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Abstract: Transcriptomics analysis of various small RNA (sRNA) biotypes is a new and rapidly
developing field. Annotations for microRNAs, tRNAs, piRNAs and rRNAs contain information on
transcript sequences and loci that is vital for downstream analyses. Several databases have been
established to provide this type of data for specific RNA biotypes. However, these sources often
contain data in different formats, which makes the bulk analysis of several sRNA biotypes in a single
pipeline challenging. Information on some transcripts may be incomplete or conflicting with other
entries. To overcome these challenges, we introduce ITAS, or Integrated Transcript Annotation for
Small RNA, a filtered, corrected and integrated transcript annotation containing information on
several types of small RNAs, including tRNA-derived small RNA, for several species (Homo sapiens,
Rattus norvegicus, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans). ITAS is presented in a
format applicable for the vast majority of bioinformatic transcriptomics analysis, and it was tested in
several case studies for human-derived data against existing alternative databases.

Keywords: transcript annotation; differential gene expression; small RNA; microRNA; piRNA;
tRNA-derived small RNA; RNA-seq; small RNA fragments; transcriptomics

1. Introduction
1.1. sRNAs in Biology and Medicine

Small non-coding RNA (sRNA) are less than 200 nucleotides in length and they are
important molecules in RNA silencing pathways, the regulation of gene expression and
chromatin modifications [1–3]. Research on sRNAs has accelerated in recent decades and
sRNAs have been utilized as markers of human diseases such as neurological conditions [4],
cancer [5] and infertility [6,7], and in the identification of molecular biomarkers of associa-
tions between environmental exposures and health/disease outcomes [8,9]. Identification
of sRNA in germ cells is of particular interest as they represent an additional source of
parental hereditary information beyond DNA sequences and may have a potential role
in programming offspring health [10,11]. Types of small RNA include, among others,
microRNA (miRNA), piwi-interacting RNA (piRNA), small rRNA-derived RNA (rsRNA)
and tRNA-derived small RNA (tsRNA) [2]. There is a wide range of techniques for small
RNA detection in various somatic and germ cells, cell cultures, biofluids and extracellu-
lar vesicles, which include RT-PCR, Northern blotting, microarrays (for known sRNAs)
and high-throughput next-generation sequencing, which requires downstream bioinfor-
matics analysis [12,13].
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1.2. Expression and Fragment Analysis of RNA-seq Data

Transcriptomics analysis of sRNA expression following RNA sequencing is a new and
developing field. Several tools and pipelines analyzing specific sRNA biotypes have been
designed [14–18], with only a few approaches that allow for the simultaneous analysis of
different sRNA biotypes [19–22].

One of the key steps in the analysis consists in the recruiting of annotation data
from databases that contain information on transcript loci and sequences. It has been
demonstrated that the choice and alterations in the annotation structure used for expression
analysis may have a significant impact on the analysis’ reproducibility [23,24]. In addition,
it was argued that various transcriptomics approaches may have different performance
depending on the experimental design and studied biological factors [25,26].

Recent approaches [14–18,22] involved the sequential mapping of reads against the
transcripts of various databases. In this approach (so-called ‘map and remove’), reads
mapped to transcripts in one database are no longer considered for mapping to transcripts
of the next ones. This procedure results in an expression matrix, or count matrix, that may
be further analyzed with differential gene expression techniques [27–29]. These methods
recruit annotation at its sequence level, which is employed for the alignment procedure.

The ’map and remove’ technique has certain advantages (such as addressing the
problem of multiple loci existing for a single transcript) as well as disadvantages (the order
of databases used to sequentially align reads can affect the analysis outcome, and different
sRNA biotypes are not treated independently). The latter problem could be potentially
addressed by employing genome alignment (e.g., bowtie [30] and Rsubread [31]) or pseudo-
alignment (such as Kallisto [32]) methods. However, the applicability of such methods to
existing annotation databases has not been studied. Hence, expression analysis of small
RNA demands transcript annotations that (1) provide validated and reliable information
on transcripts; (2) secure the reproducibility and robustness of the analysis; and (3) allow
for flexibility in the choice of bioinformatic approaches.

Thus, the objectives of the current research are to explore the actual structure and
properties of existing small RNA annotation databases and to generate a common database
satisfying these criteria.

