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Abstract 

Background:  In sarcomas, the DNA copy number and DNA methylation exhibit genomic aberrations. Transcriptome 
imbalances play a driving role in the heterogeneous progression of sarcomas. However, it is still unclear whether 
abnormalities of DNA copy numbers are systematically related to epigenetic DNA methylation, thus, a comprehensive 
analysis of sarcoma occurrence and development from the perspective of epigenetic and genomics is required.

Methods:  RNASeq, copy number variation (CNV), methylation data, clinical follow-up information were obtained 
from The Cancer Genome Atlas (TCGA) and GEO database. The association between methylation and CNV was ana-
lyzed to further identify methylation-related genes (MET-Gs) and CNV abnormality-related genes (CNV-Gs). Subse-
quently DNA copy number, methylation, and gene expression data associated with the MET-Gs and CNV-Gs were 
integrated to determine molecular subtypes and clinical and molecular characteristics of molecular subtypes. Finally, 
key biomarkers were determined and validated in independent validation sets.

Results:  A total of 5354 CNV-Gs and 4042 MET-Gs were screened and showed a high degree of consistency. Four 
molecular subtypes (iC1, iC2, iC3, and iC4) with different prognostic significances were identified by multiomics clus-
ter analysis, specifically, iC2 had the worst prognosis and iC4 indicated an immune-enhancing state. Three potential 
prognostic markers (ENO1, ACVRL1 and APBB1IP) were determined after comparing the molecular characteristics of 
the four molecular subtypes. The expression of ENO1 gene was significantly correlated with CNV, and was noticeably 
higher in iC2 subtype with the worst prognosis than any other subtypes. The expressions of ACVRL1 and APBB1IP 
were negatively correlated with methylation, and were high-expressed in the iC4 subtype with the most favorable 
prognosis. In addition, the number of silent/nonsilent mutations and neoantigens in iC2 subtype were significantly 
more than those in iC1/iC3/iC4 subtype, and the same trend was also observed in CNV Gain/Loss.

Conclusion:  The current comprehensive analysis of genomic and epigenomic regulation provides new insights into 
multilayered pathobiology of sarcomas. Four molecular subtypes and three prognostic markers developed in this 
study improve the current understanding of the molecular mechanisms underlying sarcoma.
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Background
Sarcoma is a rare tumor accounting for approximately 
1% of all adults but 15% of pediatric malignancies [1, 2]. 
In 2018, 16,490 cases of soft tissue sarcoma (STS) were 
diagnosed in the United States, resulting in approxi-
mately 6740 deaths [2]. China’s National Central Can-
cer Registry showed that 28,000 cases of osteosarcoma 
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were newly diagnosed in China in 2015, with an esti-
mated 20,700 deaths [3]. The prognosis of patients with 
stage IV sarcoma is unfavorable, the median overall 
survival (mOS) time of STS is about 12  months, and 
the 5-year survival rate is < 10% [4, 5]. Therefore, it is 
highly important to identify prognostic biomarkers to 
improve the accuracy of prognostic prediction and the 
development of targeted drugs for sarcoma.

The advent of new biochemical techniques, particu-
larly next-generation sequencing, makes it possible to 
conduct systematic analysis on the genomic charac-
teristics of cancers. Large-scaled, multiomics analy-
ses of various cancers have provided new insights into 
the dysregulation of cancer genes [6]. Genomic varia-
tions caused by the abnormalities of DNA copy num-
bers (CNVs) and single nucleotide mutations (SNPs) 
could lead to tumor development [7, 8]. Moreover, 
epigenetic regulation of DNA methylation on cancer 
genome also plays a key role in heterogeneous cancer 
behaviors. Genomic analyses have demonstrated the 
high heterogeneity of genomic and epigenomic disor-
ders [9–11]. CNV functions critically in sarcoma pro-
gression [12, 13]. Transcription disorders resulted from 
copy number changes are potential driving events in 
sarcoma progression [14]. In addition, studies of DNA 
methylation profiles suggested that epigenetic regula-
tion has important biological and clinical significance 
in sarcoma progression [15–17]. The construction of 
public, large-scaled and multiomics datasets allow 
researchers to conduct comprehensive multiomics 
analysis on the occurrence and development of sarco-
mas in terms of the effects of genomics, epigenomics, 
and transcriptomics.

