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Three-dimensional (3D) genomics is the frontier field in the post-genomics era, its foremost
content is the relationship between chromatin spatial conformation and regulation of gene
transcription. Cancer biology is a complex system resulting from genetic alterations in key
tumor oncogenes and suppressor genes for cell proliferation, DNA replication, cell
differentiation, and homeostatic functions. Although scientific research in recent
decades has revealed how the genome sequence is mutated in many cancers, high-
order chromosomal structures involved in the development and fate of cancer cells
represent a crucial but rarely explored aspect of cancer genomics. Hence, dissection
of the 3D genome conformation of cancer helps understand the unique epigenetic patterns
and gene regulation processes that distinguish cancer biology from normal physiological
states. In recent years, research in tumor 3D genomics has grown quickly. With the rapid
progress of 3D genomics technology, we can now better determine the relationship
between cancer pathogenesis and the chromatin structure of cancer cells. It is becoming
increasingly explicit that changes in 3D chromatin structure play a vital role in controlling
oncogene transcription. This review focuses on the relationships between tumor gene
expression regulation, tumor 3D chromatin structure, and cancer phenotypic plasticity.
Furthermore, based on the functional consequences of spatial disorganization in the
cancer genome, we look forward to the clinical application prospects of 3D genomic
biomarkers.
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INTRODUCTION

In 1885, Carl Rabl first introduced the concept of the regional organization of interphase
chromosomes inside the animal nucleus. He predicted the orientation of interphase
chromosomes and the occupation of different regions throughout interphase, providing insights
into the chromosomal arrangement in the nucleus (Cremer and Cremer, 2006b). In 1909, Theodor
Boveri put forward the term chromosomal territories (CTs) and noted that each chromosome visible
in the cell nucleus occupies a distinct part of the nuclear space (Cremer and Cremer, 2006a). At the
end of the 20th century, Cremer and colleagues confirmed the presence of CTs using electro
fluorescence imaging (Cremer et al., 1982), revealing the dynamic architecture of chromatin
and disseminating potential implications in the functional compartmentalization of the nucleus.
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The 2-m-long DNA in eukaryotic cells is highly compacted into
the nucleus in the form of chromatin, with nucleosomes as basic
subunits that organize DNA and histones into a compact
chromatin state (Handoko et al., 2011). Epigenetic
modifications of histones affect the affinity of DNA-bound
proteins, leading to changes in chromatin configuration (Zhu
and Li, 2016). At higher levels, euchromatin and heterochromatin
regions are often spatially separated in the same CT (Hildebrand
and Dekker, 2020). Pioneering studies have confirmed that
chromosome location, chromatin structure, and transcriptional
regulation are closely intertwined (Rennie et al., 2018).

The human genome comprises more than 2,000 topologically
associated domains (TADs), covering more than 90% of the
genome (Gorkin et al., 2014). TAD boundaries act as effective
insulators that distinguish transcriptional regulatory activities
from potential targets, thereby increasing the frequency of
chromosomal contacts (Handoko et al., 2011; Bonev et al.,
2017). One of the key factors in the formation of the TAD
boundary is the interaction between the zinc finger
transcription factor CTCF and the multi-subunit protein
complex cohesion (Szabo et al., 2019). TAD acts as a
combination of self-interacting domains bound by multiple
nested CTCFs (Rao et al., 2014). However, the mechanism by
which CTCF isolates chromatin interactions between TADs has
not been comprehensively elucidated. To date, two hypothetical
models, the handcuff model, and the ring extrusion model have
been proposed to explain it. On the one hand, in the handcuff
model, CTCF spans TAD boundaries, and the two ends of TAD
are connected by CTCF protein which recruits cohesion (Vietri
Rudan and Hadjur, 2015; Dixon et al., 2016). On the other hand,
the ring extrusion model proposes that the mammalian genome is
divided into TADs in the megabase range on average, with a pair
of tethered DNA-binding units sliding along the DNA in opposite
directions to form DNA loops, with the DNA between the units
extruding out (Dekker and Mirny, 2016). It can predict the
binding specificity of the CTCF protein (Xi and Beer, 2021).

