

Dependency Parser-based Negation Detection in Clinical Narratives

Sunghwan Sohn, PhD, Stephen Wu, PhD, Christopher G. Chute, MD DrPH

Division of Biomedical Statistics and Informatics, Department of Health Sciences

Research, Mayo Clinic, Rochester, MN

Abstract

Negation of clinical named entities is common in clinical documents and is a crucial factor to accurately compile

patients’ clinical conditions and to further support complex phenotype detection. In 2009, Mayo Clinic released the

clinical Text Analysis and Knowledge Extraction System (cTAKES), which includes a negation annotator that

identifies negation status of a named entity by searching for negation words within a fixed word distance. However,

this negation strategy is not sophisticated enough to correctly identify complicated patterns of negation. This paper

aims to investigate whether the dependency structure from the cTAKES dependency parser can improve the negation

detection performance. Manually compiled negation rules, derived from dependency paths were tested.

Dependency negation rules do not limit the negation scope to word distance; instead, they are based on syntactic

context. We found that using a dependency-based negation proved a superior alternative to the current cTAKES

negation annotator.

Introduction

In clinical documents, named entities often include diseases and disorders or signs and symptoms. Retrieving these

clinical named entities is important for both clinical research and patient health care. However, not all clinical

named entities in clinical documents are actually present in patients. Those mentioned but not present are often

ruled out or absent [1]. Thus, it is critical to differentiate negative named entities from positive ones in order to

accurately compile patients’ clinical conditions and produce patient profiles that are fundamental for high

throughput phenotyping and other modes of secondary use.

Mayo Clinic developed the clinical Text Analysis and Knowledge Extraction System (cTAKES) and first released it

to the open source community
1
 in 2009. cTAKES is a comprehensive, modular, extensible information extraction

system, which processes clinical narratives and identifies clinical named entities along with attributes; one of these

attributes is negation [2, 3]. cTAKES has been applied to various use cases in clinical domains [4-7].

The original cTAKES negation module is roughly based on NegEx [8], which implements a regular expression

pattern matching algorithm to search for manually defined negation words around named entities, within a fixed

distance of word tokens. cTAKES determines negation by searching negation keywords within seven words on the

left and the right of the named entity. This simple algorithm catches most conditions explicitly negated in clinical

narratives. However, a fixed negation scope is not flexible enough to deal with complicated negation mentions, and

cannot correctly identify negation when contextual understanding is necessary. One way to better understand

contexts and handle difficult negations is to use deeper syntactic structure, but this has largely been ignored in

clinical natural language processing. Mayo Clinic’s latest release of the cTAKES (version 1.1.0) addresses this

historical gap by introducing a dependency parser module that provides the rich syntactic information.

In this paper, we investigated the degree of enhancement in negation detection attributable to a dependency

structure. We have tested the negation accuracy of our dependency parser-based negation (DepNeg) against the

baseline of word distance-based cTAKES negation, and found that DepNeg performed better.

Background

Negation in clinical narratives has been investigated in numerous ways. Many negation algorithms, including the

existing cTAKES negation module, take a rule-based approach, with a variety of techniques: regular expression

pattern matching [8], lexical scan with context free grammar [9], or invoking a negation ontology [10]. Some

negation algorithms use machine learning techniques, such as naïve Bayes and decision trees [11]. In comparison

1
 http://www.ohnlp.org

1

with the proposed work, these approaches ignore or make marginal use of deeper syntactic structure. Similar work

to ours has invoked syntactic information using grammatical parsing [12], but our approach differs in that we use

dependency parses which directly encode thematic roles like subject and object instead of using explicit grammatical

phrasal structure.

Previous writers suggest that negation in clinical narratives is relatively uncomplicated [9, 13] and that a limited set

of negation words cover a large portion of negation mentions [1]. With that hypothesis, a rule based approach that

uses a lexical pattern matching algorithm has been widely applied. However, properly defining negation scope is a

challenging task for complicated negation mentions. The rich syntactic and relation information from dependency

parses could aid in mitigating this issue. In the next section, we begin with a brief background of dependency

parsing, focusing on the output parses in a graphical and hierarchical representation. In the method section we

explain how dependency path rules can be applied in negation.