Studies found that the abnormalities of DNA copy 
number and DNA methylation have important effects 
on the progression of sarcomas, and the two may also 
have co-regulatory effects [18, 19]. However, so far, 
their potential relationship in sarcoma progression has 
not been studied. In this study, we analyzed DNA copy 
number, DNA methylation, and related mRNA expres-
sions based on a group of sarcoma patients. Genes with 
genomic or epigenomic dysregulated expression were 
identified, and expression correlations between the two 
types of genes were further analyzed. In addition, molec-
ular subtypes significantly associated with the treatment 
outcomes of sarcoma were determined by multiomics 
integration based on genes with genomic and epigenomic 
dysregulation. Moreover, further systematic analysis was 
conducted to identify novel mutations with the potential 
to serve as therapeutic targets or biomarkers for distin-
guishing sarcoma subtypes. The findings of the present 
study improve the understanding of the molecular mech-
anisms of the prognosis of sarcomas.

Methods
Data acquisition
The latest clinical follow-up information, CNV, Methyla-
tion and RNA-seq data of sarcomas counts were down-
loaded from TCGA GDC API on 2019.08.14. Meanwhile, 
the mutect SNV data were obtained from TCGA. A total 
of 249 samples with the three sets of data were used for 
subsequent analysis. The GSE21050 and GSE71118 chip 
data with 286 and 289 samples were downloaded on the 
Affymetrix Human Genome U133 Plus 2.0 Array from 
GEO. The details are shown in Table 1.

Data processing
The expression profile of TCGA-sarcomas data set was 
preprocessed. Firstly, samples without clinical informa-
tion or metastatic PFS events < 30  days were removed. 
Moreover, normal tissue sample data and genes with 
FPKM equaled to 0 in more than half of the samples were 
also removed.

Next, the GEO data were preprocessed. Briefly, nor-
mal tissue samples were removed only to obtain sar-
coma tissues. PFS event data were transformed from 
year or month to days, followed by mapping microchip 

Table 1  Informations of three sets of data set

DL dedifferentiated liposarcoma, UPS undifferentiated pleomorphic sarcomas, 
LMS leiomyosarcoma, MFS myxofibrosarcoma, SS synovial sarcoma, MPNST 
malignant peripheral nerve sheath tumors, DT desmoid tumors. Other 
represents an uncertain type other than the 7 types

TCGA​ GSE21050 GSE71118

Metastasis

 No 118 186 186

 Yes 119 100 103

 Removed 12

Metastasis (PFS) * * *

 No (mean days) 1229.6 1749.51 2500.49

 Yes (mean days) 453.6 853.41 793.06

HistologicalType

 DL 57 57 43

 UPS 49 128 86

 LMS 100 75 78

 MFS 23 39

 SS 10

 MPNST 8

 DT 2

 Other 26 43

Age

 < 50 51

 >= 50 198

Gender

 FEMALE 136

 MALE 114
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probes into human gene SYMBOL using the biocon-
ductor package.

Subsequently CNV intervals were selected and 
merged according to the following criteria: (1) two 
intervals with 50% overlapping was considered as a 
same interval; (2) a CNV with number of covering 
probes fewer than 5 intervals were removed; (3) the 
CNV interval was mapped to the corresponding gene 
using gencode.v22 of GRh38; (4) multiple CNV regions 
sharing a mutual gene region were merged into one, 
and the combined CNV values were averaged.

The methylation data were also preprocessed. The 
missing sites in more than 70% of the samples were 
removed and replaced by the values calculated by KNN 
(k-nearest Neighbour) algorithm. Gencode.v22 annota-
tion of GRh38 was used to preserve the probes of the 
2  kb upstreams and 200  bp downstreams of the TSS, 
which were then mapped to the corresponding genes. 
For SNV data, intron intervals and mutations anno-
tated as silent were removed.

