 1.50).

Inflorescence-related traits included spike row-type, seeds per spike,
spike length, and 50-kernel weight. Spikes from the tallest shoots of
five plants were harvested after senescence and dried in an oven at
37� for 72 hr. Spike length was measured from the base to the tip of the
spike, not including awns. All seeds from the five spikes were removed
by hand and counted; and mean seeds-per-spike was calculated. All
seeds from the five spikes were pooled together, and 50-kernel weight
was calculated as the total mass (g) divided by the total number of seeds
multiplied by 50.

Days to heading was recorded when spikes on at least half of the
shoots in a row were at least 50% emerged from the boot. Lodging was
scored after senescence but before spikes were harvested, based on a
scale of one to five, with one being completely upright and five being
completely prostrate.

For GWAS, trait values were adjusted using two different methods
developed by Lin et al. (1983) specifically for Type 2 modified
augmented designs and then assessed before and after correction
to determine whether adjustment reduced heterogeneity of checks.
One method, based on row and column averages of primary checks
(Method 1 –M1), is better for correcting values when the field varies
across plot rows and/or columns (Lin et al. 1983). Another method,
based on linear regression of primary and secondary checks (Method
3 – M3), is better for correcting values when the field varies in many
directions. M1 adjusted trait values (M1AdjValue) were calculated
using the following equation:

M1AdjValue ¼ Rawvalue 2Check1RowAve2Check1colAve

þ 2Check1Ave

Check1RowAve and Check1ColAve were the averages of all primary check
trait values in the same block row and block column, respectively,
as the raw trait value being adjusted. Check1Ave was the average of all
primary check values. Method 3 adjusted trait values (M3AdjValue)
were calculated using the following equation:

M3AdjValue ¼ Rawvalue 2 SlopeAllChecksðCheck1Block 2Check1AveÞ

SlopeAllChecks was the slope resulting from linear regression of primary
check trait values vs. the average secondary check trait values within
the same block, and Check1Block is the value of the primary check in
the same block as the raw trait value. Appropriateness of correction
and selection of a correction method was based on two criteria (Lin
and Poushinsky 1983, 1985; Lin et al., 1983; May et al., 1989). First,
ANOVA in R (version 3.4.4) using primary check trait values was
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used to test for block row and column effects (Table S2). Second,
relative efficiency of correction was calculated by dividing the
average variance of raw secondary check trait values by the average
variance of adjusted secondary check trait values, and values greater
than one indicated that correction reduced variance due to heteroge-
neity in the field (Table S2). We used raw trait values (Table S3) for
phenotypic analyses because some traits varied spatially and others
did not, as indicated in Table S2. Due to this, some traits would
undergo more change with correction than other traits, which would
confound how traits were correlated with one other. Raw or adjusted
(if applicable) trait values were used for GWAS (Table S4).

All statistical analyses and data visualizations were performed
in R. Broad-sense heritability (H2) was estimated using 2014 and
2015 raw trait values by two-way ANOVA with the following model:
Trait� Year + Line. Genetic variance was calculated as the difference
between the line mean squares and the residual mean squares divided
by two (for two years – 2014 and 2015), and heritability was calcu-
lated by dividing genetic variance by the sum of genetic variance and

the residual mean squares divided by two (Table 1 and Table S5).
Estimates were based on lines that had trait data in both years, which
varied depending on the trait, and the number of lines used for each
trait estimate is included in Table 1 and Table S5. Trait heritability
was also estimated with 2016 raw trait values using rep instead of
year in the two-way ANOVA model (Table S5).

One-way ANOVAwas performed followed by a Tukey-Kramer
test for pairwise comparison of trait means between different
year, spike row-type, and photoperiod sensitivity groups; and
the multcompLetters function (multcompView, version 0.1-7) was
used to assign letters designating whether groups were significantly
different based on false discovery rate (FDR)-adjusted p-values from
the Tukey-Kramer test. Pearson and Spearman rank correlations
between traitswere calculated using the rcorr function (Hmisc, version
4.1-1) (Table 2 and Table S6). A distance matrix was calculated based
on average weekly (two to seven weeks past-emergence) and pro-
ductive tiller number, and principal coordinates analysis (PCoA) of
the distance matrix was performed using the cmdscale R function.

n■ Table 1 Summary statistics for tillering traits measured in 2014 and 2015

Trait Lines Number of Lines

Mean Standard Deviation

p-valuea H22014 2015 2014 2015

Tiller Number 2WPE All 756 1.58 3.13 0.81 0.74 2.0E-09 0.35
2-Row 375 1.84 3.38 0.83 0.76 0.032 0.17
6-Row 381 1.31 2.88 0.70 0.62 3.7E-03 0.24
Ppd-H1 324 1.40 3.03 0.74 0.67 7.1E-05 0.35
ppd-H1 432 1.72 3.21 0.83 0.77 5.3E-05 0.31

Tiller Number 3WPE All 756 3.39 8.00 1.63 2.26 6.4E-07 0.30
2-Row 375 3.77 9.27 1.66 2.13 0.168 0.09
6-Row 381 3.00 6.75 1.52 1.58 0.047 0.16
Ppd-H1 324 3.06 7.44 1.56 1.93 6.3E-04 0.30
ppd-H1 432 3.63 8.42 1.65 2.39 3.9E-03 0.23