Dependency Parsing

Figure 1 shows an example of an output dependency parse for the sentence “There was no evidence of edema.”

Dependency parsing is typically defined at the sentence level.

Figure 1. An example dependency parse.

Unlike deep parses, dependency parses do not explicitly represent phrasal structure like noun phrases or verb

phrases. Rather, syntactic structure is expressed as directed dependencies between words, so that words (ovals)

higher on the chart ‘generate’ words lower on the chart. An additional root node, with only one dependent (in this

case, “was”) is present for every dependency parse.

The dependencies may be labeled with relations (boxes in the diagram), such as the subject relation SBJ, the object

relation OBJ, a noun-modifying relation NMOD, a preposition-modifying relation PMOD, or a punctuation mark P.

Additional information may be included with each word, such as the part of speech (POS) that has been included

underneath each word in the example.

The goal of a dependency parser is to induce this kind of structure for a given utterance – it is typically required that

the sentence be tokenized, POS-tagged, and lemmatized. Two main approaches have been explored: graph-based

approaches and transition-based approaches. cTAKES invokes the ClearParser [14, 15] dependency parser, which

takes the latter approach – it proceeds in a single pass over the words in the sentence, determining what

dependencies are present after each input word. ClearParser improves on previous transition-based approaches by

adding an extra transition that substantially speeds up computation, making it approximate a linear execution time.

These speed characteristics, coupled with state-of-the-art accuracy, make it an arguably better choice for large-scale

processing than other options [15] such as MaltParser [16] or the Stanford Dependency Parser [17].

Data

To develop dependency patterns rules for negation, we examined 41 sentences from the 2010 I2B2/VA NLP

challenge data
2
 that contained an assertion status of “absent.” The test data consists of 160 Mayo clinical notes in

2
 https://www.i2b2.org/NLP/Relations/

<ROOT>
was
VBD

There
EX

no
DT

evidence
NN

of
IN

edema
NN

.

ROOT

SBJ OBJ

NMOD NMOD

PMOD

 P

2

which named entities and their negation were manually annotated by four domain experts. Inter-annotator

agreement (IAA) has been examined and reported in Table 1 [2].

IAA = matches / (matches + non-matches)

Table 1. Inter-annotator agreement for negation on the 160-note Mayo corpus.

A12 is the gold standard created by A1 and A2; A34 is the gold standard created by A3 and A4

Annotation sets IAA

A1, A2, A3, A4 0.790

A12, A34 0.848

Our final “consensus” data was derived after an adjudication stage during which all disagreements were discussed

and a decision on the final label was reached. This final “consensus” data was used in the test experimentation.

Methods

This study applied dependency parses to negation detection. Given a “focal” named entity in clinical text, we seek to

determine whether that named entity is negated. To do so with dependency parses, we first examined a development

(i.e., training) set of sentences from the I2B2/VA NLP challenge and manually designed syntactic rules which

indicated when terms were negated. We then compared our dependency parser-based approach against the existing

cTAKES negation module.

The cTAKES pipeline performs standard text pre-processing on clinical text (Figure 2, refer to [2] for details), and

satisfies the pre-conditions for a dependency parser. Recall that dependency parsing is defined on pre-tokenized

sentences, typically with POS tags and lemmas. cTAKES includes a lemmatizer based on the LVG Specialist

Lexicon
3
 and the Maximum Entropy-based POS tagger from OpenNLP

4
. Thus, in this pipeline, a dependency parser

and candidate named entity recognition (NER), such as signs/symptoms and diseases/disorders, (both in bold in

Figure 2) are available to the negation detection module.

Figure 2. A block diagram of modules in the cTAKES pipeline.

We based negation rules on the dependency path between the focus (i.e., named entity) and each other term (i.e.,

hypothesized negation words) in the text. Dependency paths can easily be calculated between any two nodes on a

dependency tree. In Figure 3, “edema” is a focus term discovered by the dictionary lookup module, and the

dependency path between “no” and “edema” is simply a subset of the dependency parse.

{no}DT < NMOD < {evidence}NN > NMOD > {of}IN > PMOD > {edema}NN

Figure 3. An example of a dependency path.