In addition to the enrichment of CTCF domains, the TAD
boundary also contains a large number of DNA elements such as
housekeeping genes, tRNAs, and short interspersed element
(SINEs) retrotransposons (Lupianez et al., 2016). TAD
organization divides chromatin compartments into type A
(open domain, gene-rich) and type B (closed domain, gene-
poor), which alternate along the chromosome and are
approximately 5 Mb long (Dekker et al., 2013; Hildebrand and
Dekker, 2020). A high-resolutionmultiple interactions map of the
4.5 Mb domain in the mouse X chromosome inactivation center
showed that intra-TADs interactions were stronger than inter-
TADs interactions (Nora et al., 2012). In general, TAD is highly
conserved in different cell types, whereas compartments A and B,
and gene expression patterns in open chromatin loci, are highly
cell type- and tissue-specific (Thurman et al., 2012; Fortin and
Hansen, 2015). Complex DNA topologies, including polymer
loops, are frequently coupled with specific interaction kinetics of
proteins and DNA molecules on target sequences (Zhang et al.,
2006). Transcriptional regulation plays a critical role in lineage
differentiation and cell fate determination in eukaryotes. This
complex transcriptional system comprises a series of regulatory

elements, such as enhancers and super-enhancers (SEs) that
finely tune target gene expression (Wray et al., 2003; Prieto
and Maeshima, 2019). Enhancers are short cis-regulatory
elements, whereas SEs spanning dozens of kilobases are
clusters of putative enhancers playing decisive roles in defining
cellular identity (Pott and Lieb, 2015; Peng and Zhang, 2018). In
human cells, most enhancers interact remotely with the
promoters of target genes, whereas only a few enhancers
regulate proximal promoters (Mora et al., 2016). Enhancers
play an important role in the active establishment of
chromatin loops. Because enhancers can be physically
associated with the promoter of the target gene by 3D
circularization or tracking, chromatin interactions are not
always linearly proximal (Lettice et al., 2003; Montavon et al.,
2011; Proudhon et al., 2015). The effects of long-range promoter-
enhancer interactions appear to be mediated, in part, by loop
formation. In other words, the loop structure enables the long-
range regulation of target genes.

Chromatin structure alterations are a major cause of
transcriptional dysregulation in various diseases, including
cancer. The stable 3D chromatin state ensures precise gene
expression by organizing regulatory elements and gene loci at
close spatial distances, thereby ensuring the normal structure and
function of the genome (Ma et al., 2019). The specific subsets of
oncogenes expressed by each cell are directly related to gene
regulation and transcriptional activity (Vicente-Duenas et al.,
2013). The 3D genome structure of tumor cells is clearly
distinguishable, and its TAD structure is smaller than that of
normal cells (Taberlay et al., 2016). Tumorigenesis is often
accompanied by a large number of mutations, and the
mutated genes are high efficiently transcribed in broadly
accessible chromatin regions. Transcribed regions are
reassigned to greater spatial proximity, enabling genes to share
regulatory elements and transcriptional factors (TFs) (Mourad
et al., 2014). Alterations in the chromatin spatial structure of
tumor cells promote the formation of different combinations of
enhancers and oncogenes in the dynamic transcription process.
Additionally, the causal relationship between heterochromatin
dysfunction and increased genomic instability is a well-
established mechanism underlying cancer progression. Given
the significance of genome topology, an increasing number of
unsolved issues are related to how it affects human cancer
biology.

Main Technologies of 3D Genomics
Over the past few decades, an increasing number of tools have
been developed to study the physical organization and
transcriptional regulation of genomes. Advanced techniques
have made it possible to capture alterations in chromatin
conformation during different developmental stages inside the
nucleus. Gradually, more and more technologies aimed at 3D
chromatin spatial detection have emerged. The major 3D
genomics techniques are listed in Table 1.