Tiller Number 4WPE All 756 5.66 12.98 2.33 3.58 6.2E-11 0.38
2-Row 375 6.08 14.13 2.26 3.47 9.4E-04 0.28
6-Row 381 5.24 11.85 2.34 3.33 2.7E-06 0.37
Ppd-H1 324 5.17 12.40 2.26 3.46 1.1E-07 0.44
ppd-H1 432 6.03 13.42 2.32 3.61 3.0E-04 0.28

Tiller Number 5WPE All 756 7.11 19.27 2.98 6.28 3.0E-16 0.45
2-Row 375 7.53 21.51 2.98 5.76 6.0E-06 0.37
6-Row 381 6.68 17.06 2.92 5.98 1.8E-11 0.50
Ppd-H1 324 6.39 17.75 2.88 6.10 2.3E-11 0.52
ppd-H1 432 7.64 20.40 2.94 6.17 1.1E-05 0.34

Tiller Number 6WPE All 756 7.21 19.97 3.28 6.73 4.4E-25 0.53
2-Row 375 7.99 22.47 3.29 6.14 3.4E-08 0.43
6-Row 381 6.45 17.51 3.10 6.38 1.3E-15 0.56
Ppd-H1 324 6.16 18.22 3.03 6.40 4.1E-15 0.58
ppd-H1 432 8.00 21.28 3.25 6.68 3.1E-09 0.43

Tiller Number 7WPE All 756 6.72 18.98 3.31 6.54 2.1E-22 0.51
2-Row 375 7.53 21.90 3.31 6.07 1.8E-06 0.38
6-Row 381 5.92 16.11 3.11 5.67 3.7E-15 0.55
Ppd-H1 324 5.60 17.13 3.03 5.87 5.4E-12 0.54
ppd-H1 432 7.56 20.37 3.26 6.68 9.0E-09 0.42

Tiller Number Maximum All 756 8.01 20.90 3.45 6.88 6.3E-22 0.50
2-Row 375 8.69 23.44 3.42 6.22 1.2E-06 0.39
6-Row 381 7.34 18.40 3.34 6.59 3.1E-15 0.56
Ppd-H1 324 6.95 19.29 3.24 6.71 4.2E-14 0.57
ppd-H1 432 8.81 22.11 3.38 6.76 1.5E-07 0.39

Tiller Number Productive All 744 6.14 13.17 3.14 4.29 4.7E-13 0.41
2-Row 372 6.96 15.43 3.14 4.13 4.3E-03 0.24
6-Row 372 5.32 10.90 2.92 3.09 9.9E-05 0.32
Ppd-H1 314 4.92 11.98 2.47 3.38 6.8E-05 0.35
ppd-H1 430 7.04 14.04 3.27 4.66 3.4E-05 0.32

a
p-values indicate significance of genetic variance based on 2-way ANOVA.
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The first and second principal coordinates based on tiller number
were used as traits in association mapping (Table S4).

For multiple linear regression (MLR) analyses, the following model
was fit using the lm function in R with tiller number as the response
variable and other traits as predictor variables (File S1):

TillerNumberi ¼ bintercept þ bDays  to Headingi þ bSeeds  Per   Spikei

þ bFifty  Kernel Weighti þ bLeaf  Widthi þ bPlant  Widthi

þ bStem Diameteri   for  i5 1; . . . ;   n  plots

Before model fitting, lines with missing values for any of the traits
included in the model were removed. The order of predictor variables
in the MLR model was chosen based on relative contribution to R2,
which was calculated using the “lmg” method (adapted from
Lindeman et al., 1980) from the boot.relimp function (relaimpo,
version 3.3-2; Groemping 2006). Next, the boot.stepAIC function
(bootStepAIC, version 1.2-0) was used to choose a best-fit model by
fitting the model 1000 times using forward and backward selection to
choose predictor variables in the model. The final model was refit and
outliers were removed based on Cook’s distance. Lines with the high-
est Cook’s distance were removed iteratively, and the model was refit
until the R2 value of the model did not improve significantly.
Predictor variables were checked for collinearity using the vif
function (car, version 3.0-0) to ensure none of the variables had a
Variance Inflation Factor (VIF) that indicated excessive correlation of
predictor variables (VIF. 5), and we also ensured that relationships
between dependent and independent variables were linear and that
model residuals were normally distributed. After all outlier lines were
removed and the model was refit, the boot.relimp function was used
to calculate relative proportion of total variance (contribution to R2 of
the entire model) associated with individual predictor variables.

