
Research and Applications

Disease correlation network: a computational package for

identifying temporal correlations between disease states

from Large-Scale longitudinal medical records

Huaiying Lin ,1,2 Ruichen Rong,1,2 Xiang Gao,1 Kashi Revanna,1,2 Michael Zhao,1,2

Petar Bajic,3 David Jin,4 Chengjun Hu,5 and Qunfeng Dong1,2

1Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA, 2Department

of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA, 3Department of

Urology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA, 4Department of Electrical Engineering &

Computer Sciences, Northwestern University, Evanston, Illinois, USA and 5Depatment of Anatomy and Embryology, Wuhan

University School of Medicine, Wuhan, Hubei, China

Corresponding Author: Qunfeng Dong, PhD. CTRE 459, Loyola University Chicago Health Sciences Division, 2160 S. First

Avenue, Maywood, IL 60153, USA; qdong@luc.edu

Received 27 February 2019; Revised 13 May 2019; Editorial Decision 11 July 2019; Accepted 13 July 2019

ABSTRACT

Objective: To provide an open-source software package for determining temporal correlations between disease

states using longitudinal electronic medical records (EMR).

Materials and Methods: We have developed an R-based package, Disease Correlation Network (DCN), which

builds retrospective matched cohorts from longitudinal medical records to assess for significant temporal corre-

lations between diseases using two independent methodologies: Cox proportional hazards regression and ran-

dom forest survival analysis. This optimizable package has the potential to control for relevant confounding fac-

tors such as age, gender, and other demographic and medical characteristics. Output is presented as a DCN

which may be analyzed using a JavaScript-based interactive visualization tool for users to explore statistically

significant correlations between disease states of interest using graph-theory-based network topology.

Results: We have applied this package to a longitudinal dataset at Loyola University Chicago Medical Center with

654 084 distinct initial diagnoses of 51 conditions in 175 539 patients. Over 90% of disease correlations identified

are supported by literature review. DCN is available for download at https://github.com/qunfengdong/DCN.

Conclusions: DCN allows screening of EMR data to identify potential relationships between chronic disease

states. This data may then be used to formulate novel research hypotheses for further characterization of these

relationships.
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OBJECTIVES

The availability of large-scale electronic medical records (EMR)

presents unprecedented opportunities to uncover previously unrec-

ognized temporal correlations between disease states. We provide an

open-source software package for investigators to identify these cor-

relations using longitudinal EMR data. Such correlations may be

used to generate novel research hypotheses for future prospective

studies.

BACKGROUND

Many temporal correlations between specific disease states are well

recognized. For example, hypertension may increase the risk of heart
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disease.1 Traditionally, such temporal correlations have been identi-

fied through epidemiological studies focusing on specific pairs of

diseases. With the availability of large-scale EMRs, there is unprece-

dented opportunity to uncover temporal disease correlations which

have not previously been recogniz.

A computational method was recently applied to study temporal

disease trajectories among chronic diseases using the Danish Na-

tional Patient Registry.2 The algorithmic foundation of this method

(the Danish method) is based on a key computational approach for

identifying temporal correlations among diseases. Briefly, the Dan-

ish method utilizes the following principle: For every disease pair of

X and Y, the exposed group is defined as all patients with diagnosis

of disease X. For each patient in the exposed group, a set of gender,

ethnicity and age-matched control subjects without disease X is se-

lected to form the corresponding comparison group. The number of

case subjects, with diagnosis of disease Y, is counted in both the ex-

posed and the comparison groups. Then, by applying the binomial

statistical test, the Danish method examines whether the proportion

of case subjects is significantly higher in the exposed group than in

the comparison group. If higher, the Danish method determines that

the earlier diagnosis of disease X may have a significant temporal

correlation with the later diagnosis of disease Y. The results of this

approach provide the foundation for subsequent analysis of connect-

ing significantly correlated individual disease pairs into trajectories

consisting of multiple diseases.

