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Abstract

Background: Metabolite networks are suggested to reflect biological pathways in health

and disease. However, it is unknown whether such metabolite networks are reproducible

across different populations. Therefore, the current study aimed to investigate similarity

of metabolite networks in four German population-based studies.

Methods: One hundred serum metabolites were quantified in European Prospective

Investigation into Cancer and Nutrition (EPIC)-Potsdam (n¼2458), EPIC-Heidelberg

(n¼812), KORA (Cooperative Health Research in the Augsburg Region) (n¼ 3029) and

CARLA (Cardiovascular Disease, Living and Ageing in Halle) (n¼1427) with targeted

metabolomics. In a cross-sectional analysis, Gaussian graphical models were used to

construct similar networks of 100 edges each, based on partial correlations of these

metabolites. The four metabolite networks of the top 100 edges were compared based

on (i) common features, i.e. number of common edges, Pearson correlation (r) and ham-

ming distance (h); and (ii) meta-analysis of the four networks.
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Results: Among the four networks, 57 common edges and 66 common nodes (metabo-

lites) were identified. Pairwise network comparisons showed moderate to high similarity

(r¼ 63–0.96, h¼7–72), among the networks. Meta-analysis of the networks showed that,

among the 100 edges and 89 nodes of the meta-analytic network, 57 edges and 66

metabolites were present in all the four networks, 58–76 edges and 75–89 nodes were

present in at least three networks, and 63–84 edges and 76–87 edges were present in at

least two networks. The meta-analytic network showed clear grouping of 10 sphingoli-

pids, 8 lyso-phosphatidylcholines, 31 acyl-alkyl-phosphatidylcholines, 30 diacyl-

phosphatidylcholines, 8 amino acids and 2 acylcarnitines.

Conclusions: We found structural similarity in metabolite networks from four large stud-

ies. Using a meta-analytic network, as a new approach for combining metabolite data from

different studies, closely related metabolites could be identified, for some of which the bio-

logical relationships in metabolic pathways have been previously described. They are can-

didates for further investigation to explore their potential role in biological processes.

Key words: metabolomics, Gaussian graphical models, network analysis, reproducibility, meta-analysis, biological

pathways

Introduction

Metabolomic profiling is increasingly used to discover bio-

markers that reflect early perturbations linked to disease

risk or to objectively measure food intake and other envi-

ronmental exposures.1–3 Thereby, many novel biomarkers

have been identified that may improve assessment of vari-

ous exposures or predict disease risk.2,4–6 One important

step in the process of biomarker discovery is usually the

replication of results in different study populations to re-

duce the chance of type one error.

High-throughput metabolomics is often analysed using

correlation-based networks to infer biological relationships

in the data.7,8 This approach has been successfully applied

in several single studies to identify novel metabolic path-

ways.9–11 However, little is known about whether these

metabolite networks can be replicated across different pop-

ulations. So, the question arises as to whether the correla-

tion structure of the identified metabolites is similar across

different studies that include study participants with differ-

ent characteristics (e.g. age and lifestyle). This should be a

prerequisite to replicating metabolomic results in different

populations.

Moreover, metabolic profiles from different studies are

frequently assessed, but meta-analysis of metabolite net-

works has not been conducted in the metabolomics field.

Partial-correlation-based network comparisons and meta-

analysis of such networks can help to identify consistent

relationships between metabolites, which may be further

investigated for their potential role in biological processes.

Probabilistic graphical models such as Gaussian graphi-

cal models (GGMs) are interesting methods proposed for

analysis of metabolomics data.12 A GGM is an undirected

graph that identifies independence between two variables

conditional on all others and has been suggested as an ef-

fective tool to recover metabolic pathways from metabolite

concentrations.12 This approach can be further used to

combine metabolomics data of different studies by meta-

analysing network edges (partial correlations between two

metabolites adjusted for the other metabolites) and con-

structing a meta-analytic metabolite network to represent

the association between metabolites and their underlying

metabolic pathways. This meta-analytic network may

identify metabolites that are linked in certain metabolic

pathways.