Genotyping, linkage disequilibrium, and population
structure analysis
Lines were genotyped using GBS and a barley 50K iSelect SNP array
(Bayer et al. 2017). DNA was extracted from seedling leaf tissue using
a Mag-Bind Plant DNA Plus kit (Omega Bio-tek, Norcross, GA),
following the manufacturer’s instructions, and genomic DNA was
quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Thermo
Fisher Scientific, Waltham, MA). For GBS, reduced representa-
tion libraries were created according to Poland et al. (2012) using
Pst1-Msp1 restriction enzymes. Libraries were sequenced using a
HiSeq 2500 system (Illumina, San Diego, CA) to obtain single-end
125 bp reads. SNP calling was performed using the TASSEL 5 GBS
Version 2 Pipeline using 64 base kmers and a minimum kmer count
of five. Reads were aligned to the Morex reference genome assembly
using the “aln” algorithm in the Burrows-Wheeler Aligner (BWA,
version 0.7.10) (Mascher et al. 2017; Beier et al. 2017). Genotyping
using barley 50K iSelect BeadChip kits (Illumina) was performed
according to the manufacturer’s instructions, and SNPs were scored
in GenomeStudio (version 2.0.2, Illumina) using manually curated
clusters developed by Bayer et al. (2017). GBS and 50K SNP datasets
were filtered individually based on percent missing data and percent
heterozygosity. All filtering and imputing steps were performed using
TASSEL 5. For the first round of filtering, GBS SNPs were removed if
more than 50% of calls were missing or heterozygous and the minor
allele frequency (MAF) was less than 0.03, and 50K array SNPs were
eliminated if they contained more than 20% missing or heterozygous
calls and aMAF less than 0.03. TheGBS and 50K SNP datasets were then
merged and missing data were imputed using the LD-kNNi imputation

method in TASSEL 5 (sites = 20, Taxa = 5, maxLDDistance = -1). The
merged, imputed SNP dataset was filtered again for missing data,
eliminating SNPs and lines with more than 5% missing/heterozygous
data. Lines were also filtered for missing data, and twenty-six lines
with more than 5% missing/heterozygous SNP calls were excluded
from association mapping and other genetic analyses. Three lines were
removed from all genetic analyses because the spike row-type did not
match what was recorded in GrainGenes (https://wheat.pw.usda.gov),
GRIN (https://npgsweb.ars-grin.gov), and Muñoz-Amatriaín et al.
(2014) (see notes in Table S1). SNPs were then tagged using the Tagger
feature inHaploview (version 4.1) (Barrett et al. 2005) with an R2 cutoff
of 0.95, resulting in 69,607 tagged SNPs for 747 lines (Table S7).

To analyze chromosomal linkage disequilibrium (LD), pairwise R2

values were calculated between all SNPs from all chromosomes using
PLINK (version 1.9). Background LD levels for all chromosomes were
calculated as the R2 value at the 75th percentile of R2 values for pairwise
comparisons of SNPs from one chromosome vs. SNPs from all other
chromosomes (unlinked SNPs) (Mather et al. 2007; Liu et al. 2017).
To calculate chromosomal LD decay distances, a non-linear model
described by Hill and Weir (1988) was fit to all pairwise R2 values
from one chromosome and their corresponding distances using the
nls function in R, and the decay distance was calculated as the dis-
tance at which the non-linear model intersected with background
LD level for that chromosome (Marroni et al. 2011) (File S2, S3).
LD decay distances were calculated for individual chromosomes
using physical and POPSEQ positions (Mascher et al. 2013; Beier
et al. 2017) of tagged SNPs (Table S8). Based on LD decay distances,
which were at most 1.3 cM (Table S8), a genetic distance of +/2 2 cM
was chosen as a cutoff for including significant SNPs in the same
quantitative trait loci (QTL) to account for regions with higher LD.
To assess intrachromosomal patterns of LD for candidate gene anal-
ysis (as in Figure S9), pairwise comparisons were made between SNPs
in 100 SNPwindows. R2 values were ordered bymean position of SNPs,
and the R2 values and mean positions of 4950 pairwise comparisons
(unique number of pairwise comparisons for 100 SNPs) were averaged
and plotted as a line graph and a curve was fit using local regression
(LOESS) (File S4).

Population structurewas analyzed using the programSTRUCTURE
(version 2.3.4) (Pritchard et al. 2000). A set of 701 SNPs for STRUCTURE
analysis (Table S9) were chosen by selecting SNPs from individual
chromosomes from the final tagged SNP dataset that were at least as
far apart as the calculated genetic decay distance (Table S8). Results
from ten individual STRUCTURE runs for K 1-10 were analyzed
using STRUCTURE Harvester (Earl and von Holdt 2012). The opti-
mum number of subpopulations was chosen based on delta K (DK),
which was calculated by STRUCTURE Harvester using equations
from Evanno et al. (2005).

Genome-wide association mapping
Genome-wide associationmapping analysis was performed using com-
pressed mixed linear models from the GAPIT R package (Genome
Association and Prediction Integrated Tool, version 2.0) (Lipka et al.
2012) with the final imputed and filtered set of 69,607 SNP tags (Table
S7) and raw and corrected (if applicable based on Table S2) phenotypic
data (Table S4). The MAF cutoff was 0.03 for all lines (n = 727-740,
depending on the trait) and 0.05 for subsets based on spike row-type or
PPD-H1 alleles (n = 305-437, depending on the subset and trait). The
model selection feature of GAPIT was used to choose the optimum
number of principal components for each individual trait to account for
population structure, and the optimal compression level (clustering of
individuals into groups based on genetic similarity) determined by
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GAPIT was used. The percentage of genetic variance associated with
individual SNPs was calculated as the difference between R2 of models
with the SNP and without the SNP. Information about all significant
SNPs, including allelic effect size, percent variance associated, and
nearest gene information is included in Table S10.