Dekker et al. developed chromatin conformation capture (3C),
which, along with its derived technologies, such as 4C, 5C, HiC,
and ChIA-PET, has allowed genome-scale detection of long-
range interactions between specific sites of chromatin in
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candidate regions (Dekker et al., 2002; Sati and Cavalli, 2017),
revealing the hierarchical structure of chromosomes and
providing information on the organization and interaction of
chromatin in different cell types. Chromosome conformation
capture-on-chip (4C) can generate a genome-wide interaction
map of multiple sites with a bait sequence (Simonis et al., 2006).
Chromosome conformation capture carbon copy (5C)
technology allows for the chromatin interactions of a large
number of genes by drawing an interaction map between
multiple loci (Dostie et al., 2006). High-throughput
chromosome conformation capture (Hi-C) technology, which
can capture all chromatin interactions in the whole genome, is
currently a robust tool over mass capture technologies to identify
chromatin loops and describe TAD compartment conditions
(Lieberman-Aiden et al., 2009).

Although HiC reveals TADs as conserved features of
chromatin organization, it is limited to the observation of
thousands of cells and the reliance on restriction enzymes for
fragmentation. Some techniques can make up for these
limitations. FISH on 3D-preserved nuclei (3D-FISH) in
combination with 3D-microscopy and image reconstruction
provides detailed information on the chromatin architecture
by visualizing individual chromosomes at the interphase stage,
thus providing direct evidence for CTs in the nucleus at the
single-cell level (Solovei et al., 2002; Cremer and Cremer, 2010).
DNase Hi-C and Micro-C use DNase I and micrococcal nuclease

(MNase), respectively, instead of digesting cross-linked genomes,
generating mononucleosomes, and inferring genome structure
maps at single-nucleosome resolution (de Souza, 2015; Ramani
et al., 2016). The relentless development of 3D genomic
techniques led to cutting-edge technologies. Capture-C yields
hundreds of fold fragment enrichment, significantly improving
the detection efficiency of local interactions in target chromatin
regions (Hughes et al., 2014). Chromatin immunoprecipitation
(ChIP) technology is an effective tool for investigating TFs and
histone modifications (Park, 2009). The assay for transposase-
accessible chromatin (ATAC) technique reveals the chromatin
state of most noncoding functional elements in the whole genome
(Buenrostro et al., 2015). In addition, chromatin interaction
analysis by paired-end tag sequencing (ChIA-PET) (Li et al.,
2017) and HiChIP (Mumbach et al., 2016) can comprehensively
capture specific protein-mediated interactions in the whole
genome. Combined with high-throughput sequencing, these
technologies provide a way to understand how eukaryotic
genomes fold and organize inside the nucleus.

From the perspective of the multi-omics level of DNA
mutation, epigenetic alterations, histone modification, 3D
conformation, and transcriptional regulation, Hi-C is generally
combined with one or more additional techniques (whole-
genome sequencing (WGS), ChIP-seq, ATAC-seq, and RNA-
seq) to investigate the transcriptional regulation and pathogenetic
mechanisms of cancers (Figure 1). With the rapid development

TABLE 1 | Main technologies of 3D genomics.

Technologies Characteristics Advantages Limitation Reference

3C The interaction mode is one versus one Precisely detects the interaction between two
target regions

Low throughput; low resolution Dekker et al. (2002)

4C Reverse PCR; the interaction mode is
one versus all

Detects the interactions between one target
region with genome

Interaction data are prone to bias Simonis et al. (2006)

5C Multiple Primer design; the interaction
mode is many versus many

Detects interactions among multiple regions Low coverage and difficult-to-
assess PCR redundancy

Dostie et al. (2006)

Hi-C Interaction mode is all versus all High-throughput detection of genome-wide
interactions

High cost of sequencing; difficult to
analyze because of the large
amount of data

Lieberman-Aiden
et al. (2009)

Capture-C Target domain capture Provide an unbiased, high-resolution map of cis
interactions for hundreds of genes in a single
experiment.