Key Messages

• Metabolite networks constructed with Gaussian graphical models showed similar structures across four population-

based studies.

• We suggest meta-analysis of metabolite networks as a novel approach to identifying biological pathways.

• The identified associations between metabolites in the meta-analytic network, particularly for phospholipids and

amino acids, are candidates for further investigation to explore their role in health and disease.
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Against this background, the present study aimed to

compare and meta-analyse the metabolite correlation net-

works to assess their stability and identify closely related

metabolites in four large German population studies, in-

cluding the European Prospective Investigation into

Cancer and Nutrition (EPIC)-Potsdam, EPIC-Heidelberg,

KORA (Cooperative Health Research in the Augsburg

Region) and CARLA (Cardiovascular Disease, Living and

Ageing in Halle).

Methods

This study was based on metabolomic measurements of

participants from four German population-based studies

(EPIC-Potsdam, EPIC-Heidelberg, KORA and CARLA).

Ethical approval for all four studies was obtained from rel-

evant ethical-approval committees. Written informed con-

sent was obtained from all participants in the included

studies.

Description of the study populations

EPIC-Potsdam and EPIC-Heidelberg comprise 27 548 and

25 540 study participants, respectively. Study design and

methods in EPIC-Potsdam and EPIC-Heidelberg were simi-

lar and have been described in detail elsewhere.13,14 For

measurements of serum metabolites, a random subcohort

was established in 2006 in EPIC-Potsdam (n¼2483) and

2009 in EPIC-Heidelberg (n¼ 843).15 The KORA study is

conducted in Southern Germany16 and included 3044 par-

ticipants, who took part in the survey (KORA F4) from

2006 to 2008. The CARLA study included 1779 partici-

pants with baseline examinations between 2002 and 2006.

Serum metabolites were assessed for 1427 participants.

Details of KORA and CARLA were described else-

where.17,18 After exclusion of participants with missing

data on any covariate (n¼ 23) or metabolites (n¼ 48),

2458 participants in EPIC-Potsdam, 812 in EPIC-

Heidelberg, 3029 in KORA and 1427 in CARLA were

available for analysis.

Blood-sample collection and assessment of
covariates

Blood samples from all participants were collected at base-

line or follow-up (KORA) using standard protocols as de-

scribed elsewhere.4,18–20 Age, sex, weight and height were

collected at baseline in all studies. Body mass index (BMI)

was estimated as: (weight in kilogrammes)/(height in

metres)2.

Metabolomic profiling

Metabolites were quantified in all four populations in se-

rum blood samples using the AbsoluteIDQTM p150 and

p150 Kits (Biocrates Life Scienes AG, Innsbruck Austria)

together with FIA- and LC-ESI-MS/MS (flow injection

analysis/liquid chromatography-electrospray ionization-

tandem mass spectrometry) as described in detail by

Römisch-Margl et al.21 and Zukunft et al.22 The

AbsoluteIDQTM p150 Kit was applied for samples of

EPIC-Potsdam23 and CARLA,24 the AbsoluteIDQTM p180

Kit for samples of the KORA F4 study25 and the

MetaDisIDQTM Kit for samples of EPIC-Heidelberg.13–15

Metabolite measurements of EPIC-Potsdam, KORA and

CARLA samples were performed in the Genome Analysis

Center at the Helmholtz Zentrum München and for EPIC-

Heidelberg in Leipzig. To ensure comparability, only those

metabolites were included in the analysis, which were

quantified by all three metabolite kits. In addition, metabo-

lites below the limit of detection and those with very high

analytic variance in any of the four studies were excluded,

leaving 100 metabolites for the present analysis. The final

metabolite set contained hexose (sum of six-carbon mono-

saccharides without distinction of isomers), 2 acylcarni-

tines (Cx:y; x¼ number of carbon atoms, y¼ number of

double bonds), 10 sphingolipids, 12 amino acids, 35 acyl-

alkyl-, 32 diacyl- and 8 lyso-phosphatidylcholines (PC)s

(Supplementary Table 1, available as Supplementary data

at IJE online).