Data availability
All data necessary for reproducing results are available within supple-
mental tables, which are available in figshare. Table S1 contains in-
formation about all accessions, including collection site, improvement
status, spike row-type, and STRUCTURE subpopulation assignment.
Table S7 contains all SNP markers used for association mapping, and
Table S9 contains all SNPmarkers used for STRUCTURE analysis. Raw
trait data used for phenotypic analyses is included in Table S3, and trait
data used for association mapping is included in Table S4. Trait data
fromall three years and genotype data are also available in theT3/Barley
database (triticeaetoolbox.org/barley) in an experiment called “UMN
NSGC GWAS”. Supplemental figures and R scripts for multiple linear
regression and LD analyses (Files S1-S4) are also available at figshare:
https://doi.org/10.25387/g3.11750265.

RESULTS AND DISCUSSION

Tiller number in the two- and six-row diversity panel
In 2014 and 2015, 761 lines were grown in the field, and data were
collected forweekly andproductive tiller number, days toheading, plant
height, stemdiameter, leafwidth (2015only), seeds per spike,fifty kernel
weight, and lodging (2015 only) (Table S3). Fifty-four lines that were
grown in 2014 and 2015 were also grown in 2016 in three complete,
randomized blocks, and data for weekly and productive tiller number,
days to heading, plant height, seeds per spike, and fifty kernel weight

were collected (Table S3). Phenotypic data were analyzed in all lines
and in subsets of lines based on spike row-type and PPD-H1 alleles.
Tiller number data from 2014 and 2015 are summarized in Table 1,
and all trait data from all years are summarized in Table S5.

Genetic variance for tiller numberwas significant (p-value, 0.0001)
in 2014, 2015, and 2016 for most time points (Table 1, Table S5). In
both years for all line subsets, variance was highest for maximum tiller
number and tiller number measured at later time points (5-7WPE),
and it decreased for productive tiller number (Table 1). Tiller number
at 6WPE, the time point at which maximum tiller number occurred
on average for all lines, also had the highest heritability estimate (0.53)
of all tiller counts. Decreased heritability from 6WPE to productive tiller
number was likely due to variability in tiller survival, which appears to
be strongly influenced by environment as genetic variance for percent
productive tillers was not significant (Table S5). Heritability estimates
for tillering traits were lower than other traits measured (Table S5).

Tiller number was compared using data for the 54 lines (27 2-rows
and 27 6-rows) grown in all three years. Due to waterlogging in the
field early in development in 2014, the onset of tiller development
was delayed andmaximum and productive tiller number was much
lower than 2015 and 2016 (Figure 1A,B). By 2WPE in 2014, 25.4%
of all lines grown had not yet developed at least one tiller per plant on
average, whereas all lines grown in 2015 had developed at least one
tiller per plant by 2WPE. Maximum tiller number was not signifi-
cantly different between 2015 and 2016, but productive tiller number
was lower in 2016 than 2015 due to lower tiller survival (Figure 1B).
Despite differences between years, they all followed a similar trend
where average tiller number increased linearly until 5WPE, after
which it either slowed or began decreasing (Figure 1A).

Average plant height, stem diameter (measured in 2014 and
2015 only), seeds-per-spike, and fifty kernel weight followed a

Figure 1 Overview of tiller development
(tillering) and other traits. A) Progression
of average tiller number throughout
the growing season for 54 lines grown
in 2014, 2015, and 2016. B) Box plots
summarizing tillering traits for 54 lines
grown in all three years. Diamonds
represent mean trait values, and letters
indicate whether groups are signifi-
cantly different based on FDR-adjusted
p-values from ANOVA in conjunction
with Tukey Test. C) Box plots summa-
rizing non-tillering traits show similar
relationship between years as average
productive tiller number.
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similar trend as productive tiller number across the three years, where
trait values were highest in 2015 and lowest in 2014 (Figure 1C). In
years when plants developed more productive tillers on average, they
were also taller with thicker stems, more seeds per spike, and heavier
seeds on average (Figure 1C), indicating that productive tiller number
is correlated with overall plant fitness.

Days to heading and spike row type are associated with
a large proportion of variance in tiller number
Consistent with previous studies (Liller et al. 2015; Alqudah et al. 2016),
our results support the observations that spike row-type and photo-
period response are associated with tiller number. However, these
previous studies have not attempted to quantify the extent that these
traits are associated wtih tiller number, nor have they assessed the
simultaneous effects of both traits on tiller number. To gain a better
understanding of these relationships, we examined tiller number in
761 lines in relation to days to heading, PPD-H1 genotype, and spike
row-type.

Spike row-type has been shown to be associated with tiller
number as well as other traits like seed number and weight, and
leaf area (Alqudah and Schnurbusch 2014, 2015; Liller et al. 2015).
As expected, average tiller number was higher in 2-rows than 6-rows
in 2014 and 2015 (Table 1). Duration of tiller development was also
slightly longer for 2-rows than 6-rows in both years, and a lower
percentage of tillers were productive in 6-rows compared to 2-rows
in both years (Figure S2A). As commonly observed, most 2-rows also
had thinner stems, narrower leaves, and longer spikes with fewer,
heavier seeds than 6-rows (Figure S2B). Despite the difference in aver-
age tiller number, productive tiller number distributions in 2-rows and
6-rows largely overlapped (Figure S2C). Furthermore, some 6-rows
produced as many tillers as high tillering 2-rows, and some 2-rows
produced as few tillers as low tillering 6-rows (Figure S2C).