3
 http://SPECIALIST.nlm.nih.gov

4
 http://opennlp.sourceforge.net/projects.html

no
DT

evidence
NN

of
IN

edema
NN

NMOD NMOD

PMOD

Sentence

Detector
Tokenizer

LVG

Lemmatizer

Context

Dependent

Tokenizer

POS

tagger
Chunker

Dependency

Parser NER
Negation

Detector

Lookup

Window

3

This dependency path can also be represented as a string which enables path matching implementation. In this

paper, however, we will use the graphical representation for clarity.

To use the cTAKES named entities as focus annotations for DepNeg, we followed the steps below.

Find the head node. For each focus annotation, we first normalized multi-word foci to the highest node or

headword to represent the whole span, since dependency paths are undefined on multi-word expressions. For

example, if “rib fracture” was the focus annotation in “No evidence of rib fracture,” we would choose “fracture”

as the representative word (assuming “rib” is a dependent of “fracture”).

Calculate paths. Given the representative word of the named entity, we considered each other token in the

sentence, and calculated its path to the focus annotation.

Match paths. For each token-to-focus dependency path, evaluate whether the dependency path matches a pattern

in a bank of acceptable dependency path patterns (see below). If there is any match, negate the named entity.

Dependency Path Patterns

The dependency path patterns (Figure 4) were developed by examining a small subset of data from the 2010

I2B2/VA NLP challenge. The I2B2 data were run through the whole cTAKES pipeline, including the dependency

parser. Figure 4 divides the negation patterns on dependency paths up into several types of syntactic constructions

which can result in the negation of a named entity.

Negated Verbs (3 patterns). Negating a verb (e.g., “did not show…”) usually implies that the whole verb phrase is

negated, and thus that objects or complements should be negated.

Negative Verbs (3 patterns). Some verbs (e.g., “denies”) inherently disqualify the direct object of the verb. A

special case also exists, in which the verb is only negative if a particle is present (e.g., “rules out”).

Negative Prepositions (1 pattern). A few prepositions (e.g., “without”) will negate the object of the preposition.

Negated Nouns (2 patterns). Certain negating determiners (e.g., “no”) will negate the nouns they modify.

Negative Adjectives (3 patterns). Some adjectives (e.g., “negative”) will negate the nouns they modify.

Conjunction Expansion. This rule is in fact a meta-rule, allowing for conjunctions or lists of any kind to be used

in every other rule.

These pattern rules were implemented in regular expression form on the string representation of paths, but are

presented in graphical form in Figure 4. The graphical patterns are similar to the notation we have used for

dependency trees and dependency paths. One difference is that bold or italicized text represents a set of terms

(cross-indexed with Figure 5); acceptable paths would then draw from that set. Additionally, blank nodes or

relations indicate that any term or relationship would be acceptable, given that the other conditions were satisfied.

The existing cTAKES negation module uses negation words and other keywords in its term pattern matching (see

Figure 5). To isolate the contribution of dependency parses to negation, we used the same sets of negation words

and keywords in the DepNeg dependency path patterns. It should be clarified that while we have motivated the

rules by their syntactic behavior, negation words and other keywords used in the existing cTAKES negation module

are not entirely consistent or optimal for a dependency-based negation paradigm. Thus the syntactic categories or

POS tags may at times be misnomers – INNEG, for example, should be the set of negative prepositions, but it

includes words such as “absent” and “none” which are not prepositions.

4

VBNEG

OBJ

PTNEG

VBcopula

ADV PRD

OBJ
PTNEG

VBMOD

ADV VC

OBJ
PTNEG

VBMOD

ADV VC

NNPOS

 INPOS
IN

 PMOD

VBNEG
VBN SBJ

“out”