Sampling is limited to a defined
domain of chromatin

Hughes et al. (2014)

3D FISH DNA imaging scheme in single cells Highly multiplexed detection of a genomic
region of interest

Harsh treatments are required to
prepare the chromatin for the FISH
probes

Solovei et al. (2002)

DNase-HiC Endonuclease DNase I replaces the
restriction endonuclease

Higher effective resolution than traditional Hi-C
libraries

DNase exhibits sequence bias at
cleavage sites with low GC content

Ramani et al. (2016)

Micro-C Micrococcal nuclease replaces the
restriction endonuclease restriction
enzymes

Able to access shorter-range interactions at
higher resolution

Cannot capture long-range
interactions

de Souza, (2015)

ChIP-seq Genome-wide profiling of DNA-binding
proteins, histone modifications, or
nucleosomes

High resolution, low noise, great coverage, and
decreased cost of sequencing

Difficulty in analyzing data owing to
bias

Park, (2009)

ATAC-seq DNA accessibility with hyperactive Tn5
transposase

Fast and sensitive detection for genome-wide
chromatin accessibility

Difficult to achieve ideally cut
fragments

Buenrostro et al.
(2015)

ChIA-PET Protein-centric chromatin conformation
method

High-throughput detection of protein-mediated
genome-wide interactions

Difficult to obtain specific
antibodies for protein detection

Li et al. (2017)

HiChIP Protein-centric chromatin conformation
method

More efficient and lower input requirement than
ChIA-PET; multi-scale genome architecture with
greater signal to the background than in situ
Hi-C

Biased signal owing to the
enrichment of target binding sites

Mumbach et al.
(2016)
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of single-cell technology, multi-omics have opened up new
avenues for revealing the tumor cell pathogenesis and
underlying regulatory mechanisms.

Transcriptional Dysregulation Participates
in Oncogenesis
The smooth operation of gene expression patterns plays a
fundamental role in the finely-tuned regulation of gene
expression. Transcriptional dysregulation triggers
carcinogenesis, including abnormal cellular processes, such as
hyperproliferation, immortality, metastasis, and immune escape
(Liu et al., 2018; Gupta et al., 2020). Cis-regulatory elements
control tissue-specific gene expression underlying tumor cell
development, determining cell identity and cell fate (Huang
et al., 2021). SEs can activate oncogene expression, irrespective
of the distance or orientation to their transcription start sites

(Tang et al., 2020). The SE-associated transcription program is
key to revealing the mechanism of tumorigenesis (Zhang T. et al.,
2020). In a wide array of cancer types, intensive transcription of
oncogenes in cancer cells is often promoted by SEs (Sengupta and
George, 2017). MYC is a classical SE-associated oncogene
involved in global gene transcription amplification. The MYC
members of human oncogenes include c-MYC, MYCL, and
MYCN. MYCN protein is an oncogenic driver that functions
in transcriptional programs similar to those of MYC (Zanotti
et al., 2021). Cutting-edge research has pointed out that the
association of SEs with multiple oncogenes is acquired during
hepatocarcinogenesis, and the increase in SEs atMYC andMYCN
was observed in hepatocellular carcinoma (HCC) cells (Tsang
et al., 2019). In osteosarcoma and multiple myeloma (MM), most
SE-amplified genes are bound by MYC (Loven et al., 2013; Chen
et al., 2018). Xiang et al. found that a super-enhancer of
approximately 150 kb located 515 kb upstream of MYC forms