In earlier studies, variation in PPD-H1 was shown to be associated
with days to heading, leaf size, tiller number, and tillering duration
(Turner et al. 2005; Alqudah et al. 2016, 2018; Digel et al. 2016). One
SNP included in this study, BK_14, is 308 bp upstream of PPD-H1 and
has been previously shown to be in complete or near-complete LD with
a SNP in the CONSTANS (CO), CO-like, and TOC1 (CCT) domain of
Ppd-H1 and is a likely causal variant underlying photoperiod sensitivity
differences (Turner et al. 2005; Digel et al. 2016). All SNPs that were
most highly correlated with heading date and tiller number, including
BK_14, were in very high LD (Fig. S3). Therefore, BK_14 was used to
distinguish lines as having the photoperiod sensitive Ppd-H1 (G) allele
or the photoperiod insensitive ppd-H1 (A) allele, and correlation of
PPD-H1 alleles and tiller number was assessed separately in 2-rows
and 6-rows. We found that 2-row accessions carrying ppd-H1 had
more tillers than 2-rows carrying Ppd-H1, but tiller number was not
significantly different between 6-rows carrying the two PPD-H1 alleles
(Figure S4A). Interestingly, days to heading was associated with a larger
proportion of variance in multiple linear regression (MLR) models of
tiller number in 6-rows than 2-rows in both years (Figure S4B), sug-
gesting that variation in other genes that influence photoperiod sen-
sitivity are more strongly associated with tiller number than PPD-H1
in this 6-row germplasm.

The large number of lines included in this study allowed us to
characterize and quantify percent variance in tiller number associated
with both spike row-type and photoperiod sensitivity simultaneously.
Onlydata from2015wasusedfor theseanalysesbecausemore traitswere
measured and plants grewmore vigorously, resulting in higher variance
in tiller number than in 2014, as shown by higher standard deviation
in tiller number (Table 1). In addition, photoperiod response was

represented by days to heading in these analyses, and spike row-type
was represented by seeds per spike in MLR models for all lines. The
initial MLR model included tiller number as the response variable
and other traits as predictor variables (pairwise comparison of vari-
ables is shown in Figure S5):

TillerNumberi ¼ bintercept þ bDays  to Headingi þ bSeeds  Per   Spikei

þ bFifty  Kernel Weighti þ bLeaf  Widthi þ bPlant  Widthi

þ bStem    Diameteri   for  i5 1;   . . . ;   n  plots

However, some traits were removed from the model if they were not
associated with a significant proportion of variance in tiller number
(final predictor variables represented by colored bars in Figure 2A).

Days to heading and spike row type were associated with a high
proportion of variance in tiller number models (Figure 2A). Together
they were associated with 28% of the total variance in maximum
tiller number models and 12% of the total variance in productive
tiller number models (Figure 2A). Interestingly, a very small propor-
tion of variance in the productive tiller number model was associated
with days to heading (1.9%) (Figure 2A), probably due to variability in
tiller survival between lines. Furthermore, average differences in tiller
survival represented by percent productive tillers between 2-rows and
6-rows (Figure S2A) could explain why seeds per spike accounted
for a larger proportion of variance in productive tiller number than
maximum tiller number.

Principal coordinates (PCo) analysis based on tiller number
throughout development and productive tiller number also indicated
that a large proportion of variance in tiller number was associated with
days to heading and spike row-type. Groups based on spike row-type
and days to heading were more strongly correlated than any other
single trait with PCo1 (R = 0.59, P , 2.2e-16), which accounted for
86% of the total variance in the PCo model (Figure 2B). Furthermore,
although 6-rows produced fewer tillers on average than 2-rows,
maximum tiller number in late heading 6-rows (.60 days) was not
significantly different from earlier heading 2-rows (,60 days), in-
dicating that high tiller number can be achieved in late heading
6-rows (Figure 2C).

Trade-offs between tillering and other traits
Tiller number and other traits were compared to evaluate trade-offs
associated with high tiller number. Because spike row-type is cor-
related with tiller number and other traits, trade-offs were assessed
separately in 2-row and 6-row subsets and using 2015 data only for
the same reasons as previously described. Results of MLR modeling
indicated minor trade-offs between tiller number and other vegetative
traits. Leaf width and stem diameter were associated with a significant
proportion of variance in productive andmaximum tiller numberMLR
models (Figure 3A), and their coefficients were consistently negative,
indicating a tendency for leaf width and stem diameter to decrease
as tiller number increased. Both traits were also weakly, negatively
correlated with productive tiller number (Table 2 and Table S6).