Statistical analysis

Metabolite concentrations were log-transformed to ap-

proximate normality. Distributions of the metabolite con-

centrations were visually assessed using QQ-Plot and

Histogram, which showed approximately normal distribu-

tion. However, long tails and potential outliers were

detected for some metabolites. QQ-Plots for the top 20

metabolites from the study sample are shown in

Supplementary Figures 1–5, available as Supplementary

data at IJE online. Therefore, a non-parametric approach

was also used to confirm that major findings do not vary

by choice of method. Means, standard deviations and coef-

ficients of variation (CV) were calculated for each metabo-

lite in all studies adjusted for age, sex and BMI. For

comparison of metabolic profiles, each individual study

metabolite network was estimated using the GGM ap-

proach. In the first step, a partial-correlation matrix of the

100 metabolites was estimated for each study sample.

In the second step, the top 100 highly correlated metabolite

pairs (edges) were selected to construct networks in the re-

spective samples. The minimum partial correlation was

2072 International Journal of Epidemiology, 2018, Vol. 47, No. 6

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy119#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy119#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy119#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy119#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy119#supplementary-data


0.19 in the network of Heidelberg, 0.25 in the networks of

Potsdam, 0.24 in the network of KORA and 0.26 in the

network of CARLA. We selected the first 100 edges with

the highest correlation, so that the identified networks are

similar but interpretable, and the correlations are high

enough to have biological relevance, since only highly cor-

related metabolites have been suggested to be biologically

related.26 Identified networks were exported to Cytoscape

for visualization.27 The same analyses were repeated using

Spearman’s rank partial correlation. First, Spearman’s

rank correlation for all the metabolites was estimated and

then the top 100 highly correlated metabolite pairs (edges)

were selected from each sample to construct respective

networks.

To assess the similarity between network structures,

correlations between each pair of networks were estimated

using gcor function from R-package sna.28 For this pur-

pose, the networks (edge lists) were converted into adja-

cency matrices, which in turn were used to estimate

product–moment correlation. To estimate structural simi-

larity between the four networks, hamming distance was

determined using the same R-package. Hamming distance

is the number of changes required to transform one net-

work into another,29 e.g. if the hamming distance between

two networks X and Y is 1, then one change (i.e. an addi-

tion or deletion of one edge) will result in an identical

structure of the two (X and Y) networks. A lower ham-

ming distance reflects a similarity in network structures.

The hamming distance was estimated by transforming the

networks into adjacency matrices. The adjacency matrices

were then used to estimate the hamming distance with

(code) hdist in sna R-package. For easier comparison, the

numbers of common edges in each combination of the

four metabolite networks were visualized using a Venn

diagram, which was constructed using R-package

VennDiagram.29 Commonality of the four networks was

reflected by visualizing the common edges of the four net-

works estimated by both the Pearson and Spearman partial

correlations. As metabolites in EPIC-Heidelberg were

quantified in a different laboratory, though using a stan-

dardized approach, a second network of common edges

was constructed for EPIC-Potsdam, CARLA and KORA

only. For meta-analysis of the four networks, a random-

effect meta-analysis of partial-correlation coefficients was

conducted using all common edges. For meta-analysis, par-

tial-correlation coefficients were transformed to fisher

Z-scores and back-transformed after analysis. The correla-

tion coefficients from meta-analysis were used to construct

a meta-analytic metabolite network by selecting 100 highly

correlated metabolite pairs, as was done for the individual

networks. Due to high heterogeneity among studies, a

combined metabolite network of all studies was con-

structed and common edges of all the metabolites observed

in each study were visualized over the meta-analytic net-

work in Cytoscape. Network analyses were adjusted for

age, sex and BMI, which are related to metabolite

differences.

Results

EPIC-Potsdam and EPIC-Heidelberg study populations

were similar with respect to age, sex and BMI, whereas the

study populations in KORA and CARLA were older and

had a lower percentage of women and a higher BMI com-

pared with the two EPIC studies (Table 1).