Identification of CNV‑G gene set and MET‑G gene set
The Pearson correlation coefficient (r) between each 
gene with CNV and expression profile (RNA-seq), 
methylation and expression profile were calculated, 
respectively, and the correlation coefficient was con-
verted to z-value according to the formula ln ((1 + r)/
(1 − r)). Genes with P < 1e−5 in correlation coefficient 
test were taken to construct CNV-significantly cor-
related gene set (CNV-G) or methylation-significantly 
correlated gene set (MET-G).

Identification of molecular subtypes of CNV‑G gene set 
and MET‑G gene set
Nonnegative matrix factorization (NMF) is an unsu-
pervised clustering method widely used in analyzing 
tumor molecular subtypes based on genomics [20, 21]. 
We applied NMF method was used to cluster the sam-
ples based on the expression profiles of the CNV-G and 
MET-G sets to further examine the relationship between 
the expression and phenotype of the CNV-G and MET-G 
sets. Subsequently, the clinical characteristics of the sam-
ples and the relationship between their molecular sub-
types were analyzed. The standard "brunet" was selected 
and 50 iterations was performed. The number of clusters 
k was set between 2 and 10. The average contour width 
of the common member matrix was calculated by R soft-
ware package NMF[22], with each subclass consisting a 
minimum member of 10. The optimal number of clus-
ters was determined according to the indicators such as 
cophenetic, rss, and silhouette.

Identification of molecular subtypes
To integrate CNV-G copy number variation (CNV) 
data, MET-G methylation data (MET) and gene expres-
sion profile data (EXP) into CNV-G + MET-G, the 
"iCluster"[23] method in the R package was used for 
multi-omics data integration cluster analysis. The opti-
mal data weight values (lambda values) of CNV, MET, 
and EXP were determined with 20 iterations and 185 
lambda of sample points between 0 and 1.

Relationship between molecular subtypes and tumor 
microenvironment
TIMER [24] is a network resource for systematic evalu-
ation of the clinical impact of different immune cells 
on different cancer types. Thus, TIMER was employed 
to determine the abundance of six immune cell types 
(B cells, CD4T cells, CD8T cells, neutrophils, mac-
rophages, and dendritic cells) in the microenvironment 
of sarcomas.

Genetic analysis of molecular subtypes
The differences of gene expressions in different 
molecular subtypes were examined. The differentially 
expressed genes (GEGs) among molecular subtypes 
were screened by DESeq2 [25] and the qualified DEGs 
were further identified according to thresholds of the 
two-fold difference and FDR < 0.05.

Relationship between molecular subtypes and genomic 
variation in sarcoma
The differences in genomic variations among molecular 
subtypes were investigated. Intron and silent mutations 
were removed from the SNP data downloaded from 
TCGA. Fisher’s precise test was performed to analyze 
the genes with mutation differences in two-group sam-
ples. P < 0.05 was the threshold for the detection of 
genes with mutation differences.

RT‑qPCR
Hs 729 sarcoma cells and 10.014 pRSV-T cells were 
obtained from ATCC (Manassas, VA, USA). Total 
RNA from Hs 729 sarcoma cells and 10.014 pRSV-
T cells (Control) were extracted by TRIzol (Solarbio, 
YZ-15596026). According to the instructions of the 
reverse transcription kit (Thermo, K1622), the RNA 
was reverse-transcribed into cDNA. Gene expression 
was determined using SuperReal PreMix (Tiangen, 
fp204-03) in a real-time PCR system (ABI, 7700). The 
specific PCR reaction was as follows: pre-denaturated 
at 95 ℃ for 15  min (min), denaturated at 95 ℃ for 
10 s, annealed at 60 ℃ and extended for 32 s. 2−△△CT 
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methods was used to calculate the relative gene 
expression.

Comparison with existing sarcomas molecular subtype
According to the literature [26], the molecular subtypes 
identified in this paper were compared with 7 published 
molecular subtypes, which were differentiated liposar-
coma (DL), leiomyosarcoma (LMS), myxofibrosarcoma 
(MFS), undifferentiated pleomorphic sarcoma (UPS), 
synovial sarcoma (SS), malignant peripheral nerve sheath 
tumor (MPNST), and DT.