COLNEG

 OBJ

DTNEG

 NMOD

INNEG

NN
PMOD

PMOD

DTNEG

NNPOS

INPOS
IN

NMOD

JJNEG

INPOS
IN

PMOD

IM

JJNEG

 AMOD

 OBJ

JJNEG

 NMOD

RCONJ *

 Negative Prepositions

 Negative Verbs

 Negated Nouns

 Negative Adjectives

 Negative Verb with Particle

 Conjunction Expansion

… was not anemic…

… does not appear distended…

… does not show evidence edema…

… without medication…

… denies pain…

… fever declining…

… no hypertension…

… no history of hypersensitivity…

… cancer negative…

… unlikely to have carcinoma…

… negative for swelling…

… rules out angina…

… no indication of MI, stroke, or trauma…

 Negated Verbs VBcopula

 be

 is

 was

RCONJ

 CONJ

 COORD

 APPO

 P

VBMOD

 can

 ca

 will

 must

 could

 would

 should

 shall

 did

PTNEG
 not

 n’t

 ‘t

COLNEG

 rule

 rules

 ruled

 ruling

 rule-out

VBPOS

 reveal

 have

 feel

 complain

 demonstrate

 appear

 cause

 find

 discover

 (+inflected)

VBNEG

 deny

 fail

 decline

 exclude

 (+inflected)

INNEG

 without

 absent

 none

DTNEG

 no

 any

 neither

 nor

 never

INPOS

 of

 in

 for

 with

JJNEG

 unremarkable

 unlikely

 negative

NNPOS

 evidence

 indication

 sign

 symptom

 sx

 dx

 diagnosis

 history

 hx

findings

 (+inflected)

s

g
Figure 5. cTAKES negation module keywords, reused in DepNe
Figure 4. DepNeg negation patterns based on dependency paths, with example

5

Evaluation Measurement

For evaluation of system outputs we used:

FPTP

TP
precision

+
=

FNTP

TP
recall

+

=

)(

)*(*2

recallprecision

recallprecision
F-score

+
=

FNTNFPTP

TNTP
accuracy

+++

+
=

Where TP is the number of true positives, FP is the number of false positives, TN is the number of true negatives,

and FN is the number of false negatives.

Results

Recall that to achieve a fair comparison of negation performance, we used the same set of negation indication words

in both DepNeg and cTAKES negation. However, DepNeg did not use pseudo-negation phrases (i.e., double

negation, for example, “not rule out”) which was implemented in cTAKES negation.

We used the dependency parser in the latest version of cTAKES (version 1.1.0) to determine a dependency structure

between clinical named entities and negation indication words. The dependency parser was trained on the merged

data of three sets, clinical questions
5
, GENIA [18], and Wall Street Journal (WSJ) [19].

Table 2 shows negation statistics and evaluation of the original cTAKES negation (Table 2 (a)) and the DepNeg

(Table 2 (b)) model on the test set (Mayo’s 160 clinical notes). Negation performance of two clinical named entities

was reported. Signs/symptoms contain 111 negated entities (85 TPs + 26 FNs) out of total 381 entities and

diseases/disorders contain 123 negated entities (102 TPs + 21 FNs) out of total 854 entities. In other words,

approximately 30% of signs/symptoms and 10% of diseases/disorders are negated in the actual data.

Overall, DepNeg produced higher F-score and accuracy than cTAKES Negation. Both models tend to perform

better in precision than recall and this phenomenon is especially noticeable in DepNeg. In DepNeg recall is lower

but precision is much higher than cTAKES Negation (0.8462 in cTAKES vs. 0.9665 in DepNeg in All) – i.e.,

DepNeg produced much lower number of FPs than cTAKES Negation. In signs/symptoms, which contain higher

ratio of negated entities, DepNeg produced very high precision (0.9884) with the same level of recall in cTAKES

negation.

Table 2. Negation statistics and evaluation on the test set

(a) cTAKES Negation

 TP TN FP FN precision recall F-score accuracy

Signs/symptoms 85 258 12 26 0.876 0.766 0.817 0.900

Diseases/disorders 102 709 22 21 0.823 0.829 0.826 0.950

All 187 967 34 47 0.846 0.799 0.822
†
 0.934

†

(b) DepNeg

 TP TN FP FN precision recall F-score accuracy

Signs/symptoms 85 269 1 26 0.988 0.766 0.863 0.929

Diseases/disorders 88 726 5 35 0.946 0.715 0.815 0.953

All 173 995 6 61 0.966 0.739 0.838
†
 0.946

†

†
micro average – i.e., obtained by using a global count of each named entity and averaging these sums.