Considerable differences were found for metabolite

concentrations (mean and CV) between the four studies

(Supplementary Table 1, available as Supplementary data

at IJE online). Overall, 29 metabolites in Potsdam,

50 metabolites in Heidelberg, 20 metabolites in KORA

and 59 metabolites in CARLA showed high variation

(� 30% CV) in concentration.

The metabolite networks of the four studies are shown

in Supplementary Figures 5–8, available as Supplementary

data at IJE online. All networks identified clusters of

sphingolipids, lyso-PCs, diacyl-PCs and acyl-alkyl-PCs, al-

beit with large variation in network topologies, i.e. connec-

tion between metabolites. Amino acids showed the highest

variation in network connectivity, although with consistent

clustering of tryptophan, tyrosine and phenylalanine in all

networks. Hexoses (represented as a single metabolite)

were connected with amino acids valine and tryptophan

only in CARLA. Two acylcarnitines were connected as a

pair in all the studies except in EPIC-Potsdam. The highest

Table 1. Sample characteristics of the included studiesa

Characteristicsb EPIC-Potsdam EPIC-Heidelberg KORA CARLA

(n¼2458) (n¼812) (n¼3029) (n¼1427)

Age (years) 50.3 (9.0) 50.7 (7.9) 56 (13.3) 63.3 (9.7)

Sex (women %) 61.2 54.9 51.5 44.9

BMI (kg/m2) 26.1 (4.3) 25.6 (4.2) 27.6 (4.8) 28.1 (4.5)

aShown are mean values and standard deviations.
bBlood samples from EPIC-Potsdam, KORA and CARLA were analysed in the same laboratory. Samples from KORA were analysed using a different kit.
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variation in metabolites topology was observed in the

network of EPIC-Heidelberg as compared with other

networks (Figure 1a and Table 2). Pairwise comparison of

the networks showed the greatest similarity represented by

the lowest hamming distance and the highest correlation

between EPIC-Potsdam and KORA. EPIC-Heidelberg’s

metabolite network was the most dissimilar from all other

networks, as it showed a high hamming distance and lower

correlation (Figure 1b).

Overlap of the common edges among the different com-

binations of the four studies is shown in Figure 1b. The

highest overlap of the edges was observed between EPIC-

Potsdam and CARLA. The metabolite network of EPIC-

Heidelberg showed the smallest overlap of edges with the
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Figure 1. (a) Edges overlap among four studies included in the study. Shown are the numbers of edges. (b) Pearson’s correlation and hamming dis-

tance between metabolite networks of the studies included in the study. The upper triangle shows the hamming distance and the lower triangle

shows correlation among the networks. The lower values of the hamming distance show greater similarity whereas the lower value of correlation

shows less similarity between the networks.

Table 2. Number of connected nodes (metabolites) in individual and combined metabolite networks in the four studies

Name of study Metabolitesa (number)

Hexoses AC AA LysoPC DiA-PC AA-PC SL Total

(1) (2) (12) (8) (32) (35) (10) (100)

Heidelberg (H) 00 02 06 08 30 29 10 85

Potsdam (P) 01 02 09 08 30 32 10 92

CARLA (C) 00 02 06 08 30 33 10 89

KORA (K) 00 00 08 08 29 31 10 86

HP 00 02 05 08 30 27 10 82

HC 00 02 03 08 30 27 10 80

HK 00 00 03 08 29 26 10 76

PK 00 00 07 08 29 30 10 84

PC 00 02 06 08 30 31 10 87

CK 00 00 05 08 29 31 10 83

HPK 00 00 03 08 29 25 10 75

HPC 00 02 03 08 30 26 10 79

HCK 00 00 02 08 29 26 10 75

PCK 00 00 05 08 29 30 10 82

HPCK (Common network) 00 00 02 08 29 17 10 66

Meta-analytic network 00 02 08 08 30 31 10 89

aAC, acylcarnitines; AA, amino acids; LysoPC, lyso-phosphatidylcholines, DiA-PC, diacyl-phosphatidylcholines; AA-PC, acyl-alkyl- phosphatidylcholines;

SL, sphingolipids.
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other networks. Overall, 66 edges were consistently detected

in all four networks, interlinking 80 metabolites (Figure 2).

