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Abstract 

Negation of clinical named entities is common in clinical documents and is a crucial factor to accurately compile 

patients’ clinical conditions and to further support complex phenotype detection.  In 2009, Mayo Clinic released the 

clinical Text Analysis and Knowledge Extraction System (cTAKES), which includes a negation annotator that 

identifies negation status of a named entity by searching for negation words within a fixed word distance.  However, 

this negation strategy is not sophisticated enough to correctly identify complicated patterns of negation.  This paper 

aims to investigate whether the dependency structure from the cTAKES dependency parser can improve the negation 

detection performance.  Manually compiled negation rules, derived from dependency paths were tested.  

Dependency negation rules do not limit the negation scope to word distance; instead, they are based on syntactic 

context.  We found that using a dependency-based negation proved a superior alternative to the current cTAKES 

negation annotator. 

 

Introduction 

In clinical documents, named entities often include diseases and disorders or signs and symptoms.  Retrieving these 

clinical named entities is important for both clinical research and patient health care.  However, not all clinical 

named entities in clinical documents are actually present in patients.  Those mentioned but not present are often 

ruled out or absent [1].  Thus, it is critical to differentiate negative named entities from positive ones in order to 

accurately compile patients’ clinical conditions and produce patient profiles that are fundamental for high 

throughput phenotyping and other modes of secondary use.  

Mayo Clinic developed the clinical Text Analysis and Knowledge Extraction System (cTAKES) and first released it 

to the open source community
1
 in 2009.  cTAKES is a comprehensive, modular, extensible information extraction 

system, which processes clinical narratives and identifies clinical named entities along with attributes; one of these 

attributes is negation [2, 3].  cTAKES has been applied to various use cases in clinical domains [4-7].   

The original cTAKES negation module is roughly based on NegEx [8], which implements a regular expression 

pattern matching algorithm to search for manually defined negation words around named entities, within a fixed 

distance of word tokens.  cTAKES determines negation by searching negation keywords within seven words on the 

left and the right of the named entity.  This simple algorithm catches most conditions explicitly negated in clinical 

narratives.  However, a fixed negation scope is not flexible enough to deal with complicated negation mentions, and 

cannot correctly identify negation when contextual understanding is necessary.  One way to better understand 

contexts and handle difficult negations is to use deeper syntactic structure, but this has largely been ignored in 

clinical natural language processing.  Mayo Clinic’s latest release of the cTAKES (version 1.1.0) addresses this 

historical gap by introducing a dependency parser module that provides the rich syntactic information. 

In this paper, we investigated the degree of enhancement in negation detection attributable to a dependency 

structure.  We have tested the negation accuracy of our dependency parser-based negation (DepNeg) against the 

baseline of word distance-based cTAKES negation, and found that DepNeg performed better.  

 

Background 

Negation in clinical narratives has been investigated in numerous ways.  Many negation algorithms, including the 

existing cTAKES negation module, take a rule-based approach, with a variety of techniques: regular expression 

pattern matching [8], lexical scan with context free grammar [9], or invoking a negation ontology [10].  Some 

negation algorithms use machine learning techniques, such as naïve Bayes and decision trees [11].  In comparison 
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with the proposed work, these approaches ignore or make marginal use of deeper syntactic structure.  Similar work 

to ours has invoked syntactic information using grammatical parsing [12], but our approach differs in that we use 

dependency parses which directly encode thematic roles like subject and object instead of using explicit grammatical 

phrasal structure.  

Previous writers suggest that negation in clinical narratives is relatively uncomplicated [9, 13] and that a limited set 

of negation words cover a large portion of negation mentions [1].  With that hypothesis, a rule based approach that 

uses a lexical pattern matching algorithm has been widely applied.  However, properly defining negation scope is a 

challenging task for complicated negation mentions.  The rich syntactic and relation information from dependency 

parses could aid in mitigating this issue.  In the next section, we begin with a brief background of dependency 

parsing, focusing on the output parses in a graphical and hierarchical representation. In the method section we 

explain how dependency path rules can be applied in negation.   

Dependency Parsing 

Figure 1 shows an example of an output dependency parse for the sentence “There was no evidence of edema.”  

Dependency parsing is typically defined at the sentence level. 

 

 

Figure 1. An example dependency parse.  

 

Unlike deep parses, dependency parses do not explicitly represent phrasal structure like noun phrases or verb 

phrases.  Rather, syntactic structure is expressed as directed dependencies between words, so that words (ovals) 

higher on the chart ‘generate’ words lower on the chart.  An additional root node, with only one dependent (in this 

case, “was”) is present for every dependency parse. 