5
 a corpus of 2000 clinical questions that have been treebanked according to the up-to-date Penn Treebank guidelines

6

Discussion

DepNeg produced better negation performance than the original cTAKES negation in terms of F-score and

accuracy. This improvement is mainly due to reducing FPs and so increasing precision. Since the negation scope

using dependency rules is not limited to by distance (i.e., number of word tokens) but depends on syntactic

information in context, DepNeg was able to correctly determine more complicated negations than cTAKES

negation.

DepNeg performed more accurately than the cTAKES negation in following cases where DepNeg determinations

were correct but cTAKES negations were incorrect. A bold denotes a named entity to be examined for negation:

1) Contextual understanding (truth state = not negated): e.g., “He felt that no specific therapy was available

regarding Moebius sequence.” “I do not recommend drug treatment for stone prevention.” “If her pain

should not have been resolved by that time, there is the possibility of repeating facet rhizotomy.”

2) Long distance between named entities and negation words (truth state = negated): e.g., “She denies any ear

pain, sore throat, odynophagia, hemoptysis, shortness-of-breath, dyspnea on exertion, chest discomfort,

anorexia, nausea, weight-loss, mass, adenopathy or pain.”

3) Determining the direction of negation scope (truth state = not negated): e.g., “However, I suspect that her

pain is not due to an underlying neurologic disorder.”

However, DepNeg may fail in certain cases. The following are error analyses for examples of DepNeg failing to

correctly identify negation while cTAKES negation was correct (truth state = negated):

1) Incorrect dependency parse: e.g., “Molecular fragile-X results reveal no apparent PMR-1 gene

abnormality.” (The dependency parser incorrectly identified “no” as modifying “PMR” instead of

“abnormality.) “She denies any blood in the stool.” (The dependency parser inferred that “in the stool”

was a modifier of “denies” rather than “blood.”)

2) Incomplete rules: e.g., “Mrs. Jane Doe returns with no complaints worrisome for recurrent or metastatic

oropharynx cancer.” (The syntactic construction “worrisome for...” is not present as a rule in dependency

path patterns.)

3) Both 1) and 2): e.g., “She is not having any incontinence or suggestion of infection at this time” (“Of

infection” was parsed incorrectly to modify “incontinence” instead of “suggestion” The second Negated

Noun rule (see Figure 4) should be generalized to allow conjunctions with constructions like “suggestion

of,” where the focus is in a prepositional phrase.)

Dependency pattern rules were developed by examining a small subset of data from the 2010 I2B2/VA NLP

challenge. We believe that more variety of dependency pattern rules derived from a larger data set can reduce type-

2 errors. As can be seen in the type-1 errors), the performance of DepNeg is also affected by the accuracy of the

dependency parser. The cTAKES dependency parser learns a dependency structure from training data and therefore

different training sets might vary performance. Based on our observations, training dependency parsers on larger

corpora produced higher negation detection accuracy in DepNeg. When using a dependency parser trained only on

clinical questions instead of the merged sets of three data sources, DepNeg produced lower negation accuracy due to

the inferior dependency parse performance. Although the training set of clinical questions might be in the same

domain with respect to semantic content, its syntactic constructions were highly divergent. In this sense, we believe

that using a dependency parser trained on more comprehensive data would reduce type-1 errors.

Conclusion

The main focus of this study was to examine the possibility of enhancement in negation annotation when using

dependency structure rather than to maximize negation accuracy. Our results support the idea that dependency

structure can improve the negation annotation that uses a fixed negation scope. Even though we have used a limited

set of dependency rules compiled from a small data set, DepNeg performed well and was able to identify

complicated negations that were wrong in the original cTAKES negation. In the future we believe that more

comprehensive dependency rules that cover most negation patterns and a dependency parser trained on additional

data would further improve negation accuracy. We also believe that using more negation words compiled from

extra data or sources could enhance the DepNeg performance. Finally, as more negation-annotated clinical data

7

becomes available, machine learning techniques may be used in conjunction with our heuristic rules defined here to

further improve negation accuracy.