Statistical analysis
The prognostic differences of the subtypes were visual-
ized by Kaplan–Meier (KM). Univariate survival analysis 
was performed using R package survival, and the prog-
nosis difference test was performed using logrank. Sig-
nificance was defined when a P < 0.05. All of the statistical 
analyses were performed in R 3.4.3.

Results
Comparison of CNVCor and METCor genes
We obtained a total of 5354 CNVCor genes (correla-
tion between all gene expressions and gene CNV) and 
4042 METCor genes (correlation between all gene 

expressions and gene MET) by conducting correlation 
analysis with P < 1e−5. From the z-value distribution of 
the two, the correlation of CNVcor significantly shifted 
to the right, while the correlation of METCor slightly 
shifted to the left (Fig. 1a). This indicated that CNVcor 
was mainly positively correlated with gene expressions, 
while METCor was weakly negatively correlated with 
genes expressions. Considering the large number of 
genes in the two gene sets, genes in the CNVCor gene 
set significantly correlated with new prognosis events 
(PFS, metastasis/recurrence) and those in the METCor 
gene set closely correlated with prognosis were selected 
for subsequent analysis. Here, a resulting 425 CNVCor 
genes and 312 METCor genes were obtained. A com-
parison of CNVCor and METCor gene sets further 
identified 152 overlapping genes (Fig.  1b), suggesting 
that CNVCor and METCor may be mutually exclusive. 
According to the distribution of CNVCor and METCor 
on chromosomes, there was a significant bias in the 
distribution of CNVCor gene on chromosomes 1, 2, 5 
and 6 (Fig. 1c), and METCor exhibited an obvious bias 
on chromosome 1 (Fig. 1d). METCor mainly contained 
protein-coding genes (Fig.  1e), and MET loci was 
largely distributed at the CpG island interval (Fig. 1f ).

Fig. 1  a Z-value distribution of correlation between CNVCor and METcor. b CNVs and METCor overlap. c Distribution of CNVCor on chromosomes 
(top panel) and correlation (bottom panel). d The distribution of METCor on chromosomes. e The type of METCor gene. f The distribution of MET 
sites



Page 5 of 15Song et al. BMC Med Genomics           (2021) 14:31 	

Molecular subtypes were identified based on CNVcor 
and METcor genes
According to the results of NMF, the optimal cluster 
number of CNVCor was 4 (Fig.  2a), while the optimal 
cluster number of METCor was 3 (Fig.  2b). There were 
significant differences in the sample PFS survival curves 
between the four subclasses of CNVCor (Fig. 2c), moreo-
ver, similar results were also detected from the survival 
curves of METCor subclasses (Fig.  2d). Analysis of the 
relationship among CNVCor, METCor subtypes, and 
pathological subtypes showed that CNVCor_C1 mainly 
corresponded to METCor_C3 and included multiple 
pathological subtype samples; CNVCor_C2 mainly corre-
sponded to METCor_C3 and METCor_C1 and included 
DL, LMS, and MFS subtypes; CNVCor_C3 mainly cor-
responded to METCor_C2, included UPS subtypes and 
some LMS subtypes; CNVCor_C4 was composed of 
multiple pathological subtypes (Fig. 2e). Noticeably, there 
was a significant overlapping of the four subclasses of 
CNVCor with the three subclasses of METCor (Fig. 2f ).

CNV, MET, and EXP data were integrated to cluster samples 
to determine molecular subtypes
By clustering multiple omics data, four subclasses (iC1, 
iC2, iC3, and iC4) (Fig. 3a, b) with significantly different 
PFSs were determined (Fig. 3c). The prognosis of the iC2 

subtype with the worst prognosis was compared with the 
other three subtypes, and we found that the prognosis 
of iC2 showed the greatest differences with iC3 and iC4 
subtypes, and there was no significant difference between 
iC2 and iC1 (Fig. 3d–f). Prognostic analysis of OS of the 
four subtypes also showed significant differences (Addi-
tional file 1: Figure S1). Comparison between iC subtypes 
and pathological subtypes revealed that the iC2 with the 
worst prognosis was related to most UPS and some LMS 
subtypes, while iC3 was almost entirely composed of 
LMS subtypes, and iC4 was composed of most DL, MFS 
and a few UPS and LMS subtypes (Fig. 3g).