We considered the possibility that larger trade-offs or trade-offs
that were not indicated by correlations or MLR modeling could
be identified by comparing traits in lines with extremely different
tillering capacities. Therefore, 2-rows and 6-rows were split into 10th

and 90th percentile groups based on maximum and productive tiller
number (Figure 3B). Despite at least 2.5-fold or higher change in
average tiller number between percentile groups (Figure 3B), very
few traits were significantly different between percentile groups.
Stem diameter was lower in high tillering 6-rows (90th percentile,
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maximum and productive) than low tillering 6-rows (10th percentile,
maximum and productive) but was not significantly different between
high and low tillering 2-rows (Figure 3C). Fifty kernel weight was
also lower and lodging severity increased in high tillering 6-rows
(90th percentile, maximum) than low tillering 6-rows (10th percentile,
maximum), but they were not significantly different between high
and low tillering 2-rows (Figure 3C). Interestingly, the trend in per-
cent productive tillers between percentiles based on maximum tiller
number was reversed in percentiles based on productive tiller number
(Figure 3D). This suggests that tiller survival had a major impact on
final productive tiller number in 2015 and that variation in tiller sur-
vival may alleviate trade-offs between tiller number and other traits.
Overall, our results suggest that trade-offs between tiller number and
other traits were very minor and were slightly more pronounced in
6-rows than 2-rows, but, in general, there were no major trade-offs
between tiller number and other traits independent of spike row-type.

Results from our study and others show that tiller number
is consistently lower in 6-rows than 2-rows (Liller et al. 2015;
Alqudah et al. 2016), possibly due to a trade-off with seeds per spike,
which is inherently higher in 6-rows (Figure S2B). However, there was
no evidence from our study that more seeds per spike within 2-row or
6-row groups was associated with lower tiller number. Overall, results
from this study indicated that trade-offs between tiller number and
seeds per spike probably only exist if the difference in seeds per spike
is very large, as it is between 2-rows and 6-rows. Similarly, other studies
reported no or low association between tiller number and yield-related
traits (Stoskopf and Reinbergs 1966; Simmons et al. 1982).

Natural genetic variation associated with tillering
Population structure was characterized in all lines in the diver-
sity panel prior to association mapping. As with the entire NSGC

collection, population structure analysis of all lines in the diversity
panel using STRUCTURE resulted in five subpopulations, corre-
sponding to those described in Muñoz-Amatriaín et al. (2014), that
were distinguished primarily by spike row-type, collection location,
and improvement status (Figure S6 and Table S1). Days to heading
and tiller number did not vary by improvement status (landraces
vs. cultivars) in Subpopulations (SP) 1, 3, and 4 (Figure S7). SP2
and SP5 were not compared because they almost exclusively con-
tained landraces (Figure S6B). Tiller number was higher in SP3 than
SP1 or SP4 (Figure S7), but this was likely due to the fact that SP3
contained primarily 2-rows while SP1 and SP4 contained primarily
6-rows (Figure S6B).

Genome-wide association mapping was performed using 2014 and
2015 raw or adjusted (if applicable based on Table S2) phenotypic data
for all tillering traits, days to heading, and spike row-type. Tillering
QTL included SNPs significantly associated with tiller number, rate of
tillering, and tillering principal coordinates. Tiller number included
2-7WPE, productive, and maximum tiller number. Thirty-seven QTL
were associatedwith tillering traits in2014and2015, (Table 3); however,
only four were identified in both years, one on 2H at 56.82-58.76 cM
(2H-58), one on 5H at 47.89-48.10 cM (5H-48), and two on 7H at
31-33.67 cM (7H-33) and 70.16-70.54 cM (7H-70) (Table 3, Figure 4A).
These four tillering QTL accounted for a very small proportion of
variance in tillering traits (Table S10), while the QTL that were asso-
ciated with the most variance in tiller number were not detected in
both years, one on 2H at 13.72 – 23.24 cM (2H-19) in 2014, and one
on 3H at 135.39 cM (3H-135) in 2015 (Figure S8). The 2H-19 QTL
overlapped the PPD-H1 locus and was associated with tiller number,
tillering rate, and tillering PCo1 in all lines and with tiller number and
tillering rate in 2-rows (Figure S8). For many tillering traits in 2014,
2H-19 was the only QTL identified (Figure S8), and the allelic effect

Figure 2 Days to heading and spike row-type were associated with a large proportion of variance in tiller number in 2015. A) Bar plots showing
percent variance associated with predictor variables in multiple linear regression models of maximum and productive tiller number for all lines.
White numbers on bars represent percent variance associated with individual predictor variables. Traits shaded in red and blue are positively and
negatively associated with tiller number, respectively. Numbers beside bars are total percent variance (R2) represented by the entire model. Seeds
per spike was included in the model as a proxy for spike row-type (2-row or 6-row). B) Principal coordinates (PCo) analysis based on weekly and
productive tiller number measurements for all lines. Percent variance associated with PCo 1 and 2 is shown on axes. Strong Pearson correlation
between PCo 1 and factor groups based on spike row-type (2-row or 6-row) and days to heading (R = 0.59, P, 2.2e-16) indicates that these traits
are associated with a large proportion of variance in tiller number. C) Comparison of mean tiller number at six weeks past emergence (WPE)
between groups based on spike row-type and days to heading.
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size for tiller number measurements ranged from 1.1-1.5 tillers
(Table S10). The 3H-135 QTL was associated with tiller number,
tillering rate, and tillering PCo1 in all lines and Ppd-H1 lines, and
with tiller number and tillering rate in 6-rows (Figure S8). For many
tillering traits in 2015, 3H-135 was the only QTL identified, and
the allelic effect size for tiller number measurements ranged from
1.5-4 tillers (Table S10).