2. Results
2.1. Database Summary

Several data resources have been selected as sources of annotations for specific RNA
biotypes. They include miRBase [33] for microRNA, piRNAdb [34] for piRNA, GtR-
NAdb [35] for tRNA, UCSC database [36] for rRNA, tRFdb [37] for Mus musculus, Drosophila
melanogaster and Caenorhabditis elegans tsRNA and MINTbase [38] for Homo sapiens tsRNA.
All mentioned databases were accessed in September 2021.

The following issues were identified in the process of assessment of these databases.

2.1.1. Annotation Entry Data Are Incomplete

Based on our analysis of existing databases, most of them contain incomplete infor-
mation on certain transcripts. Table 1 and Figure 1 present statistics on missing data for
human transcripts in considered databases. For certain transcripts, only loci or only fasta
data are provided (for human sRNA annotation, 2318 microRNA and 187 tRNA had no
sequence data, which is almost 48% and 30% of all transcripts) and this thereby limits the
types of bioinformatic analysis that could be conducted.
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Table 1. Statistics on completeness of human small RNA transcript entries in the databases prior to
any correcting or filtering.

RNA Type Database Loci and Sequence Loci Only Sequence Only Genome Version

precursor microRNA miRBase 1002 913 2 hg38
mature microRNA miRBase 1477 1405 1 hg38
piRNA piRNAdb 812,343 0 2 hg38
tRNA GtRNAdb 430 187 2 hg38
rRNA UCSC 1752 0 186 hg38
tsRNA MINTbase 125,285 0 0 hg19

Figure 1. Visualization database completeness of both sequence data and loci data for various small
RNA types. (A) For microRNA. (B) For piRNA. (C) For mature tRNA. (D) For rRNA.

2.1.2. In-Transcript Data Conflicts

The second problem arises from the data structure provided in the annotation for
a given transcript (Figure 2). MicroRNA (Figure 2A), piRNA (Figure 2B) and rRNA
(Figure 2D) databases contain multiple loci corresponding to the same transcript. Transcript
abundance quantification is problematic for such transcripts as they cannot be uniquely
assigned to a single genomic region using genome alignment-based methods, such as
featureCounts [31] or HTSeq [39]. Thus, the problem of multiple loci per transcript reduces
the flexibility of bioinformatic pipelines for sRNA research.

Another identified problem is that, for many transcripts (tsRNAs in MINTbase for
Homo sapiens and various small RNA types in other species), the length of the locus does not
match the length of the corresponding fasta sequence (Figure 3A–C). This occurs due to the
lack of precision in initial database loci coordinates and LiftOver transformation for genomic
coordinates from hg19 to hg38 genome versions. These effects were corrected in the final
ITAS version. In addition to this, 1718 transcripts in MINTbase had significant differences
between sequences in database-derived fasta files and actual nucleotide sequences in
corresponding genome loci (Figure 3D).
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Figure 2. Distribution of loci number per transcript in the databases for various small RNA types.
(A) For microRNA. (B) For piRNA. (C) For mature tRNA. (D) For rRNA.

Figure 3. Statistics for database-delivered sequence (fasta) and genome locus-delivered sequence
(getfasta) for MintBase transcripts. (A) Difference in lengths between fasta and getfasta in absolute
values of frequency. Bar for value = −1 was larger than others and was excluded for visualization.
(B) Difference in lengths between fasta and getfasta in log-transformed values of frequency. (C) Plot
for lengths of fasta and getfasta for transcripts. (D) Hamming distance distribution for transcripts
where fasta and getfasta sequences have mismatches.
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2.1.3. In-Database Transcript Data Conflicts

The third problem is caused by intersecting loci of transcripts in the same database.
For human annotation, piRNA entries had 388,826 loci that had intersections with other
piRNAs. In such a case, reads aligned to the region shared by these transcripts cannot
be unquestionably assigned to any of them. To allow for reproducible and unambiguous
analysis, intersecting loci were identified and filtered out.

2.1.4. Inter-Database Transcript Data Conflicts

Likewise, the fourth problem comes from the intersection of a transcript’s loci, origi-
nating from different databases. Homo sapiens piRNA transcripts had 1268 entries that had
intersections with sRNAs of other types.

2.2. Integrated Transcript Annotation for Small RNA (ITAS)

The following steps were invoked to approach the outlined problems:

1. Retrieve and fill in missing data for the incomplete entries;
2. Approach the problem of multiple loci per transcript;
3. Identify, correct if possible and filter out otherwise entries for transcripts with conflict-

ing fasta-delivered data and locus-delivered data;
4. Identify and filter out in-database loci-wise intersecting entries;
5. Identify and filter out inter-database loci-wise intersecting entries.