Although the Danish method is a significant step toward uncov-

ering unknown disease correlations, there are several inherent limi-

tations to the approach. First, the amount of lag time between the

onsets of different diseases is not characterized. For example, if a pa-

tient in the exposed group with disease X developed disease Y after

1 year, and another patient in the comparison group without disease

X developed disease Y after 4 years, the Danish method would treat

the two cases identically. This limitation occurs as a result of the

Danish method’s categorical designation of the presence of disease Y

within a 5-year window, rather than as a continuous time-to-event

variable. Second, confounding factors cannot be easily accounted

for by the Danish method as a result of simple stratifications. To ac-

count for the effects of gender and ethnicity, the Danish method

requires identical gender and ethnicity between patients in the ex-

posed and comparison groups. Such stratification may be plausible

for categorical data (eg, gender and ethnicity), but is not suitable for

continuous variables (eg, age, blood pressure, body mass index, etc.)

which often cannot be stratified into workable categories. Finally,

no readily available software package of the Danish method has

been provided for use by other investigators.

Our approach aims to overcome the limitations of the Danish

method by integrating two independent complementary

approaches—Cox Proportional Hazard (Cox-PH) regression and

Random Forest (RF) survival analysis. These approaches treat time

to onset of disease as a continuous variable, and flexibly incorporate

categorical and continuous covariates into the modeling of temporal

relationships between disease pairs. The output of disease correla-

tions may be further analyzed using our customized visualization

tool. Our software package, Disease Correlation Network (DCN), is

available for download at https://github.com/qunfengdong/DCN.

SIGNIFICANCE

In this study, we developed an easy-to-use software which over-

comes limitations of the Danish method and allows for the utiliza-

tion of EMR data to identify previously unstudied correlations

between chronic disease states. Our software package facilitates the

formulation of novel research hypotheses to further characterize

these relationships in a prospective manner.

MATERIALS AND METHODS

The major components of this software package are described in the

following sections: (i) extracting retrospective matched cohorts from

EMRs, (ii) performing Cox-PH regression, (iii) performing RF sur-

vival analysis, and (iv) exploring the correlations between diseases

of interest based on statistical significance and network topology us-

ing a customized interactive visualization tool.

Extraction of retrospective matched cohorts from

longitudinal medical records
DCN requires an input file with at least six variables: patient de-

identifier, disease code or name, the date the disease was diagnosed

for the first time, patient age, gender, and race/ethnicity. Additional

variables may be appended as confounding factors. The input data

may be prepared from longitudinal EMRs. For every combination of

disease pairs, DCN automatically builds retrospective cohorts for

analysis by extracting exposed and comparison groups from the in-

put data. For example, in order to examine whether the earlier diag-

nosis of disease X is correlated with the later diagnosis of disease Y

(referred to as disease pair X! Y), subjects are designated in the ex-

posed group as diagnosed with disease X (ie, subjects in the exposed

group were exposed to disease X). For each subject in the exposed

group, DCN randomly selects a matched subject in the comparison

group in which the subjects were not exposed to disease X. The

matching criteria in DCN are the same as in the Danish method—

namely, that the subject in the exposed group and the matched

subject in the comparison group have the same gender and ethnicity,

and the diagnosis time of a random non-X disease is within 1 week

of the diagnosis of X in the exposed group. A detailed workflow is

shown in Figure 1.

Users may decide on several command-line parameters including

difference in diagnosis time (the default is within 7 days), age differ-

ence between the exposed subject and the matched comparison sub-

ject (default is within 5 years), the maximum number of subjects in

the exposed and comparison group (default is 10 000). More

command-line options may be found on the GitHub page.

Survival analysis using Cox-PH regression
Survival analysis, widely used in epidemiology, public health, and

medicine, provides a natural framework for studying time-to-event

data. A time-to-event variable is a measurement of time until a sub-

ject has an event of interest, such as heart attack, death, or cancer re-

mission. The goal of survival analysis is to estimate, interpret and

compare survivor and/or hazard functions between different cohorts

from survival data. The Cox-PH model3 is the most widely used

Figure 1. Flowchart of DCN (from left to right). The software constructs all

possible disease pair cohorts from medical records, performs the proposed

two methods of survival analysis and displays the Cox-PH regression results

in an interactive network.
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survival analysis technique with the additional advantage of incor-

porating covariates.

The Cox-PH model is described as follows:

ln
h tð Þ
h0 tð Þ

�
¼ b1P1 þ b2P2 þ . . .þ bnPn;

�

where h(t) is the expected hazard at time t, h0(t) is the baseline haz-

ard, and b1, . . ., bn are the regression coefficients for each predictor

(or confounding factors) P1, . . ., Pn, respectively.