Abnormalities of DNA copy number were consistent 
with methylation abnormalities
To study the relationship between CNV and MET 
anomalies, β-value of CNV > 0.3 was defined as CNV 
Gain, while β-value < 0.3 was defined as Loss, β value 
of MET > 0.8 was defined as MetHyper, while the β 
value of MET < 0.2 was defined as MetHypo. Our data 
revealed a significant correlation between CNV Gain and 
Loss (Fig.  4a). However, no significant correlation was 
observed between Gain and MetHype/MetHypo (Fig. 4b, 
c) or between Loss and MetHyper/MetHypo (Fig. 4d, e). 
MetHyper was found to be significantly negatively corre-
lated with MetHypo (Fig. 4f ).

Fig. 2  a NMF clustering results of CNVCor. b NMF clustering results of METCor. c KM survival curve of CNVCor subtype. d KM survival curve of 
METCor. e The correlation between subtypes of CNVCor cluster, subtypes of METCor cluster and pathological subtypes. f The overlap between 
subtypes of CNVCor cluster and subtypes of METCor cluster
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Immune score of sarcoma subtypes
Clinical differences such as gender and age of iC2 and 
iC1/iC3/iC4 subtypes exhibited great differences, espe-
cially the Age samples, which were noticeably more 
than 60 in the iC2 subtype (Table  2). Furthermore, 

Tumor Immune Estimation Resource (TIMER) tool 
was employed to compare the immune scores of four 
subtypes, and the six types of immune cells in the iC4 
subtype with the most favorable prognosis scored 
higher than the other subtypes (Fig.  5a). Moreover, the 

Fig. 3  a Heatmap of the expression of subtype CNVCor identified by iCluste. b Heatmap of the expression of subtype METCor identified by iCluste. 
c The PFS KM curve between the subtypes identified by iCluster. d PFS survival curve between iC1 and iC2 subtypes. e PFS survival curve between 
iC2 and iC3 subtypes. f PFS survival curve between iC2 and iC4 subtypes. g The corresponding relationship between iC subtype and pathological 
subtype
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proportion of the six immune cells in the iC4 subtype 
was significantly higher than that of other subtypes 
(Fig. 5b). These data suggested that the iC4 subtype may 
be in an immune-enhanced state. Moreover, comparisons 
of lymphocyte infiltration score, IFN gamma response 
score and TGF beta response score of iC4 subtype were 
significantly higher than other subtypes (Fig. 5c).

Molecular characteristics of the four sarcoma subtypes
Based on the results of iCluster, gene expression dif-
ferences between iC1 and iC2/iC3/iC4 subtypes with 
significant prognostic differences were compared, and 
a total of 604 DEGs were obtained after removing low-
expressed genes. The GO enrichment analysis indicated 
that those genes were noticeably enriched to cell adhe-
sion, inflammation response, mesenchyme develop-
ment and metastasis and immune response (Additional 
file  2: S2, Additional file  3: Figure S3A). The CNV fre-
quency of 604 DEGs in iC2 was greatly higher than that 
of iC1, iC3 and iC4, suggesting that CNV had certain 
effects on the prognosis of SARC (Fig. 6a). However, no 

significant difference in methylation of the four subtypes 
was detected (Fig.  6b). After analyzing the correlation 
between gene expression, methylation, and CNV, we 
found that DEGs were high-expressed in demethylated 
samples (Fig. 6c), but this was not observed in CNV, sug-
gesting that the effect of methylation on the expressions 
of DEGs was stronger than CNV.

To investigate the relationship between gene expres-
sions and CNV/MET, 604 DEGs were used for prognostic 
survival analysis. Univariate survival analysis determined 
127 genes significantly associated with sarcoma prog-
nosis, among them 41 gene were closely associated with 
PFS in at least two data sets (Additional file  3: Figure 
S3B). Three of the most significant genes, namely, ENO1, 
ACVRL1 and APBB1IP, were further used to analyze the 
relationship of their expressions and CNV and methyla-
tion. It has been found that the expression of ENO1 gene 
was positively correlated with CNV (Fig. 7a), noticeably, 
ENO1 expressed significantly higher in the iC2 subtype 
with the worst prognosis than in other subtypes (Fig. 7b). 
Correspondingly, high-expressed ENO1 was associated 