The identified problems were corrected where possible and entries with severe conflicts
were filtered out. The statistics for human annotation correction for different biotypes of small
RNA are provided in Table 2. The statistics for Mus musculus, Rattus norvegicus, Drosophila
melanogaster, Caenorhabditis elegans are provided in Supplemental Tables S1–S4, respectively.

Table 2. Statistics on correction events in human RNA transcript entries: cases when both locus and
sequence were present (Loci & Seq, no correction), only locus or only sequence (Loci only, Seq only,
sequence or locus retrieved from genome); cases that required extending entry’s locus, sequence or
both (Ext Loci & Seq, Loci & Ext Seq, Ext Loci & Ext Seq); cases with transcript loci intersections within
same database (Inbase conflicts) and intersections between different databases (Interbase conflicts). * No
intersection events were considered for tsRNAs, as fragments of the same tRNA naturally have
intersecting loci.

RNA Type Database Loci & Loci Seq Ext Loci & Loci & Ext Loci & Inbase Interbase
Seq Only Only Seq Ext Seq Ext Seq Conflict Conflict

mature miRBase 1291 1227 1 0 0 0 140 21
microRNA
piRNA piRNAdb 422,017 0 1 0 0 0 388,826 1268
tRNA GtRNAdb 225 176 2 0 0 0 0 214
rRNA UCSC 1591 0 186 0 0 0 37 126
tRNA-derived MINTbase 0 0 8120 115,040 33 8 * *

The statistics for tsRNA annotation correction for four species, in turn, are provided in
Table 3.

The Integrated Transcript Annotation for Small RNA (ITAS) contains information on
loci and sequences of integrated transcripts that had no issues, or the issues were fixed.

In the process of integrating data from different sources, those with conflicting entries
(such as transcripts with intersecting loci) need to be filtered out (correction events Interbase
conflict in Table 2). However, this may remove certain information that may be of interest in
studies dedicated to a particular sRNA type with no focus on others. Therefore, we present
our results for every considered organism in three different forms:

1. Integrated annotation data for different biotypes of sRNA with removed inter-database
conflicts (statistics presented in Table 4);
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2. Separate annotations for specific small RNA types with no inter-database conflict
filtering applied (statistics presented in Table 5);

3. Separate annotation for tsRNA analysis (statistics presented in Table 5, last column).

To address the issue of multiple loci for the same transcript, the "exon” feature from
gtf-format was used to optimize count summarization: reads mapped to the different loci
of one transcript in this way can be summarized altogether.

Table 3. Statistics on correction events in tsRNA entries for various species: cases when both locus
and sequence were present (Loci & Seq, no correction), only locus or only sequence (Loci only, Seq
only), and cases that required extending entry’s locus, sequence or both (Ext Loci & Seq, Loci & Ext Seq,
Ext Loci & Ext Seq).

Species Database Loci & Loci Seq Ext Loci & Loci & Ext Loci &
Seq Only Only Seq Ext Seq Ext Seq

Homo sapiens MINTBase 0 0 8120 115,040 33 8
Mus musculus tRFdb 335 0 0 0 0 8
Drosophila melanogaster tRFdb 147 0 0 0 0 0
Caenorhabditis elegans tRFdb 247 0 0 0 0 0

The summary for the final ITAS is presented in Tables 4 and 5.

Table 4. Statistics for unique transcript IDs for Integrated Transcript Annotation for Small RNA
(ITAS), correction and filtration of intersection inside databases and between databases.

Mature
Species Genome Version microRNA piRNA tRNA rRNA tsRNA

Homo sapiens hg38 2330 14,439 403 1776 18,948
Mus musculus mm39 1870 9715 1044 1376 13,105
Rattus norvegicus rn6 616 7976 966 239 9797
Caenorhabditis elegans ce11 397 8376 633 5 9411
Drosophila melanogaster dm6 435 8296 154 93 8978

Table 5. Statistics for unique transcript IDs for ITAS, after filtration and correction. Intersections
between sRNA types were not filtered.