The dependencies may be labeled with relations (boxes in the diagram), such as the subject relation SBJ, the object 

relation OBJ, a noun-modifying relation NMOD, a preposition-modifying relation PMOD, or a punctuation mark P.  

Additional information may be included with each word, such as the part of speech (POS) that has been included 

underneath each word in the example. 

The goal of a dependency parser is to induce this kind of structure for a given utterance – it is typically required that 

the sentence be tokenized, POS-tagged, and lemmatized.  Two main approaches have been explored: graph-based 

approaches and transition-based approaches.  cTAKES invokes the ClearParser [14, 15] dependency parser,  which 

takes the latter approach – it proceeds in a single pass over the words in the sentence, determining what 

dependencies are present after each input word.  ClearParser improves on previous transition-based approaches by 

adding an extra transition that substantially speeds up computation, making it approximate a linear execution time.  

These speed characteristics, coupled with state-of-the-art accuracy, make it an arguably better choice for large-scale 

processing than other options [15] such as MaltParser [16] or the Stanford Dependency Parser [17]. 

 

Data 

To develop dependency patterns rules for negation, we examined 41 sentences from the 2010 I2B2/VA NLP 

challenge data
2
 that contained an assertion status of “absent.”  The test data consists of 160 Mayo clinical notes in 
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which named entities and their negation were manually annotated by four domain experts.  Inter-annotator 

agreement (IAA) has been examined and reported in Table 1 [2].  

IAA = matches / (matches + non-matches)  

 

Table 1. Inter-annotator agreement for negation on the 160-note Mayo corpus.  

A12 is the gold standard created by A1 and A2; A34 is the gold standard created by A3 and A4 

 

Annotation sets IAA 

A1, A2, A3, A4 0.790 

A12, A34 0.848 

 

Our final “consensus” data was derived after an adjudication stage during which all disagreements were discussed 

and a decision on the final label was reached. This final “consensus” data was used in the test experimentation.   

 

Methods 

This study applied dependency parses to negation detection. Given a “focal” named entity in clinical text, we seek to 

determine whether that named entity is negated.  To do so with dependency parses, we first examined a development 

(i.e., training) set of sentences from the I2B2/VA NLP challenge and manually designed syntactic rules which 

indicated when terms were negated.  We then compared our dependency parser-based approach against the existing 

cTAKES negation module. 

The cTAKES pipeline performs standard text pre-processing on clinical text (Figure 2, refer to [2] for details), and 

satisfies the pre-conditions for a dependency parser.  Recall that dependency parsing is defined on pre-tokenized 

sentences, typically with POS tags and lemmas.  cTAKES includes a lemmatizer based on the LVG Specialist 

Lexicon
3
 and the Maximum Entropy-based POS tagger from OpenNLP

4
. Thus, in this pipeline, a dependency parser 

and candidate named entity recognition (NER), such as signs/symptoms and diseases/disorders, (both in bold in 

Figure 2) are available to the negation detection module. 

 

 

Figure 2. A block diagram of modules in the cTAKES pipeline.  

 

We based negation rules on the dependency path between the focus (i.e., named entity) and each other term (i.e., 

hypothesized negation words) in the text.  Dependency paths can easily be calculated between any two nodes on a 

dependency tree.  In Figure 3, “edema” is a focus term discovered by the dictionary lookup module, and the 

dependency path between “no” and “edema” is simply a subset of the dependency parse. 

 

 

{no}DT < NMOD < {evidence}NN > NMOD > {of}IN > PMOD > {edema}NN 

Figure 3. An example of a dependency path. 
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This dependency path can also be represented as a string which enables path matching implementation.  In this 

paper, however, we will use the graphical representation for clarity. 

To use the cTAKES named entities as focus annotations for DepNeg, we followed the steps below. 

Find the head node.  For each focus annotation, we first normalized multi-word foci to the highest node or 

headword to represent the whole span, since dependency paths are undefined on multi-word expressions.  For 

example, if “rib fracture” was the focus annotation in “No evidence of rib fracture,” we would choose “fracture” 

as the representative word (assuming “rib” is a dependent of “fracture”).   

Calculate paths.  Given the representative word of the named entity, we considered each other token in the 

sentence, and calculated its path to the focus annotation. 

Match paths.  For each token-to-focus dependency path, evaluate whether the dependency path matches a pattern 

in a bank of acceptable dependency path patterns (see below).  If there is any match, negate the named entity. 