Fig. 4  a Frequency distributions of Gain and Loss in CNV. b Frequency distributions of Gain and MetHyper. c Frequency distributions of Gain and 
MetHypo. d Frequency distributions of CNV Loss and MetHyper. e Frequency distributions of CNV Loss and MetHypo. f Frequency distributions of 
MetHyper and MetHypo
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with worse prognosis recorded in TCGA and GSE21050 
(Fig.  7c, d). The expressions of ACVRL1 and APBB1IP 
were negatively correlated with methylation (Fig.  7e–i), 
moreover, the two genes exhibited high expressions in the 
iC4 subtype with the most optimal prognosis (Fig. 7f–j), 
and their high expressions were related to a better prog-
nosis (Fig.  7g, h, k, l). RT-qPCR assay results indicated 
that ENO1 was upregulated, whereas ACVRL1 and APB-
B1IP were downregulated in Hs 729 sarcoma cells that in 
10.014 pRSV-T cells (Additional file 4: Figure S4).

Mutation spectrum of the four sarcoma subtypes
The mutation spectra of different subtypes were analyzed 
to select the top 50 genes (Fig.  8a, b). By analyzing the 
mutant spectrum differences, we found that the number 
of silent/nonsilent mutations and neoantigens in the iC2 
subtype was significantly higher than that in iC1/iC3/iC4 
subtype (Fig.  8c). The same trend was also observed in 
the number of Gain/Loss of CNV (Fig. 8d). These results 
indicated that genomic instability had an important 
impact on the prognosis of sarcoma because subtypes 
with high mutation rate and high CNV were related to 

worse prognosis. Although there were significant differ-
ences of MetHyper/MetHypo in the four subtypes, iC2 
did not show a significant difference when compared 
with other three subtypes (Fig. 8d).

The relationship of molecular subtypes and markers 
with previously developed subtypes and markers
We analyzed the relationship among the four molecu-
lar subtypes and the seven different histological types 
according to the WHO classification (Fig. 9a), and signifi-
cant differences among the seven different histological 
types were detected from the four molecular subtypes. 
Specifically, IC3 subtypes were all LMS, while DL and 
UPS were significantly enriched in iC4 subtype and iC2 
subtypes, respectively. These results indicated that the 
three subtypes were closely correlated with histological 
types, moreover, the absence of typical histological type 
enrichment to iC1 subtype suggested the possible exist-
ence of a new molecular type.

The expression of the transducin-like enhancer of 
split-1 (TLE1) serves as a biomarker for the diagnosis of 
synovial sarcoma. Herein, we analyzed the relationship 
between TLE1 gene and three potential prognostic mark-
ers (ENO1, ACVRL1 and APBB1IP) by determine their 
expressions. The results showed that TLE1 was signifi-
cantly negatively correlated with ENO1, and positively 
correlated with APBB1IP (Fig.  9b). Study indicated that 
high-expressed AMPD2 is correlated with poor progno-
sis of UPS [27]. The correlation between AMPD2 expres-
sion and three potential prognostic markers (ENO1, 
ACVRL1 and APBB1IP) was also investigated, and our 
results showed that TLE1 was significantly positively 
correlated with ENO1, and was negatively correlated 
with APBB1IP. In our study, both high-expressed ENO1 
and low-expressed APBB1IP were predictive of a poor 
sarcoma prognosis, suggesting that the three potential 
prognostic markers were closely associated with known 
genetic markers.