Mature
Species Genome Version microRNA piRNA tRNA rRNA tsRNA

Homo sapiens hg38 2543 14,605 619 1840 26,731
Mus musculus mm39 1870 9739 1135 1430 65
Rattus norvegicus rn6 647 8079 1173 274 -
Caenorhabditis elegans ce11 424 8654 721 5 18
Drosophila melanogaster dm6 481 500,536 295 165 22

2.3. Case Studies

To validate and test our annotation applicability and quality, we conducted case studies
on three publicly available datasets of human sperm RNA-seq data [40–42], for which we
ran differential expression analysis of sRNA transcripts and, separately, tsRNA analysis,
using investigated factors in each study. To do so, we ran the SPORTS [19] pipeline with
default settings and built-in annotation, genome alignment (bowtie [30] and Rsubread [31])
with ITAS for sRNAs and pseudo-alignment (Kallisto [32]) of reads mapped to tRNA only
by Rsubread for tsRNA. Differential expression results for three cases and both pipelines
are provided in Supplemental Tables S5–S15.
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The results demonstrate the advantage of ITAS. MicroRNA are presented as precursors
(hsa-mir-XXX) in SPORTS, but in ITAS, mature microRNA (hsa-miR-XXX-3p and/or hsa-
miR-XXX-5p, or hsa-miR-XXX only) were included. Thus, analysis using ITAS allowed the
identification of mature microRNAs, which can be used for further analysis—for example,
for the search of gene targets and enrichment analysis. SPORTS tsRNA are shown as 5
or 3 ends of tRNA without further details, while every tsRNA has its own ID, locus and
sequence in ITAS.

Using sRNA data from three literature sources, the differential expression was done
by factors described in corresponding articles (Supplemental Figures S1–S6, Table 6). Here,
results using Donkin and colleagues’ data are presented (Figures 4 and 5 and Table 7).
The SPORTS pipeline identified fewer transcripts, with a p-value < 0.05, than the ITAS-based
genome alignment pipeline (Table 6). For Donkin et al.’s [40] data, microRNA transcript hsa-
mir-155 was reported by both pipelines (Figures 4 and 5 and Table 7). Several microRNAs
(hsa-let-7b, hsa-mir-892c) were identified by both pipelines for Ingerslev et al.’s [41] data
(Supplemental Figure S2).

Using tsRNA data from Donkin et al. [40], the SPORTS pipeline identified more
tsRNA, with adjusted p-value < 0.1, than the ITAS based genome alignment pipeline,
but from Ingerslev et al. [41] and Hua et al.’s [42] data, the SPORTS pipeline identified less
tsRNA. Moreover, only ITAS employing the genome alignment pipeline was able to find
differentially expressed tsRNA for Hua et al.’s [42] data.

Table 6. Numbers of identified differentially expressed sRNA transcripts (sRNA) (p-value < 0.05) and
tRNA-derived small RNA (tsRNA) (adjusted p-value < 0.1) for case studies processed with SPORTS
pipeline with default annotation vs. genome alignment (bowtie + Rsubread/kallisto) pipeline based
on ITAS.

Data SPORTS, ITAS, SPORTS, ITAS,
sRNA sRNA tsRNA tsRNA

Donkin et al. [40] 11 66 5 3
Ingerslev et al. [41] 43 212 12 24
Hua et al. [42] 26 242 0 12

Table 7. Top 10 differentially expressed small RNA (sRNA) transcripts and tRNA-derived small RNA
(tsRNA) with adjusted p-value < 0.1 for Donkin et al. case study processed with SPORTS pipeline
with default annotation vs. genome alignment (bowtie + Rsubread/Kallisto) pipeline based on ITAS.

Transcript name SPORTS,
sRNA p-value

tRNA-Ser-CGA 3.23 × 10−6

hsa-mir-155 0.001
other-rRNA 0.002
mt-tRNA-Glu-TTC 0.009
mt-tRNA-Phe-GAA 0.019
mt-tRNA-Trp-TCA 0.019
mt-tRNA-Ala-TGC 0.022
mt-tRNA-Ser-TGA 0.022
tRNA-His-GTG 0.028
16S-rRNA 0.035



Non-coding RNA 2022, 8, 30 8 of 16

Table 7. Cont.

tsRNA adjusted p-value

tRNA-Ile-AAT-5-end 0.099
mt-tRNA-Glu-TTC-CCA-end 0.099
mt-tRNA-Ala-TGC-5-end 0.099
tRNA-Ile-GAT-5-end 0.099
mt-tRNA-Phe-GAA-CCA-end 0.099