FIGURE 1 | A schematic diagram of multi-omics analysis between normal cells (control) and tumor cells. Hi-C data showed that tumor chromosome territories
could be partitioned into A (active, red) and B (inactive, blue) compartments, chromatin is folded into topologically associating domains (TADs) (100–1,000 kb), and
enhancer–promoter loops (10–500 kb); ChIP-seq revealed tumor genome-wide epigenetic changes, such as histone modifications; ATAC-seq detects tumor genomic
chromatin accessibility using Tn5 transposase-specific recognition cleavage of open chromatin; whole-genome sequencing (WGS) detects tumor chromatin
structural variations, including copy number variations (CNVs); genome-wide detection of tumor-specific genes by RNA-seq. Multi-omics reveals the hierarchical
structures of 3D genome organization, transcription regulation, and structure variation mechanisms of the whole tumor genome at the genetic, epigenetic, and RNA
levels.
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a chromatin loop with MYC in human colorectal cancer (Xiang
et al., 2014). c-MYC is abnormally highly expressed in the process
of B cell carcinogenesis owing to the chromatin space remodeling
(Jiang S. et al., 2017). The inhibition of transcriptional cyclin-
dependent kinases (CDKs) leads to global repression of MYCN-
dependent transcriptional amplification and sustained growth of
neuroblastoma cells. In line with this, the upregulation of the
active transcriptional program in neuroblastoma cells is
promoted by the development of SEs (Chipumuro et al.,
2014). Yuan et al. integrated RNA-seq and ChIP-seq to
explore SE-mediated transcriptional dysregulation in
nasopharyngeal carcinoma (NPC) cells by screening 19 SE-
associated candidate genes (Yuan et al., 2017). They validated
that five genes (BCAR1, F3, LDLR, TBC1D2, and TP53TG1)
sustain the cell survival and promote proliferation of NPC.
DNA-binding motif analysis has shown that ETS2 is a
potential SE-promoting TF during NPC tumorigenesis (Yuan
et al., 2017). RUNX1 and DNAJB1, identified as SE-associated
oncogenes in esophageal squamous cell carcinoma (OSCC),
significantly promote OSCC cell proliferation (Jiang Y. Y.
et al., 2017). In prostate cancer cell lines and tissues, two
enhancers located 63 kb upstream and 48 kb downstream of
the PTBP3 region were identified to specifically loop to the
PTBP3 promoter (Kubiak et al., 2019). Overall, cell type-
specific gene transcriptional dysregulation is the hallmark of
malignancies and is primarily underpinned by alterations in
SEs. The dependence on SE-driven transcription in cancer
biology greatly benefits tumorigenesis. Aberrant cell growth
and proliferation prompted by dysregulated transcriptional
progression renders cancer highly invasive and unconducive to
clinical therapy.

Alterations of 3D Genome Architecture in
Cancers
In many tumor types, decompressed heterochromatin leads to
decreased chromosomal stability, DNA damage, fragmented
DNA folding, and activated transcription, eventually triggering
the malignant transformation in the early stage of carcinogenesis
(Xu et al., 2020). Transcriptional differences increase gene
expression in the transition domain of type B to type A
compartment, promoting interactions in type A compartments
on chr16-22 in breast cancer (Barutcu et al., 2015). Significant
differences in the stereotypical folding of each chromosome
which boosts gene expression in B-type to A-type
compartment conversion regions were observed in genome-
wide chromatin conformation between normal epithelial cells
and breast cancer cells (Barutcu et al., 2015). In T cell acute
lymphoblastic leukemia (T-ALL), the loss of boundary sites of
TADs, which may support the gene regulation theory by
promoting enhancer promoter interactions and isolating
different regulatory units, can activate oncogenes insulated
neighborhoods (Hnisz et al., 2016). Li et al. found that the
alteration of CTCF binding, which disrupts the robustness of
the TAD boundary, interferes with the oncogenic transcription
program of the TAL1 gene, dramatically altering leukemogenic
processes. The polarity and organization of the TAD boundary

depend on the CTCF orientation (Li et al., 2020). Kloetgen et al.
integrated Hi-C, RNA-seq, and CTCF ChIP-seq technologies,
revealing that TAD boundary disruption is associated with
increased enhancer promoter interactions and chromatin
accessibility (Kloetgen et al., 2020). Zhou et al. uncovered 24
dynamic patterns characterizing 3D genome
recompartmentalization accompanied by lower CTCF binding
at the TAD boundary in estradiol (E2)-induced breast cancer cells
(Zhou et al., 2019). The conformation of the 3D chromatin
genome is a deeper layer of inter-tumor heterogeneity. In
glioblastoma, specific boundary loss causes the enhancer to
interact abnormally with the oncogene PDGFRA (Lettice et al.,
2003). The immune-related gene CD276, which co-expressed
with stem cell genes, displays increased accessibility in
glioblastoma stem cells to achieve a shared 3D genome state
that triggers self-renewal. It is thought that genome instability
destroys the normal transcription program (Johnston et al.,
2019). Collectively, high-resolution 3D tumor genome maps
provide global insights for evaluating cancer transcription
programs, genome stability, and compartment conversions.
The integration of information on loops, territories, and
compartment construction contributes to a comprehensive
understanding of tumor genome organization and etiology.