Furthermore, the three potential prognostic markers 
(ENO1, ACVRL1 and APBB1IP) in predicting the sar-
coma prognosis of different histological types were exam-
ined, due to the sample sizes of DT, MPNST, and SS, 
the prognostic role of the three genes were analyzed in 
DL, LMS, MFS and UPS. A 3-gene signature was estab-
lished by multifactorial survival analysis to calculate the 
risk score of the samples, and the performance of the 
signature in predicting the prognosis of DL, LMS, MFS, 
and UPS was respectively examined. We observed that 
the 3-gene signature was significantly more accurate in 
predicting short-term survival rather than long-term 
survival. Moreover, it showed a better predictive perfor-
mance in MFS and UPS patients, especially in MFS, with 

Table 2  Clinical features between SARC subtypes

Clinical features Total iC2 iC1/iC3/iC4 P value

Event 0.27

 Alive 155 23 132

 Dead 94 23 71

Age 0.0134

 0–50 51 8 43

 50–60 65 9 56

 60–70 67 10 57

 70–80 44 11 33

 80–100 22 8 14

Gender 0.33

 Female 135 26 109

 Male 114 20 94

HistologicalType 0.203

 DL 57 2 55

 DT 2 2

 LMS 100 14 86

 MFS 23 6 17

 MPNST 8 1 7

 SS 10 10

 UPS 49 23 26

NewEventType 0.357

 DistantMetastasis 67 19 48

 LocoregionalDisease 1 36

 LocoregionalRecurrence 48 4 14

 NewPrimaryTumor 8 2 1

 Primary 125 21 104
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AUCs of more than 0.86 of 1-, 3-, and 5-year survival 
(Fig. 9C).

Discussion
Genomic instability, which is a hallmark of malignancy, 
could lead to DNA copy number changes in most can-
cer types [28, 29]. In viral infection and alcohol-related 
liver cancer, amplification of the common chromosome 
8q24 copy number could cause high expression of the 
oncogene c-myc, indicating that the development of 
some liver cancers may be c-myc-dependent [30]. In 
early HCC, common 1q21 amplification and heterozy-
gosity loss (LOH) of 1p36 and 17p13 suggest that these 
chromosomal aberrations may induce HCC [31]. In 
addition to copy number abnormalities, DNA methyla-
tion is an important regulator of gene transcription and 
one of the most widely studied epigenetic modifications. 
Hypermethylation of tumor suppressor gene CpG island 
is commonly detected in tumors and is largely tumor-
specific [32, 33]. For example, hypermethylation of the 
BRCA1 gene CpG island mainly occurs in breast and 

ovarian cancer, while hypermethylation of the hMLH1 
gene is commonly found in colon, stomach and endo-
metrial cancers. A comprehensive analysis of the multi-
layered genomic characteristics of cancer could identify 
molecular subtypes and help candidate therapeutic tar-
gets and biomarkers. This study analyzed the relation-
ship between epigenetics and CNV, and observed that 
the abnormalities of DNA copy number and methyla-
tion shared a mutual consistency. Based on multi-omics 
association analysis, CNV-G and MET-G gene sets were 
identified, and the relationship between CNV and meth-
ylation was established with the gene expressions. Finally, 
by performing multi-omics clustering based on gene 
expression, DNA methylation, and CNV, four molecular 
subtypes (iC1, iC2, iC3, iC4) with difference in age (Addi-
tional file 5: Figure S5) were determined, noticeably, iC2 
was associated with poor clinical results. In addition, we 
also identified 3 gene prognostic markers and verified 
them in external data sets.

A growing number of studies have shown that tumor-
infiltrating lymphocytes (TILs) are involved in tumor 

Fig. 5  a The scores of six immune cells in all the samples. b The scores of the six immune cells were in the three subtypes of iCluster. c 
Immunosignature scores of 5 types
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progression and invasion. TIL consists of a variety of 
lymphocytes with different activities, the most com-
mon lymphocytes are CD8+ and CD4+ T cells [34]. 
T-lymphocyte infiltration of primary tumors is used to 
predict clinical outcomes of cancers such as breast can-
cer [35], head and neck cancer [36], non-small-cell lung 
cancer [37], colorectal cancer [38] and gastric cancer 
[39]. In our study, there were also significant differences 
in the immune microenvironment of the four molecular 
subtypes, but the iC4 subtype with the optimal progno-
sis showed higher scores of the six immune cells than 
the other subtypes, especially, its scores of lymphocyte 

infiltration, IFN gamma response and TGF beta response 
were significantly higher than the other subtypes. These 
results indicated that the iC4 subtype may be in an 
immune enhanced state.