Acknowledgements

We would like to thank Vinod Kaggal who provided us with technical support to modifying cTAKES negation

annotator. This work was partially supported by SHARP 4 grant 90TR000201 (PI Chute).

References

1. Chapman W, Bridewell W, Hanbury P, Cooper G, Buchanan B. Evaluation of negation phrases in narrative

clinical reports. Proc AMIA Symp; 2001; 2001. p. 105–9.

2. Savova G, Masanz J, Ogren P, et al. Mayo Clinical Text Analysis and Knowledge Extraction System (cTAKES):

architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507-13.

3. Savova GK, Kipper-Schuler K, Buntrock JD, Chute CG. UIMA-based clinical information extraction system.

LREC 2008: Towards enhanced interoperability for large HLT systems: UIMA for NLP; 2008; 2008.

4. D'Avolio LW, Nguyen TM, Farwell WR, et al. Evaluation of a generalizable approach to clinical information

retrieval using the automated retrieval console (ARC). J Am Med Inform Assoc. 2010;17(4):375-82.

5. Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, Chute CG. Leveraging informatics for genetic studies: use of the

electronic medical record to enable a genome-wide association study of peripheral arterial disease. J Am Med

Inform Assoc. 2010;17(5):568-74.

6. Nielsen RD, Masanz J, Ogren P, Ward W, Martin JH, Savova GK. An Architecture for Complex Clinical

Question Answering (in press). IHI 2010; 2010.

7. Sohn S, Savova GK. Mayo Clinic Smoking Status Classification System: Extensions and

Improvements. AMIA Annual Symposium; 2009; San Francisco, CA: 619-623; 2009.

8. Chapman W, Bridewell W, Hanbury P, Cooper G, Buchanan B. A simple algorithm for identifying negated

findings and diseases in discharge summaries. J Biomed Inform. 2001;34:301-10.

9. Mutalik P, Deshpande A, Nadkarni P. Use of general-purpose negation detection to augment concept indexing of

medical documents: a quantitative study using the UMLS. J Am Med Inform Assoc. 2001;8:598–609.

10. Elkin PL, Brown SH, Bauer BA, et al. A controlled trial of automated classification of negation from clinical

notes. BMC Medical Informatics and Decision Making. 2005;5(13).

11. Goldin M, Chapman WW. Learning to detect negation with ‘Not’ in medical texts. . Proceedings of ACM-

SIGIR; 2003; 2003.

12. Huang Y, Lowe HJ. A novel hybrid approach to automated negation detection in clinical radiology reports. . J

Am Med Inform Assoc. 2007;14(3):304-11.

13. Ruch P, Baud R, Geissbuhler A, Rassinoux A. Comparing general and medical texts for information retrieval

based on natural language processing: an inquiry into lexical disambiguation. . Medinfo. 2001;10:261–5.

14. Choi JD, Nicolov N. K-best, Locally Pruned, Transition-based Dependency Parsing Using Robust Risk

Minimization. Amsterdam & Philadelphia: John Benjamins; 2009

15. Choi JD, Palmer M. Getting the most out of transition-based dependency parsing. Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL:HLT'11);

2011; Portland, Oregon; 2011. p. 687-92.

16. Nivre J, Hall J, Nilsson J. MaltParser: A Data-Driven Parser-Generator for Dependency Parsing. Proceedings of

the fifth international conference on Language Resources and Evaluation (LREC2006); 2006; Genoa, Italy; 2006. p.

2216-9.

17. Marneffe M-Cd, MacCartney B, Manning CD. Generating Typed Dependency Parses from Phrase Structure

Parses. Proceedings of the fifth international conference on Language Resources and Evaluation (LREC2006);

2006; Genoa, Italy; 2006. p. 449-54.

18. Tateisi Y, Yakushiji A, Ohta T, Tsujii Ji. Syntax Annotation for the GENIA corpus. Proceedings of the IJCNLP;

2005; Jeju Island, South Korea; 2005. p. 222--7.

19. Marcus MP, Santorini B, Marcinkiewicz MA. Treebank-2. Philadelphia: Linguistic Data Consortium; 1995.

8