Transcript name ITAS,
sRNA p-value

hsa-piR-33029 1.84 × 10−5

hsa-miR-155-5p 0.002
5S-dup10-seq-371 0.003
hsa-miR-497-5p 0.006
hsa-piR-8652 0.006
hsa-miR-195-3p 0.007
hsa-piR-33047 0.008
hsa-miR-6516-5p 0.008
hsa-miR-3663-5p 0.012
hsa-miR-518c-3p 0.012

tsRNA adjusted p-value

tRF-38-P4R8YP9LON4VN18-799 1.09 × 10−13

tRF-27-79MP9P9NH5N-6856 1.29 × 10−11

tRF-41-PSQP4PW3FJIKE7UMD-431 0.01

Figure 4. Top 10 differentially expressed small RNA (sRNA) using Donkin et al.’s data, processed
with SPORTS vs. Integrated Transcript Annotation for Small RNA (ITAS)-based genome alignment
(bowtie + Rsubread) pipelines.
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Figure 5. Top differentially expressed tRNA-derived small RNA (tsRNA) using Donkin et al.’s data,
processed by SPORTS vs. ITAS-based genome alignment (bowtie + Rsubread + Kallisto) pipelines.

3. Materials and Methods
3.1. microRNA, piRNA and tRNA Processing

Files with mature transcripts sequences in fasta format (referred to as fasta sequences)
and annotation of transcripts in bed format (loci) were obtained from corresponding
databases: GtRNAdb Data Release 19 (June 2021) [35] for mature tRNA sequences, piR-
NAdb v1.7.6 [34] for piRNAs and miRBase Release 22.1 [33] for microRNAs. These
databases were accessed in September 2021 and are most frequently used in sRNA studies,
and specifically, they were used in the analyzed case studies.

For Rattus norvegicus, Drosophila melanogaster and Mus musculus piRNA and microRNA
annotations, an additional UCSC liftOver procedure [36] was followed to map loci to the
most recent genome version (from rn6 to rn7, from dm3 to dm6 and from mm10 to mm39,
respectively).

Sequences in fasta format from the reference genome (getfasta sequences) that cor-
respond to the annotation bed-file were obtained by bedtools getfasta version 2.27.1 [43].
Fasta sequences were mapped on the reference genome of the current version by hisat2 [44]
with parameters –no-spliced-alignment –no-softclip –mp 100000,100000 –rfg 100000,100000,
with a nearly 100% overall alignment rate. Alignment sam files were created and trans-
formed into a tsv format table (alignment table), which included information on sequence
ID, chr and start position of alignment, sequence, length of the sequence and number of
sequence mappings to the reference genome.

Figure 6 summarizes all stages of data processing undertaken for annotation filtering.
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Figure 6. An overview of all steps for processing considered databases of small RNAs for 5 species.

The comparative loci table was constructed based on annotation file information.
In the first step, columns with sRNA type, ID, locus, chromosome, start position, end
position, strand, length (end–start position) were created. The second step consisted of
the addition of getfasta sequences to their locus and creation of their reverse complement
sequence. The most important, the third step was adding a fasta sequence to the locus
with the same ID and checking if the getfasta sequence in forward or reverse orientation
was equal to the fasta sequence. This step would determine the quality and further means
of these emerging records of our final database. Then, information about the number of
mappings of the sequence on the reference genome and whether the fasta sequence was
mapped to the locus was added from the alignment table.

The final consensus database was built from the comparative loci table and alignment
table. Information for consensus data was obtained using different approaches, depending
on a particular fasta sequence and locus matching situation.

If the fasta sequence was equal to the getfasta sequence (matched fasta&locus case), then
the locus from the annotation was accepted as the consensus locus, and the fasta sequence
was accepted as the consensus sequence.

If the record had no fasta sequence for the ID from the annotation file (locus only case),
the orientation-specified getfasta sequence was accepted as the consensus sequence.

If the record had only a fasta sequence that was mapped on the reference genome
(fasta only case), the mapping position in the genome was accepted as the consensus locus.

If information on both locus and fasta was present and the getfasta sequence was
equal to the part of the fasta sequence (fasta & extended locus case), the annotation locus was
extended according to the fasta sequence and then accepted as the consensus locus, and the
fasta sequence was accepted as the consensus sequence. The large number of records from
this source may be related to liftOver transformation of the annotation file.

In case the fasta sequence was equal to the part of the getfasta sequence (extended fasta
& locus case), the getfasta sequence, in turn, was accepted as a consensus sequence, and the
locus from the annotation was accepted as a consensus locus.