To examine the potential temporal correlation for the disease

pair X! Y, the event of interest in our study is the diagnosis of dis-

ease Y. In addition, both continuous and categorical confounding

factors may be easily incorporated in Cox-PH model. For example,

one of the predictors may be a categorical variable indicating

whether the subject is exposed to disease X or not. Other confound-

ing factors may include age, Body Mass Index (BMI), among others.

The results of Cox-PH regression may examine whether the diagno-

sis of disease Y occurs sooner in the exposed group relative to the

comparison group. The estimated coefficient, and its corresponding

P-values will be extracted from the model. Benjamini-Hochberg

multiple test correction method will be applied to P-values for all

disease pairs. Adjusted P-values less or equal to 0.05 are deemed sta-

tistically significant.

Quality controls for evaluating Cox-PH regression

results
When applying any statistical models, it is critical to verify whether

the data meet the assumptions of the underlying models. Two stan-

dard procedures have been implemented into the package for testing

whether the major assumption of the constant hazard ratio for Cox-

PH models is satisfied: (i) The Cox.zph method performs a statistical

test with P-value < 0.05 indicating that the hazards are not

proportional, (ii) The Cox-Snell residual plots used for visually

assessing the fit of the Cox-PH models: if the model fits the data, the

residual plots should follow the diagonal line.

In addition to assessing the fit of the Cox-PH models, we have

also recognized that not every randomly selected subject in our study

is able to be followed for a predefined period, which can be

considered a drop-out in survival analysis. Therefore, we also pro-

vide a novel check to apply the Kolmogorov–Smirnov test (KS test)

to examine whether the number and timing of dropouts is similar

between the exposed and comparison groups (Figure 2). If the data

fails to pass the KS test (P-value <0.05), users should interpret the

survival analysis results with caution.

An independent machine-learning approach to survival

analysis
Although Cox-PH regression is the most widely used method for

survival analysis, it still relies on a restrictive assumption of propor-

tional hazards. In addition, Cox-PH models rely on linear combina-

tions of predictors, making it difficult to deal with non-linear effects

and interactions among multiple predictors. To handle these diffi-

culties, we have applied an independent machine-learning method of

RF survival analysis.4 In brief, the machine-learning method builds

survival trees based on random bootstrap samples. Each internal

tree node is split by randomly selecting a subset of predictor varia-

bles which maximize survival differences between the two daughter

nodes based on the log-rank splitting rule. The conditional cumula-

tive hazard function is then estimated using the standard

Nelson-Aalen estimator from terminal nodes of each tree and aver-

aged over all trees.

We integrated the R package randomForestSRC4 in our method

for RF survival analysis. However, the package for the RF survival

analysis only produces predicted survival probability curve for each

individual subject. Consequently, the standard log-rank test compar-

ing two cohort-based survival curves (eg, exposed vs. comparison)

cannot be applied directly. We overcame this statistical challenge as

follows: It was shown that the average survival time is equal to the

integral of the survival function.5 According to the central limit the-

orem, the average survival times from each individual subject follow

a normal distribution. Therefore, we can perform a standard two-

sample hypothesis test to compare the average survival time in the

exposed cohort to the comparison cohort. Even though a parametric

t-test could be applicable here, we chose to apply the non-

parametric Wilcoxon rank-sum test to be conservative. Benjamini–

Hochberg multiple test correction method will be applied to both

Figure 2. Time to Drop-off Distribution for disease pair: Kidney transplant to Osteoporosis. X axis denotes the time in days when the drop-off happens, while Y

axis denotes the density function of drop-off distribution. Bottom frequency table shows the total drop-off frequency, event frequency, and survival frequency

during the study period (10 years).

JAMIA Open, 2019, Vol. 2, No. 3 355



t-test and Wilcoxon rank-sum test P-values for all disease pairs.

Adjusted P-values less or equal to 0.05 are deemed statistically

significant.