The molecular characteristics of the four molecu-
lar subtypes were compared, and we determined three 
genes, namely, ENO1, ACVRL1 and APBB1IP, which 
were closely associated with the prognosis of sarcoma. 
ENO1 gene, which had a significant positive correla-
tion with CNV, was high-expressed in iC2 subtype and 
served as a risk factor. The expression of ACVRL1 and 
APBB1IP was negatively correlated with the degree of 

Fig. 6  a Distribution of CNV in the iCluster subtype. b Distribution of methylation in the iCluster subtype. c Heatmap of differentially expressed 
genes in iCluster subtypes
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methylation, and the two genes with high expressions 
in iC4 subtype was two protective factors. The role of 
eno1enolase (enolase-1) in non-small cell carcinoma has 
been widely studied by previous researches. Chang et al. 
found significantly downregulated expression of ENO1 
in NSCLC compared with normal tissues, and indicated 
that low-expressed ENO1 may suggest a favorable prog-
nosis [40]. Zhang et  al. [41] confirmed that the expres-
sion of ENO1 protein in NSCLC tissues and plasma was 
greatly higher than that in patients with benign tumors. 
ENO1 was less studied in sarcomas. Takahashi A et  al. 
found that ENO1 showed obvious differential expression 
in histological subtypes of sarcoma [42]. ACVRL1, also 
known as activin receptor-like kinase 1(ALK1), is a direct 
receptor for TGF. ALK1 determines the characteristics of 
vascular endothelial cells and plays an important role in 
angiogenesis [43]. Study demonstrated that ALK1 could 

promote endothelial cell proliferation after activation 
and then stimulate tumor blood vessel formation, which 
is essential to tumor development and metastasis [44]. 
Cunha et  al. investigated ALK1 receptor on the surface 
of vascular cells, and observed that tumor angiogenesis 
in mice is inhibited and the tumor grows slowly when the 
expression of ALK1 receptor is inhibited [45, 46]. APB-
B1IP is alternatively known as RIAM, silencing RIAM in 
melanoma cells leads to the inhibition of tumor growth 
and hinders metastasis in a mouse xenograft model com-
bined with immunodeficiency [47]. These results indi-
cated that the three genes could be clinically applied to 
treat sarcoma, and may provide a potential target for pre-
dicting the prognosis of clinical patients with sarcoma.

Although the relationship between epigenetics and 
genomic variations has been systematically analyzed 
by bioinformatics techniques, some limitations of this 

Fig. 7  a–d Correlation between NO1 gene methylation and expression, expression of NO1 in iC subtype, OS KM curve of samples from 
high-expression group and low-expression group in TCGA data, and OS KM curve of samples from high-expression group and low-expression 
group of GSE21050 verification set. e–h Correlation between ACVRL1 gene methylation and expression, expression of ACVRL1 in iC subtype, OS 
KM curve of samples from high-expression group and low-expression group of GSE21050 data and GSE7118 data. i–l Correlation between APBB1IP 
gene methylation and expression, expression of APBB1IP in iC subtype, OS KM curve of samples from high-expression group and low-expression 
group of GSE21050 data and GSE7118 data
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study should still be noted. Firstly, our samples lacked 
some clinical follow-up information, thus, factors 
such as the presence of other health conditions of the 
research subjects were not considered. Also, the results 
obtained only by bioinformatics analysis were not con-
vincing enough, which therefore requires experimental 
verifications to confirm the present results. Moreover, 
further genetic and experimental studies involving 
larger sample sizes and experimental validation are 
needed.

Conclusion
In summary, in this study, we analyzed the possible 
pathogenesis of sarcomas through multi-omics analysis 
of genomics, epigenomics, and transcriptomics, and dis-
covered that DNA CNV and methylation play important 
roles in sarcomas. In addition, we identified 4 potential 
molecular subtypes of sarcoma and 3 key biomarkers. 
These novel mechanisms and clinical classifications may 
facilitate a more accurate diagnosis and targeted therapy 
for sarcoma patients.

Fig. 8  a The top 50 mutated genes between iC subtypes. b The number of mutations of the top 50 genes in the iC subtype. c Distribution of silent, 
nonsilent and neoantigens on iC subtypes. d Distribution of CNV Gain/Loss and methylated MetHyper/MetHypo on iC subtypes
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