Tumor Structure Variation and TAD
Boundary
In most cancers, structural variants promote oncogenesis through
a variety of mechanisms, including the genome with complete or
partial chromosomal gain and loss. A comprehensive
understanding of the entire cancer system is required to
dissect the interplay between higher-order chromatin
structures and somatic mutations (Harbers et al., 2021).
Multiple structural and numerical chromosomal aberrations
lead to profound changes in the structure and function of the
genome, including translocations, insertions, point mutations,
copy number variations (CNVs), and chromosomal aneuploidy
(Teixeira and Heim, 2005). These variations are hallmarks of
most cancer genomes. Cancer epigenetics and genetics may have
complementary roles in this regard. A typical example is the
Philadelphia chromosome (Ph) first discovered by Nowell and
Hungerford and described as a typically short chromosome 22
recurring in tumor cells of patients with chronic myelogenous
leukemia (CML) (Nowell et al., 1960).

Increasing evidence has demonstrated that chromosomal
translocation coupled with the disruption of 3D genome
organization plays a role in carcinogenesis. A study on
carcinogenic translocation events suppressed by tyrosyl-DNA
phosphodiesterase 2 (TDP2) found that the loss of non-
homologous end joining (NHEJ) repair during transcription
disrupts genome stability (Ramsden and Nussenzweig, 2021).
The frequency of translocation selection is related to the spatial
contact probability of interaction sites. In MM, CNV breakpoints
overlap with the TAD boundaries. By integrating Hi-C, WGS,
and RNA-seq data of MM cell lines, Wu and colleagues identified
56 inter-chromosomal translocations with multiple inter-
chromosomal interactions. The intensity of the overall spatial
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interaction between chromosomes of MM cell lines is
significantly higher than that of normal B cells, indicating
that the 3D conformation of the cancer cell genome is
affected by inter-chromosomal translocations during MM
development (Wu et al., 2017). Another cause of tumor
genome instability is double-strand breaks (DSBs) during
gene transcription, possibly resulting in chromosomal
translocation. Translocations are likely to occur at
hotspots of DSBs in regions with extreme spatial proximity
(Zhang et al., 2012). Furthermore, specific 3D FISH
chromatin landscapes unveil gene activity-related changes
containing spatial relationships of DNA-proteins and
translocation in human cancers (Kocanova et al., 2018;
Kulasinghe et al., 2020).

Tumor structure variations are involved in cancers, as they
can affect TAD integrity, reorganize specific enhancer
promoter interactions, and alter gene expression (Anania
and Lupianez, 2020). Insulator proteins such as CTCF
bind to the TAD boundary, preventing the interactions of
genes and regulatory elements between different TADs (Kim
et al., 2007). However, a recent study documented that TAD
boundary destruction can alter the TAD structure and
establish new TADs (Ulianov et al., 2016). New domains
can also be established without destroying the TAD
boundaries. For example, genomic rearrangement with
breakpoints in TADs leads to their breakage and fusion,
ultimately activating oncogenes and ultimately triggering
tumorigenesis (Groschel et al., 2014; Northcott et al.,
2014). Dixon et al. found extensive deletion of enhancers
at the distal end of the region where the structural mutations
occurred. Enhancers are located near genes that are
frequently mutated in cancers (Dixon et al., 2018).
Prostate cancer cells retain the ability to segment their
genome into megabase-sized TAD regions and establish
new smaller cancer-specific TADs, whose boundaries
mostly appear in the CNV area (Taberlay et al., 2016).
Although the genome of tumors typically has more TADs,
their average TAD size is smaller than that of normal cells
(Wu et al., 2017). Oncogene dysregulation can be caused by
the loss or reduced activity of TAD boundaries. Gain-of-
function mutations in IDH are characteristic of the main
pathological and treatment prognostic categories of gliomas.
Flavahan and colleagues found that CTCF binding sites are
significantly reduced in IDH mutant gliomas, allowing a
potent enhancer to aberrantly contact and activate
PDGFRA expression (Flavahan et al., 2016). CTCF site
depletion at the TAD boundary and variation in
chromatin structure are found in the aberrant expression
of pathogenicity-related genes in some cancers. A general
genome-wide dysregulation of gene expression associated
with TAD boundaries has been found in B cell precursor
acute lymphoblastic leukemia (BCP ALL) in hyperdiploid
children. Hyperdiploid ALL shows abnormal chromosome
morphology, whereas low expression of CTCF and cohesin is
observed in hyperdiploid ALL (Yang et al., 2019).