Exploration of disease correlation networks
The output from the previous steps is displayed as a directional

DCN in which each disease is displayed as a node and connections

with arrows are placed between nodes indicating directional

statistically significant correlations (Figure 3, Panel G). The network

display is implemented using the Cytoscape JS package.6 Besides dis-

playing in-degree, out-degree and overall-degree of a node (Figure 3,

Panel H), users may also filter the network based on multiple test

corrected P-value cutoffs and explore trajectories in the network be-

tween any two nodes based on shortest-path in graph theory (Fig-

ure 3, Panel C-E). When clicking on each connection, additional

information appears at the left panel (Figure 3, Panel A-B), such as

P-value of the hazard ratio test, survival plots, Cox-PH regression

Figure 3. Screenshot of the interactive network display. Panel A—“Information” shows the exposure disease, outcome disease, coefficient, raw and adjusted P-

values, hazard ratio test P-value, and a mini-sized survival plot. Panel B lists out additional evaluation plots which can be found through the links below. Panel

C—“Filter” panel provides the users with options to filter edges based on sample size, adjusted P-values and coefficients. Panel D—“Shortest Path” finds the

shortest path between any two given diseases. Panel E—“Display” provides several options to display the network in Panel G. Panel F provides download links

for both Cox-PH regression and RF survival analysis results in CSV format. Panel G displays the interactive disease network based on Cox-PH regression result.

Panel H shows in-degree, out-degree and total degree information for all disease nodes shown in the network. Users can search for a disease of interest through

the search box. Panel I provides an example of a Cox-Snell residual plot, while Panel J provides an example of a drop-off distribution plot. More instructions on

how to use the network visualization tool are available at https://github.com/qunfengdong/DCN.
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residual plots, patient drop-off distribution plots, and RF survival

plots.

RESULTS AND DISCUSSION

We have applied our method to a longitudinal de-identified EMR

dataset at Loyola University Chicago Medical Center with 654 084

distinct initial disease encounters relating to 51 conditions in

175 539 patients. In total, 321 pairs of disease states were found to

be temporally associated within 10 years using Cox-PH regression

after multiple test correction. The independent RF survival analysis

identified 449 pairs of disease states to be statistically temporally as-

sociated according to both the adjusted Wilcoxon ranked-sum test

and two-sample t-test P-values. There were 298 overlapping disease

pairs identified by both methods, which were selected for display in

the interactive network for this study. Although we elected to focus

on overlapping pairs due to the higher confidence imposed by con-

cordance between two independent methods, users may choose to

utilize each method alone (those results are also part of the outputs

produced by DCN). The results for this study are available for

download and review at http://cbi.lumc.edu/disease/, in which nodes

indicate diseases and directional arrows indicate temporal correla-

tions between diseases. Over 90% of the temporal correlations iden-

tified by our software are supported by literature review. In other

words, our software was able to identify many known temporal cor-

relations among diseases from EMR data without any prior knowl-

edge. Table 1 shows a few examples of temporal correlations

identified by our software, all supported by the corresponding litera-

ture. A network plot is presented in Figure 4 to provide a graphical

representation.

As an example, our results showed that patients who had kidney

transplant earlier in life have a higher risk of developing osteoporo-

sis within 10 years. The estimated hazard ratio of having osteoporo-

sis after kidney transplant is 3.2, which indicates a significant higher

risk of getting osteoporosis in patients who had a kidney transplant

than those who had other conditions when holding confounding fac-

tors such as age, gender, etc. constant. Under closer examination of

Table 1. Example disease pairs of statistically significant temporal relationship detected by DCN

From-disease To-disease

Adjusted

hazard ratio

Cohort

size

HR test

P-value

Cox-PH regression P-value

(Bonferroni adjusted) Literature support

Acute myocardial infarction Atrial fibrillation 2.273 2002 0.198 1E–05 8

Alcohol abuse Depression 2.398 2912 0.009 3E–24 9

Alzheimer disease Depression 2.030 2058 0.708 2E–07 10

Asthma Chronic obstructive

pulmonary disease

2.255 9548 0.053 2E–24 11

Cataract Glaucoma 2.495 9482 0.013 2E–31 12

Cerebrovascular disease Septicemia 6.164 1098 0.821 9E–08 No obvious literature support

Cerebrovascular disease Senile dementia 4.879 1098 0.569 2E–08 13

Chronic kidney disease Kidney transplant 9.094 9622 0.735 9E–39 Well-established relationship