Measuring tiller number throughout development provided oppor-
tunities to identify QTL associated with tillering rate, and to compare
the number of QTL associated with tillering at different time points.
Fourteen out of 23 and six out of 14 tillering QTL were associated only
with tillering rate, and not tiller number, in 2014 and 2015, respectively

(Table 3). Tiller number at later time points (5-7WPE, maximum, and
productive) was associated with more QTL than at earlier time points
(Figure S8). No QTL were associated with tiller number at 2WPE in
either year; and no QTL were associated with tillering rate early in
development (2-4 WPE) in 2014 (Figure S8), possibly due to low phe-
notypic variance during seedling development (Table 2).

Grouping lines based on their PPD-H1 genotype and spike row-type
allowed us to identify QTL that were not identified in all lines, and to
observe that there was virtually no overlap in QTL detected in 2-rows
and 6-rows or Ppd-H1 and ppd-H1 lines. In 2014, very few (four out of
the 23) QTL associated with tillering were uniquely identified in all
lines, whereas ten unique tillering QTL were identified in ppd-H1 lines

Figure 3 Minor trade-offs between tiller number and other traits in 2015. A) Percent variance associated with predictor variables in multiple linear
regression models of maximum tiller number in 2-rows and 6-rows in 2015. White numbers on bars represent percent variance associated with
individual predictor variables (, 2% if number is not shown). Traits shaded in red and blue are positively and negatively associated with tiller
number, respectively. Numbers beside bars are total percent variance (R2) represented by the entire model. B) (Left) Representative density plot
illustrating assignment of 2-row and 6-row lines into percentile groups based on maximum and productive tiller number. (Right) Comparison of
tiller number in percentile groups based on maximum and productive tiller number. C) Box plots showing traits that were significantly different
between percentile groups based on maximum and productive tiller number. D) Box plots of percent productive tillers (tillers that survive and
form grain-bearing spikes). Diamonds on box plots represent mean trait values, and letters indicate whether groups were significantly different
(Tukey Test, FDR-adjusted p-value, 0.01).
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(Figure S8). Two QTL were uniquely identified in 2-rows and one was
uniquely identified in 6-rows in 2014 (Table 3). No unique QTL were
identified in Ppd-H1 lines in 2014 (Table 3). In 2015, more QTL were
identified in all lines than in any other group. All of the tillering QTL
identified in 6-rows were also identified in all lines, and despite high
phenotypic variance in 2015, no QTL were associated with tillering in
2-rows, possibly due to low allele frequency and the presence of many
small effect loci that influence tillering. Including the Ppd-H1 group
enabled identification of three unique QTL (Table 3). In addition to
identifying unique QTL within each year, including groups based on
spike row-type and Ppd-H1 genotype also enabled detection of three
of the four QTL that were associated with tillering in both years. Only
one of the four tillering QTL identified in both years, 2H-58, was
identified in all lines in both years (Table 3).

Interestingly, three of the four QTL identified in both years in this
study were also identified in a study by Alqudah et al. (2016) (2H-58,
5H-48, and 7H-70), which measured tiller number throughout devel-
opment in a greenhouse-grown diversity panel, suggesting that these
three QTL consistently influence tiller number under different envi-
ronmental conditions. In total, ten of the 33 tillering QTL identified in

this study were also identified in the Alqudah et al. study – relatively
few considering the large number of QTL identified between the
two studies. This modest overlap could be attributed to differences
in overall tillering capacity between greenhouse-grown and field-
grown barley, as field-grown barley has more potential to reach higher
tillering capacities under favorable conditions. Differences in tillering
capacity could could also explain the low overlap between the two
years in our study, as tillering capacity was lower in 2014 than
2015. It is also possible that the different diversity panels used in
our study and the Alqudah et al. study harbor different alleles that
influence tiller number. Therefore, growing different mapping
panels under different environmental conditions is necessary to
capture the full extent of natural genetic variation underlying tiller
development.

Overlap of natural genetic variation associated with
tillering, days to heading, and spike row-type
Because tiller number was correlated with days to heading and spike
row-type,we expected to see someoverlap betweenQTLassociatedwith
these traits. In 2014, nine of 23 tillering QTL were also associated with

Figure 4 Most quantitative trait loci (QTL) associated with tillering overlapped QTL associated with days to heading and/or spike row-type. (A)
Genetic positions on all chromosomes of significant SNPs (+/2 2 cM) associated with tillering, days to heading, and spike row-type. Only heading
and row-type QTL that overlapped tillering QTL are shown. (B) Venn diagrams showing the number of tillering QTL in 2014 and 2015 that
overlapped QTL associated with days to heading and spike row-type.
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row-type and/or heading, and in 2015, seven out of 14 tillering QTL
were also associated with row-type and/or heading (Figure 4A).
However, if all QTL associated with heading regardless of year were
included, overlap between tillering QTL and heading QTL, espe-
cially in 2014, was much more extensive (Figure 4B). Incidentally,
there was very little overlap between row-type QTL and heading
QTL in either year (Figure 4B). Only one tillering QTL, 2H-58,
which was the only one associated with tillering in all lines in both
years, was also the only one associated with heading and row-type
in both years (Figure 4A).