Overall, structural variation in the chromosomal aberration
program of the cancer epigenome leads to chromatin remodeling

and dysregulated gene expression, whose malignant mechanism
is related to the destruction of TAD boundaries.

Outlook of 3D Genomics in Tumor
Diagnosis and Treatment
Because cancer is characterized by morphological changes in the
cell nucleus, exploring the chromatin structure in cancer is
expected to help identify candidate biomarkers (Figure 2).
High-throughput analysis of genome-wide histone
modifications shows that in almost all cancer types, a group of
genes have unique epigenetic characteristics that are closely
related to different stages and different kinds of tumors.
Currently, epigenetic markers are used as effective biomarkers
in early clinical screening and the prediction of patient diagnosis
and treatment response. Identifying specific histone signatures
associated with each type of cancer enables not only a more
accurate diagnosis and prognosis, but also lays the foundation for
the design and evaluation of epigenetic agents (Audia and
Campbell, 2016). The use of inhibitors of DNA
methyltransferases and HDACs is clinically effective for
several cancers. For instance, several KDMs in the family of
histone lysine demethylases have been implicated in the
development of various cancers, and are thus considered
potential drug targets. KDM inhibitors have potential value for
elucidating tumor cell function and tumor therapy (Hoffmann
et al., 2012; McAllister et al., 2016). Moreover, HDAC8
knockdown initiates a similar differentiation program as
selective small-molecule inhibitors in neuroblastoma cells
(Oehme et al., 2009). Clinical implications of biological
programs allow the design of HDAC8-selective small-molecule
inhibitors for cancer cell suppression.

The mechanisms by which oncogenes control myriad cellular
processes to induce tumorigenesis expose the fragility and
difficulties in treatment. Transcriptional inhibitors are
potential therapeutic agents for treating certain tumors. In
MYC-dependent cancers, interference of chromatin-dependent
signal transduction with RNA polymerase II (RNA Pol II) and
inhibition of RNA Pol II transcription initiation and elongation
are therapeutic principles in malignancies. CDK7, a member of a
family of CDKs involved in regulating RNAPII initiation, pause,
and elongation, preferentially binds to SE and activates SE-related
gene expression (Larochelle et al., 2012). The selective targeting of
mechanisms that promote the overall transcriptional
amplification in tumor cells renders CDK7 inhibition an
effective target for the treatment of cancers driven by specific
oncogenes (Chipumuro et al., 2014). The blockade of CDK7
function is expected to suppress the expression of genes primed
for transcription. For instance, CDK7 inhibitors commonly
repress MYC, an oncogene overexpressed in 70% of human
cancers. THZ1 is a small-molecule covalent inhibitor of CDK7
that blocksMYC/MYCN transcription inMYC/MYCN-amplified
cells by irreversibly inhibiting CDK7. The unique SE landscape of
MYCN-amplified cells also determines their sensitivity to THZ1,
which protects normal cells from toxicity (Chipumuro et al.,
2014). THZ1 also exerts a prominent anticancer effect on HCC
and NPC (Yuan et al., 2017; Tsang et al., 2019). The
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bromodomain and extra-terminal domain (BET) family protein
BRD4 has been recognized as a general regulator that couples the
acetylation state of chromatin with Pol II elongation (Jang et al.,
2005). Transcriptional dysregulation of BRD4 promotes the
transcriptional activation of specific downstream targets that
promote malignancies (Yang et al., 2005; Muhar et al., 2018).
BRD4 is closely associated with tumorigenesis and has shown
therapeutic potential in preclinical models (Shi and Vakoc, 2014;
Wu et al., 2019). JQ1 is a small-molecule BRD4 inhibitor that
targets the acetyllysine-recognition domain (bromodomain) of a
putative coactivator involved in transcription initiation and
elongation to repress MYC transcriptional function by the
competitive displacement of chromatin-bound coactivators.
Bromodomain inhibitors may be an ideal model system for