The other 20 out of 100 metabolites were unconnected and

are not shown. Lyso-PCs, diacyl-PCs and sphingolipids con-

sistently grouped together across all studies (Supplementary

Figures 1–4, available as Supplementary data at IJE online).

Among the four networks, in EPIC-Potsdam (nodes¼ 91),

CARLA (nodes¼ 95) and KORA (nodes¼ 96), a relatively

large number of metabolites were integrated in the networks,

whereas 20 metabolites (mainly amino acids and acyl-alkyl

PCs) remained unconnected in EPIC-Heidelberg (Table 2).

A structural comparison of the four networks showed

57 common edges and 66 commonly connected nodes

(Table 3), which are shown in a common network

(Figure 2). The common network showed smaller cluster-

ing of similar classes of metabolites (Figure 2). Notably,

sphingolipids, lyso-PCs and subgroups of acyl-alkyl-PCs

and tryptophan, tyrosine and phenylalanine were clustered

together. Due to differences between EPIC-Heidelberg and

the other studies, we also constructed a common network

of EPIC-Potsdam, CARLA and KORA, which showed

higher similarity of the metabolite network structures

among the three studies (Figure 3).

The meta-analytic network of the partial-correlation

coefficients represented by the 100 highly correlated me-

tabolite pairs (edges) across the four studies is shown in

Figure 4. Meta-analysis of the networks revealed that,

among the 100 edges connecting 89 nodes of the meta-

analytic network, 57 edges connecting 66 metabolites were

present in all the four networks, 58–76 edges connecting

75–89 nodes were present in at least three networks and

63–84 edges connecting 76–87 nodes were present in at

least two networks. The meta-analytic network showed

clear clusters of the paired acylcarnitines, sphingolipids,

lyso-PCs and three clusters of amino acids. Large but dif-

ferently connected clusters of acyl-alkyl-PCs and diacyl-

PCs formed the dominant structure of the networks.

Comparison of this network with the common network of

four studies showed dissimilarity in a number of edges

(Figure 5). However, it was very similar to the combined

network of Potsdam, KORA and CARLA (Supplementary

Figure 9, available as Supplementary data at IJE online).

Figure 2. Common edges of the serum metabolite network of the four studies: EPIC-Heidelberg, EPIC-Potsdam, CARLA and KORA. Nodes represent

metabolites and edges are partial correlations between two metabolites adjusted for the other metabolites as well as age, sex and BMI. Continuous

black lines represent positive and dashed lines represent inverse partial correlations. The thicknesses of the edges are proportional to the strength of

the correlations. Nodes with different border colours represent different metabolite classes: black: amino acids; purple: lyso-phosphatidylcholines;

sky-blue: sphingolipids; green: diacyl-phosphatidylcholines; red: acyl-alkyl-phosphatidylcholines.
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Table 3. Number of connected nodes (metabolites) and edges in individual and common metabolite networks in the four

studies

Name of study Metabolitesa (number)

Hexoses AC AA LysoPC DiA-PC AA-PC SL Total No of Edges

(1) (2) (12) (8) (32) (35) (10) (100) (100)

Pearson r-based networks

Heidelberg (H) 00 02 06 08 30 29 10 85 100

Potsdam (P) 00 00 08 08 29 31 10 86 100

CARLA (C) 01 02 09 08 30 32 10 92 100

KORA (K) 00 02 06 08 30 33 10 89 100

Common network 00 00 02 08 29 17 10 66 57

Spearman’s rank-based networks

Heidelberg (H) 00 02 07 08 30 29 10 86 100

Potsdam (P) 00 00 08 08 30 31 10 87 100

CARLA (C) 01 02 08 08 30 32 10 91 100

KORA (K) 00 02 05 08 30 32 10 87 100

Common network 00 00 00 07 26 20 10 65 56

aAC, acylcarnitines; AA, amino acids; LysoPC, lyso-phosphatidylcholines, DiA-PC, diacyl-phosphatidylcholines; AA-PC, acyl-alkyl- phosphatidylcholines;

SL, sphingolipids.