 

Dependency Path Patterns 

The dependency path patterns (Figure 4) were developed by examining a small subset of data from the 2010 

I2B2/VA NLP challenge.  The I2B2 data were run through the whole cTAKES pipeline, including the dependency 

parser.  Figure 4 divides the negation patterns on dependency paths up into several types of syntactic constructions 

which can result in the negation of a named entity. 

Negated Verbs (3 patterns).  Negating a verb (e.g., “did not show…”) usually implies that the whole verb phrase is 

negated, and thus that objects or complements should be negated. 

Negative Verbs (3 patterns).  Some verbs (e.g., “denies”) inherently disqualify the direct object of the verb.  A 

special case also exists, in which the verb is only negative if a particle is present (e.g., “rules out”). 

Negative Prepositions (1 pattern).  A few prepositions (e.g., “without”) will negate the object of the preposition. 

Negated Nouns (2 patterns).  Certain negating determiners (e.g., “no”) will negate the nouns they modify. 

Negative Adjectives (3 patterns).  Some adjectives (e.g., “negative”) will negate the nouns they modify. 

Conjunction Expansion.  This rule is in fact a meta-rule, allowing for conjunctions or lists of any kind to be used 

in every other rule. 

These pattern rules were implemented in regular expression form on the string representation of paths, but are 

presented in graphical form in Figure 4.  The graphical patterns are similar to the notation we have used for 

dependency trees and dependency paths.  One difference is that bold or italicized text represents a set of terms 

(cross-indexed with Figure 5); acceptable paths would then draw from that set.  Additionally, blank nodes or 

relations indicate that any term or relationship would be acceptable, given that the other conditions were satisfied. 

The existing cTAKES negation module uses negation words and other keywords in its term pattern matching (see 

Figure 5).  To isolate the contribution of dependency parses to negation, we used the same sets of negation words 

and keywords in the DepNeg dependency path patterns.  It should be clarified that while we have motivated the 

rules by their syntactic behavior, negation words and other keywords used in the existing cTAKES negation module 

are not entirely consistent or optimal for a dependency-based negation paradigm. Thus the syntactic categories or 

POS tags may at times be misnomers – INNEG, for example, should be the set of negative prepositions, but it 

includes words such as “absent” and “none” which are not prepositions. 
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Evaluation Measurement 

For evaluation of system outputs we used: 
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Where TP is the number of true positives, FP is the number of false positives, TN is the number of true negatives, 

and FN is the number of false negatives. 

   

Results  

Recall that to achieve a fair comparison of negation performance, we used the same set of negation indication words 

in both DepNeg and cTAKES negation.  However, DepNeg did not use pseudo-negation phrases (i.e., double 

negation, for example, “not rule out”) which was implemented in cTAKES negation.  

We used the dependency parser in the latest version of cTAKES (version 1.1.0) to determine a dependency structure 

between clinical named entities and negation indication words.  The dependency parser was trained on the merged 

data of three sets, clinical questions
5
, GENIA [18], and Wall Street Journal (WSJ) [19].   

Table 2 shows negation statistics and evaluation of the original cTAKES negation (Table 2 (a)) and the DepNeg 

(Table 2 (b)) model on the test set (Mayo’s 160 clinical notes).  Negation performance of two clinical named entities 

was reported.  Signs/symptoms contain 111 negated entities (85 TPs + 26 FNs) out of total 381 entities and 

diseases/disorders contain 123 negated entities (102 TPs + 21 FNs) out of total 854 entities.  In other words, 

approximately 30% of signs/symptoms and 10% of diseases/disorders are negated in the actual data.   

Overall, DepNeg produced higher F-score and accuracy than cTAKES Negation.  Both models tend to perform 

better in precision than recall and this phenomenon is especially noticeable in DepNeg.  In DepNeg recall is lower 

but precision is much higher than cTAKES Negation (0.8462 in cTAKES vs. 0.9665 in DepNeg in All) – i.e., 

DepNeg produced much lower number of FPs than cTAKES Negation.  In signs/symptoms, which contain higher 

ratio of negated entities, DepNeg produced very high precision (0.9884) with the same level of recall in cTAKES 

negation.  