Chronic kidney disease Septicemia 2.281 9622 0.916 5E–20 14

Chronic obstructive

pulmonary disease

Alcohol abuse 3.490 10322 0.474 7E–09 15

Chronic obstructive

pulmonary disease

Asthma 3.364 10 322 0.016 4E–99 16

Crohn disease Ulcerative colitis 22.203 1492 0.538 5E–09 17

Crohn disease Anemia 2.037 1492 0.309 7E–11 18

Depression Alcohol abuse 2.853 10 158 0.448 6E–08 19

Depression Alzheimer disease 2.799 10 158 0.636 2E–08 10

Depression Senile dementia 2.065 10 158 0.480 9E–10 20

Eye conditions (cataracts) Glaucoma 2.961 12 850 0.000 1E–70 13

Glaucoma Cataract 2.269 7092 0.544 6E–40 21

Heart failure Acute myocardial

infarction

2.243 11 764 0.849 1E–08 22

Heart failure Chronic obstructive

pulmonary disease

2.032 11 764 0.966 7E–35 23

Ischemic heart disease Hyperlipidemia 2.152 12 618 0.000 9E–146 24

Kidney transplant Osteoporosis 3.202 2438 0.764 2E–14 7

Kidney transplant Diabetes 3.009 2438 0.000 7E–39 25

Kidney transplant Septicemia 2.758 2438 0.506 1E–08 26

Kidney transplant Anemia 2.741 2438 0.000 1E–46 27

Kidney transplant Hyperlipidemia 2.426 2438 0.007 4E–46 28

Obesity Sleep Apnea 2.072 11 202 0.002 5E–36 29

Senile dementia Parkinson’s disease 2.949 5088 0.662 6E–06 30

Senile dementia Depression 2.194 5088 0.077 2E–22 31

Ulcerative colitis Crohn disease 29.319 1622 0.975 2E–13 17

Valvular disease Atrial fibrillation 2.455 12 690 0.000 3E–70 32

Note: From left to right, it lists the exposure disease (From-Disease), outcome disease (To-Disease), the confounding factor adjusted hazard ratio estimated

from Cox-PH regression, cohort size, hazard ratio test for proportional hazards assumption for Cox regression, Bonferroni adjusted Cox-PH regression P-value,

and literature support or evaluation of the relationship for this disease pair.
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the assumption for the Cox-PH regression, the hazard ratio test

P-value is 0.764, indicating that the assumption of proportional haz-

ards for Cox-PH regression was not violated. Additionally, KS test

was performed to inspect whether the number and timing of drop-

out in the two populations had similar distribution. The KS test

showed a P-value of 0.56 (Figure 2), which indicates that the drop-

off distributions in the exposed and unexposed groups are not differ-

ent from each other. With the confidence supported by the Cox-PH

assumption and drop-off distribution check, we hypothesize that

there is a strong temporal correlation between kidney transplant and

osteoporosis. The independent RF survival analysis also supports

the hypothesis with both two-sample t-test and Wilcoxon rank-sum

test adjusted P-value less than 0.0001. The RF method estimated the

mean survival time to be 3009 days in the exposed group and 3279

days in the nonexposed group, meaning that on average, people

who had kidney transplants develop osteoporosis about 9 months

(3279–3009 days) sooner than those who did not. The literature7,33

also confirms that about 10% to 56% of the patients with kidney

transplants have accelerated bone loss.

Large-scale EMR datasets present exciting opportunities for

making novel correlations between chronic disease states, but do

hold certain limitations, particularly in historic data sets. For Cox-

PH regression, we have implemented several quality controls in our

package such as KS test and Cox-Snell residual plot to help aid the

users in determining whether a detected significant disease correla-

tion is reliable. Investigators must maintain caution when attempt-

ing to draw definite conclusions due to the intrinsic limitations of

EMRs. We emphasize that DCN is intended for the formulation of

innovative research hypotheses rather than firm conclusions. Once a

hypothesis is generated from DCN results, a future study may be

designed to further characterize the relationship, assess its validity,

and take into consideration comorbidities, covariates, and other

confounding factors.

Investigators who are comfortable with command-line tools are

encouraged to use our software to perform data mining on their

own large-scale EMR data in various ways (eg, by exploring differ-

ent parameter values other than default to uncover novel temporal

correlations between disease states). Those uncovered correlations

should be utilized to create novel research hypotheses, which may be

further investigated in prospective studies.

In conclusion, we have produced an easy-to-use software by inte-

grating Cox-PH regression and RF survival analysis to identify tem-

poral correlations between disease states. We also provide quality

control tools to help evaluate the reliability of these results. Over

90% of the detected statistically significant disease pairs with tem-

poral correlations are supported by published literature.
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