Figure 3. Common edges of the serum metabolite network of the three studies: EPIC-Potsdam, CARLA and KORA. Nodes represent metabolites and

edges are partial correlations between two metabolites adjusted for the other metabolites as well as age, sex and BMI. Continuous black lines repre-

sent positive and dashed lines represent inverse partial correlations. The thicknesses of the edges are proportional to the strength of the correlations.

Nodes with different border colours represent different metabolite classes: black: amino acids; purple: lyso-phosphatidylcholines; sky-blue: sphingoli-

pids; green: diacyl-phosphatidylcholines; red: acyl-alkyl-phosphatidylcholines.
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The networks constructed using Spearman’s rank partial

correlations are shown in Supplementary Figures 10–14,

available as Supplementary data at IJE online. All the indi-

vidual networks and common networks showed high simi-

larity to the corresponding networks constructed using

Pearson’s partial correlations (Table 3).

Discussion

In this study, we generated and compared the metabolite

networks of four German population-based studies.

Moreover, we applied a novel meta-analytic approach to

combine metabolite networks to identify potentially stable

correlation structures across all studies. Comparison of

metabolite networks revealed overall considerable hetero-

geneity in network topologies. However, specific metabo-

lite subgroups showed high consistency in the networks.

Consistent network structures were detected for sphingoli-

pids, lyso-PCs, acyl-alkyl-PCs and diacyl-PCs and among

the amino acids tryptophan, tyrosine and phenylalanine.

The meta-analytic network also showed clear grouping of

the metabolite classes and was, in addition, sensitive for

further plausible biological links. Consistent links between

metabolites from the same group may reflect the same un-

derlying metabolic pathways as the common determinants

of the correlation structure across the study populations.

In the identified common as well as meta-analytic net-

works, we observed connections of sphingolipids with PCs,

which could be related to the biosynthesis pathway of the

sphingolipids. The synthesis of sphingolipids require enzy-

matic transfer of phosphocholines from PCs to ceramide,

which in turn is converted to sphingolipids.30 The linkage

between these two classes could also be due to limitation

of the measurement kit owing to possible interference in

the measurement of different metabolites.31 In addition,

we observed a consistent connection between the aromatic

amino acids phenylalanine, tryptophan and tyrosine.

Phenylalanine is a substrate for tyrosine biosynthesis32

and, with tryptophan, the two are also precursors of cate-

cholamines.33 In these networks, we also observed that the

majority of stable edges connected metabolites that are

known to be directly related by a single metabolic reaction

step. This supports the idea that the reproducible correla-

tion structure of metabolites likely reflects linkage in

Figure 4. Meta-analytic serum metabolite network of the four studies: EPIC-Heidelberg, EPIC-Potsdam, CARLA and KORA. Nodes represent metabo-

lites and edges are partial correlations between two metabolites adjusted for the other metabolites as well as age, sex and BMI. Continuous black

lines represent positive and dashed lines represent inverse partial correlations. The thicknesses of the edges are proportional to the strength of the

correlations. Nodes with different border colours represent different metabolite classes: yellow: acylcarnitines; black: amino acids; purple: lyso-phos-

phatidylcholines; sky-blue: sphingolipids; green: diacyl-phosphatidylcholines; red: acyl-alkyl-phosphatidylcholines.
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metabolic pathways.34 Our results are supported by an ear-

lier KORA study which showed that the GGM has high

sensitivity and specificity in identifying reactions that are

one step apart.12 The same study, which is also included in

this analysis, likewise reported that reactions that were

two steps apart were reflected by negative correlations in

the network. This was also observed in our study, e.g.

SM.C16.1 and SM.C18.0 were negatively correlated in the

common and meta-analysed networks.