Interestingly, all four of the tillering QTL identified in 2014 and
2015 overlapped genes that have been previously shown to influ-
ence heading or circadian rhythm in barley, and all of them were
also associated with heading in this study (Figure 4A). HvCEN
(HORVU2Hr1G072750, 58.7 cM) is located in the 2H-58 QTL in-
terval (Table 3) and was shown in a recent study that characterized
23 independent HvCEN mutants to influence flowering time, the
number of spikelets per spike, and tiller number (Bi et al. 2019).
Variation in HvCEN was also associated with days to heading in
earlier studies (Comadran et al. 2012; Loscos et al. 2014). As pre-
viously mentioned, QTL in this region were identified for tiller
number, days to heading, and spike row-type in all lines in both
years. Although variation in HvCEN affects the number of spikelets
per spike, there is no evidence that it affects the number of fertile
florets per spikelet, so it is likely that another gene in this region is
associated with spike row-type. HvMADS15, a MADS-box gene
homologous to APETALA1/FRUITFULL (HORVU2Hr1G063800,
58.76 cM) is a more likely candidate because its expression is nearly
undetectable in spike row-type vrs3/int-c double mutants, indicating a
role in spike row-type determination (Zwirek et al. 2019). VRS3 en-
codes a histone demethylase, and mutants have an intermediate spike
row-type like int-cmutants (van Esse et al. 2017; Bull et al. 2017). The
5H-48 QTL overlaps HvELF4-like (HORVU5Hr1G060000, 48.4 cM),
a homolog of Arabidopsis EARLY FLOWERING 4 that is a likely
candidate for environmental adaptation selection in barley landraces
(Russell et al. 2016). HvFT1/VRN-H3 (HORVU7Hr1G024610,
33.67 cM), an ortholog of Arabidopsis FLOWERING LOCUS T (FT),
is located in the 7H-33 QTL interval and is an important regulator of
flowering time in barley. Russell et al. (2016) found that HvFT1 was
more strongly associated with latitude in landraces than any other
flowering gene, indicating its importance for adaptation, and varia-
tion in HvFT1 was associated with environmental adaptation and
days to heading in other studies as well (Casas et al., 2011; Loscos
et al., 2014; Maurer et al., 2015). The fourth QTL identified in both
years for tillering rate and heading, 7H-70, co-localized with a prob-
able ortholog (HORVU7Hr1G070870, 70.8 cM), based on sequence
homology and circadian expression pattern, of the partially redundant
circadian genes in Arabidopsis, CIRCADIAN CLOCK ASSOCIATED 1
(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) (Campoli
et al. 2012b).

We found that more tillering QTL colocalized with days to heading
QTL than with spike row-type QTL (Figure 4B), and surprisingly, no
tillering QTL overlapped the VRS1 locus or other VRS loci in either
year, despite significant differences in all tillering traits between 2-rows
and 6-rows in both years. This could be due to the extensive overlap
in tiller number distributions between 2-rows and 6-rows that was
previously mentioned (Figure S2C).

Tillering QTL do not overlap known tillering genes
As previously described, mutations influencing tiller number have
been identified and several mutated genes have been characterized.

Interestingly, none of theQTL in our study overlapped known tillering
genes or mutants. The Alqudah et al. study (2016) identified tillering
QTL that mapped near the low tillering gene CUL4 (3H, 137.74), but
they did not identify other QTL overlapping known tillering genes.
The 3H-135 QTL in our study mapped near CUL4; however, it is
an unlikely candidate gene because LD levels were very low between
3H-135 and markers near CUL4 at 137.71 cM (Figure S9). We were
surprised that no QTL identified in our study overlapped high
tillering loci, but it is possible that our lines either do not carry
allelic variation at these loci or do not have markers in LD with allelic
variation at these loci. It is interesting to note, however, that the
3H-135 QTL has a positive allelic affect (increased tiller number) and
one of the potential candidate genes is annotated as a PLASTOCHRON
gene (HORVU3Hr1G104570, 135.39 cM), as is MND4/6. Mutations
in MND4/6, a gene homologous to rice PLASTOCHRON1, cause a
high tillering phenotype (Mascher et al. 2014).

The low tillering mutants cul2, cul4, als, and lnt1 are deficient in
axillary meristem initiation and maintenance and produce few, if any
primary axillary buds (AXB) (Babb and Muehlbauer 2003; Dabbert
et al. 2009, 2010; Tavakol et al. 2015). Primary AXB form in leaf axils
of the main shoot, and secondary AXB form in leaf axils of tillers that
develop from primary AXB. Natural variation in primary and higher
level (secondary, tertiary, etc.) AXB number has not been assessed,
but it is likely that variance in tiller number is influenced more by
genes regulating outgrowth of tillers or initiation of higher level AXB,
not initiation and maintenance of primary AXB. Genomewide asso-
ciation studies on the number of primary and higher level AXB and
outgrowth of tillers, could be a useful way to identify new natural
genetic variation for tiller development in barley.

CONCLUSIONS
Tillering is a complex trait influenced by environment, other traits,
and many small effect loci. Based on results of this study it appears
that plants utilize resources and make more grain bearing spikes
when conditions are favorable, without sacrificing other components
of yield, like seed number orweight. In addition, our results and other
studies indicate that genetic variation associated with days to heading
and spike row-type consistently influences tiller number across dif-
ferent environments. However, identifying genetic variation associ-
ated with tiller number in different environments will be essential for
gaining a full understandingof thegenetic control of tiller development
and may be useful for identifying variation suited for adaptation to
specific environments.
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