Table 2. Negation statistics and evaluation on the test set 

(a) cTAKES Negation 

 TP TN FP FN precision recall F-score accuracy 

Signs/symptoms 85 258 12 26 0.876 0.766 0.817 0.900 

Diseases/disorders 102 709 22 21 0.823 0.829 0.826 0.950 

All 187 967 34 47 0.846 0.799 0.822
†
 0.934

†
 

 

(b) DepNeg 

 TP TN FP FN precision recall F-score accuracy 

Signs/symptoms 85 269 1 26 0.988 0.766 0.863 0.929 

Diseases/disorders 88 726 5 35 0.946 0.715 0.815 0.953 

All 173 995 6 61 0.966 0.739 0.838
†
 0.946

†
 

 

† 
micro average – i.e., obtained by using a global count of each named entity and averaging these sums. 
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Discussion 

DepNeg produced better negation performance than the original cTAKES negation in terms of F-score and 

accuracy.  This improvement is mainly due to reducing FPs and so increasing precision.  Since the negation scope 

using dependency rules is not limited to by distance (i.e., number of word tokens) but depends on syntactic 

information in context, DepNeg was able to correctly determine more complicated negations than cTAKES 

negation.   

DepNeg performed more accurately than the cTAKES negation in following cases where DepNeg determinations 

were correct but cTAKES negations were incorrect.  A bold denotes a named entity to be examined for negation:  

1) Contextual understanding (truth state = not negated): e.g., “He felt that no specific therapy was available 

regarding Moebius sequence.”  “I do not recommend drug treatment for stone prevention.”  “If her pain 

should not have been resolved by that time, there is the possibility of repeating facet rhizotomy.” 

2) Long distance between named entities and negation words (truth state = negated): e.g., “She denies any ear 

pain, sore throat, odynophagia, hemoptysis, shortness-of-breath, dyspnea on exertion, chest discomfort, 

anorexia, nausea, weight-loss, mass, adenopathy or pain.”  

3) Determining the direction of negation scope (truth state = not negated): e.g., “However, I suspect that her 

pain is not due to an underlying neurologic disorder.” 

However, DepNeg may fail in certain cases.  The following are error analyses for examples of DepNeg failing to 

correctly identify negation while cTAKES negation was correct (truth state = negated):  

1) Incorrect dependency parse: e.g., “Molecular fragile-X results reveal no apparent PMR-1 gene 

abnormality.” (The dependency parser incorrectly identified “no” as modifying “PMR” instead of 

“abnormality.)  “She denies any blood in the stool.” (The dependency parser inferred that “in the stool” 

was a modifier of “denies” rather than “blood.”) 

2) Incomplete rules: e.g., “Mrs. Jane Doe returns with no complaints worrisome for recurrent or metastatic 

oropharynx cancer.” (The syntactic construction “worrisome for...” is not present as a rule in dependency 

path patterns.)   

3) Both 1) and 2): e.g., “She is not having any incontinence or suggestion of infection at this time” (“Of 

infection” was parsed incorrectly to modify “incontinence” instead of “suggestion” The second Negated 

Noun rule (see Figure 4) should be generalized to allow conjunctions with constructions like “suggestion 

of,” where the focus is in a prepositional phrase.) 

Dependency pattern rules were developed by examining a small subset of data from the 2010 I2B2/VA NLP 

challenge.  We believe that more variety of dependency pattern rules derived from a larger data set can reduce type-

2 errors.  As can be seen in the type-1 errors), the performance of DepNeg is also affected by the accuracy of the 

dependency parser.  The cTAKES dependency parser learns a dependency structure from training data and therefore 

different training sets might vary performance.  Based on our observations, training dependency parsers on larger 

corpora produced higher negation detection accuracy in DepNeg.  When using a dependency parser trained only on 

clinical questions instead of the merged sets of three data sources, DepNeg produced lower negation accuracy due to 

the inferior dependency parse performance.  Although the training set of clinical questions might be in the same 

domain with respect to semantic content, its syntactic constructions were highly divergent.  In this sense, we believe 

that using a dependency parser trained on more comprehensive data would reduce type-1 errors.   

 

Conclusion 

The main focus of this study was to examine the possibility of enhancement in negation annotation when using 

dependency structure rather than to maximize negation accuracy.  Our results support the idea that dependency 

structure can improve the negation annotation that uses a fixed negation scope. Even though we have used a limited 

set of dependency rules compiled from a small data set, DepNeg performed well and was able to identify 

complicated negations that were wrong in the original cTAKES negation.  In the future we believe that more 

comprehensive dependency rules that cover most negation patterns and a dependency parser trained on additional 

data would further improve negation accuracy.  We also believe that using more negation words compiled from 

extra data or sources could enhance the DepNeg performance.  Finally, as more negation-annotated clinical data 
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becomes available, machine learning techniques may be used in conjunction with our heuristic rules defined here to 

further improve negation accuracy. 
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