The compared networks also showed a clear separation

of amino acids and acylcarnitines and separate clustering

of sphingolipids and diacyl- and acyl-alkyl-PCs. These

findings are in agreement with earlier results observed in

KORA and EPIC-Potsdam.4 The modular structure of the

metabolites may reflect metabolic pathways including bio-

synthesis, degradation and metabolism and interaction be-

tween the different classes of metabolites. Such biological

interrelations were shown to be detectable in metabolo-

mics data in observational studies, which could be repro-

duced across different populations.12 For example,

PC.ae.C32: 1 and PC.ae.C32: 2 reflect Steaoryl-CoA desa-

turase/ Steaoryl-CoA desaturase 5 desaturation and a pair

of PC.aa.C38: 5 and PC.aa.C40: 5 reflects various

fatty acid elongations.35 Likewise, correlation between

phenylalanine, tryptophan and tyrosine denotes amino-

acid-associated pathways.36 Some of the consistent rela-

tionships between metabolites identified in the networks

might hint towards so far unknown links. Such metabolites

might be better candidates for further investigation to iden-

tify their role on the metabolic pathways.

In addition, for comparison of the four metabolite net-

works, we also constructed a meta-analytic metabolite net-

work that shared higher similarity with the common

networks from the three studies including EPIC-Potsdam,

KORA and CARLA and less similarity with common net-

works including EPIC-Heidelberg. The heterogeneity

among the identified networks may partly be attributed to

the differences in health/disease status of the four popula-

tions, differences in diet, fasting status, medication/supple-

ment use or lifestyle factors. Technical differences related

Figure 5. Comparative network of the common network and the meta-analytic network of the four studies: EPIC-Heidelberg, EPIC-Potsdam, KORA

and CARLA. Nodes represent metabolites and edges are partial correlations between two metabolites adjusted for the other metabolites as well as

age, sex and BMI. Black edge colours represent common edges in the common network and the meta-analytic network, whereas the grey colour rep-

resents edges present only in the meta-analytic network. Similarly, the white colour of nodes represents common nodes in the compared networks,

whereas the red colour represents nodes present only in the meta-analytic network. Nodes with different border colours represent different metabo-

lite classes: yellow: acylcarnitines; black: amino acids; purple: lyso-phosphatidylcholines; sky-blue: sphingolipids; green: diacyl-phosphatidylcholines;

red: acyl-alkyl-phosphatidylcholines.
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to metabolite-concentration measurements in different lab-

oratories or use of different kits could also have partly

resulted in the observed differences. Indeed, it is already

known that biochemical assay assessments, sample han-

dling and other factors such as storage etc. are some of the

reasons affecting reliability and are often addressed in

metabolomic measurements.37–39 In addition, EPIC-

Potsdam and EPIC-Heidelberg had similar study protocols,

sample preparation, storage conditions and relatively simi-

lar population characteristics. However, large differences

in the networks of the two populations were observed.

Therefore, the difference between EPIC-Heidelberg and

the other studies may partly be related to smaller sample

size and technical issues such as metabolomic measurement

in a different laboratory with different kits.

We also observed differences between the common net-

work and the meta-analytic network. However, it must be

noted that these differences are not unexpected, as the two

were created using two different approaches, i.e. (i) by

combining the common edges in all the networks in one

network and (ii) meta-analysis of the four networks. It is

important to underline that the meta-analytic network was

created using an inverse variance approach, which gives

higher weight to the studies with large sample sizes, i.e.

KORA, EPIC-Potsdam and CARLA, respectively. This had

a large influence on the effect size (partial correlations).

Consequently, it resulted in a network that is more similar

to the common network of the three larger studies.

Nevertheless, the random meta-analytic approach is ad-

vantageous over the approach that was based on simple

structural similarity, as the former takes both within- and

between-studies variation into account. It should also be

noted that many of the additional edges that were detected

by the meta-analytic approach again corresponded to

known metabolic reaction steps.