agent mechanism and translational research on MYC pathway
inhibitors (Delmore et al., 2011; Donati et al., 2018). Surprisingly,
dihydroergotamine (DHE), an NR4A-induced drug, showed
similar efficacy as JQ1 in inhibiting SE-dependent MYC
transcription and AML growth in mouse xenografts (Call
et al., 2020). It implies that DHE is a promising alternative
therapeutic strategy for BET inhibitors in AML. These small-
molecule inhibitors provide novel therapeutic strategies for
specific malignant diseases. However, the limitations of poor
prognosis and the emergence of drug resistance render their
therapeutic effects unsatisfactory. Notably, combinatorial therapy
with BRD4i and histone deacetylase inhibitors (HDACi) showed
strong synergy in reducing tumor burden and inhibiting tumor
progression (Mazur et al., 2015). Combining JQ1 and THZ1 in

FIGURE 2 | Active chromatin hubs of tumor nuclear morphology and potential anticancer targets. Left: The internal structure of chromatin loop formed by spatial
contacts in CTCF binding sites. Middle: Multiple proteins containing transcription factors (TFs) recruit mediators and RNA polymerase II (RNA Pol II) participates in nuclear
transcription via different mechanisms. Small-molecule inhibitors exert anticancer effects by targeting tumor-promoting proteins or histone modifications. Right: Spatial
dimension of SE-associated gene regulation in a gene-specific manner, transcription factor (TFs) binding to super-enhancers (SE) facilitates interaction with
promoters with large genomic distances.
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treating head and neck squamous cell carcinoma (HNSCC)
effectively inhibited tumor growth and reduced toxicity and
drug resistance, resulting in a better prognosis for patients
(Zhang W. et al., 2020). A synergistic effect was also observed
coupling BRD4 inhibitors (BRD4i) and CDK inhibitors (CDKi)
in the treatment of medulloblastoma (Bandopadhayay et al.,
2019).

As multiple cancer subtypes are rapidly emerging, epigenetic
modulators of specific modifications and small-molecule
inhibitors of tumor-promoting factors have become entailing
hallmarks. The combined inhibition of these regulatory
proteins is an alternative therapeutic strategy for cancer
clinics. Whether epigenetic alterations and transcriptional
regulations are the cause or the result of altered cellular states,
they have potential value as biomarkers for disease diagnosis or as
targets for therapeutic intervention. In the long run, systematic
interrogation of cancer entities and pathologies of aberrant
chromatin folding will uncover new vulnerabilities and novel
therapeutic targets in personalized therapy.

CONCLUSION

The integrity of the 3D hierarchical structure of chromosome
entities throughout the life cycle of human cells is important for
the proper deployment of cell-type-specific gene expression
programs. Abnormalities in chromosomal integrity and
structure, such as aberrant chromatin folding, compartment
conversions, disruption of TAD boundaries, and rewiring of
promoter-enhancer interactions generally lead to malignant
transformation via dysregulated gene expression. The interplay
between transcription and genome conformation is the driving

force behind cell fate determination, and 3D genome structure
plays a critical role in characterizing cancer, thus having profound
clinical implications. With the deepening of research on the
higher-order chromatin structure of tumor cells, we might
gain a more comprehensive understanding of the
pathophysiology of carcinogenesis, ultimately promoting the
development of clinical cancer treatment.
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