A major strength of this study was that, for the first

time, metabolite networks between several large

population-based studies were compared using an innova-

tive meta-analytic networks approach. Thereby, the meta-

analytic network was based on metabolomic measure-

ments of almost 8000 participants, which represents a very

large sample size for the application of these sophisticated

metabolomic technologies. Metabolites were measured in

different population samples, which might have slightly

different environmental exposures despite living in the

same country. However, the aim of this study was to see

how similar these metabolite networks are in free-living

populations with less restricted conditions. This approach

was also chosen to better grasp the feasibility of replicating

metabolomic results in different populations, which is of-

ten demanded when validating metabolomics data. In ad-

dition, relatively similar analytic methods were used to

quantify the concentration of the metabolites, which

makes the data more comparable than data from other

platforms. Moreover, we reduced technical variation by in-

cluding only those metabolites that were above the detec-

tion level and showed good reliability in any of the four

studies.23

This study also had certain limitations. We found differ-

ences in mean metabolite concentrations between the

cohorts, which are attributable to technical aspects (e.g.

different laboratories and kits, sample processing and stor-

age, etc.) as well as biological aspects (e.g. cohort differen-

ces such as age, sex, BMI, etc.). CVs of metabolite

measurements were similar between the cohorts and com-

parable to other metabolomic studies that measured the

same metabolites.23,40 However, a general limitation of

metabolomic studies is that many metabolites are mea-

sured simultaneously and CVs of metabolites are usually

higher than CVs of single biomarkers. Metabolite measure-

ments were assessed in two different laboratories and using

different kits, although the kits were from the same com-

pany. Further, metabolites were identified using a targeted

approach, which has limited coverage. It might have

resulted in missing many metabolites that are sharing simi-

lar metabolic pathways with the investigated metabolites.

However, to conduct a similar study with untargeted

metabolomic measurements may be challenging, as differ-

ent metabolites may be detected in different populations

and a number of metabolites will remain unidentified,

which may complicate comparison across several studies.

Another limitation of our study is that only one metabolite

measurement per sample was available for the current

study, so metabolite reliability could not be tested.

However, two earlier EPIC studies showed moderate to

good reliability of included metabolites over 4 months23

and over 2 years.40 In addition, participants with prevalent

medical conditions were not excluded, which might have

affected the metabolomics profiles. Similarly, we did not

account for fasting state, as, due to logistic reasons in large

studies, the majority were non-fasting samples, which may

affect metabolite reliability.40

The existing methods of network construction employ

either regression-based approaches or some thresholding

criteria for edge inclusions in the respective networks.

Nevertheless, using these approaches, the identified net-

works in different sample could be different, as the correla-

tion between variables may vary due to a number of

factors such as sample size, etc. Therefore, in order to con-

struct networks of similar sizes for comparison in our

study, we retained the 100 edges with the highest correla-

tion in all four cohorts. As we do not perform any model

selection, this method may result in inclusion of edges that

may not reflect important biological relationships or
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exclusion of edges that could be important in some biologi-

cal pathways. It is also important to note that GGM works

under the assumption of the Gaussian distribution of the

study variables. Therefore, we compared the QQ-plots

against normal distribution to ensure log-normality of the

metabolites concentrations. We observed some deviations

in the tails of several metabolites. Nevertheless, the results

were comparable with the non-parametric approach in

identifying highly correlated metabolites.

In summary, we observed considerable similarities in

metabolite sub-networks of sphingolipids, lyso-PCs, acyl-

alkyl-PCs and diacyl-PCs and amino acids across the four

populations, although large variations were observed in

overall networks. Variation may partly be explained by

technical issues, such as different laboratories and mea-

surement kits. These technical difficulties should be in-

vestigated further and also be taken into account when

replicating metabolomic results in different population-

based studies. Stable links observed within groups of bio-

chemically related metabolites may likely reflect close

interdependency of the connected metabolites in meta-

bolic pathways. Using the meta-analytic network as a

new approach for combining metabolic data from differ-

ent studies, closely related metabolites could be identi-

fied, for some of which the biological relationships in

metabolic pathways had been previously described.

The metabolites with observed relationships in the meta-

analytic network may be candidates for further investiga-

tion to explore their potential role in biological

processes.
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