When the part of the fasta sequence was equal to the part of the getfasta sequence
(extended fasta & extended locus case), the annotation locus was extended according to the
fasta sequence and then accepted as the consensus locus, and the union of the fasta and the
getfasta sequences was accepted as a consensus sequence.
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3.2. rRNA Processing

For all species, we employed information about sequences and annotation from the
UCSC database for the current version of the reference genome. Data from Silva v.138
(accessed in September 2021) [45] were used as well; however, all obtained data were found
in the UCSC database, so the Silva database was dismissed.

Fasta sequences from UCSC were mapped on the reference genome of the current
version by hisat2 with parameters –no-spliced-alignment –no-softclip –mp 100000,100000
–rfg 100000,100000. The next steps were in the same manner as for sRNA types, described
previously in Section 3.1, except that fasta sequences were added to the loci with the same
ID and loci mentioned in the fasta file. The final consensus database was built from the
comparative loci table and alignment table. Information for consensus data was obtained
from only two sources.

If the fasta sequence was equal to the getfasta sequence (matched fasta&locus case), then
the locus from the annotation was accepted as the consensus locus, and the fasta sequence
was accepted as the consensus sequence.

If the record had only a fasta sequence that was mapped on the reference genome
(fasta only case), the mapping position in the genome was accepted as the consensus locus.

3.3. tsRNA Processing

For Homo sapiens, we employed information from MINT database v2.0 and the hg19
reference genome (accessed in September 2021) [38]. For other species (Mus musculus,
Drosophila melanogaster, Caenorhabditis elegans)) data from tRFdb (accessed in September
2021) [37] were recruited. Files with tRNA fragment sequences and annotation in tsv
format for MINTbase and files in xls format from tRFdb were obtained and then files with
sequences in fasta format (fasta sequences) and annotation files in bed format were created
for each species. Genome coordinates were translated to the most recent genome version
(from mm9 to mm39 for Mus musculus, from dm3 to dm6 for Drosophila melanogaster,
from ce6 to ce11 for Caenorhabditis elegans, from hg19 to hg38 for Homo sapiens) with
UCSC LiftOver.

Fasta sequences from MINTbase were mapped on the reference genome of the cur-
rent hg38 version by hisat2 with parameters –no-spliced-alignment –no-softclip –mp
100000,100000 –rfg 100000,100000, with a 65.3% overall alignment rate. Next steps were
processed in the same manner as for sRNA, described previously in Section 3.1.

Figure 7 summarizes all the stages of data processing undertaken for tsRNA annota-
tions filtering.

Figure 7. An overview of all processing steps for integration of tsRNA data for four species.

The final consensus database was built from the comparative loci table and alignment
table using the same manner to determine consensus data as described previously in
Section 3.1.
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3.4. Database Integration

At this point, transcripts with conflicting data due to in-database and inter-database
(mature microRNA, piRNA, rRNA, tRNA) loci intersections were detected with the help of
bedtools intersect (Inbase conflict and Interbase conflict correction events in Table 2). Conflict-
ing data due to in-database intersections were removed from all datasets; conflicting data
due to inter-database intersections were removed from annotations on mature microRNA,
piRNA, rRNA, tRNA types.

Finally gtf-format files for all sRNA types and, separately, for mature microRNA,
piRNA, rRNA, tRNA and tsRNA for five species were created. They contain information
about ID, sequence and loci for each transcript.

3.5. Case Studies— sRNA

Small RNA sequence data of various sample sizes (n = 23, Donkin et al., 2016 [40],
n = 24, Ingerslev et al., 2018 [41], n = 87, Hua et al., 2019 [42]) were obtained from materials
associated with published studies [40–42], all accessed in September 2021. All reads were
trimmed by cutadapt [46] following lab kit instructions. Then, reads with a length of
15–45 nt were mapped on the UniVec database by Hisat2 [44].

Then, trimmed reads were processed by SPORTS (accessed in September 2021) [19]
with its default sRNA databases, and default settings for alignment were used. Moreover,
reads were aligned to the reference genome by the bowtie aligner [30] (-v 0 -m 100 -k 1
–best –strata) with the following Rsubread [31] analysis (with gtf file using ITAS) to obtain
counts for small RNA for further pipelines.

Differential expression analysis was performed by the DESeq2 (accessed in September
2021) [27] package with factors investigated in each article. Heatmaps and boxplots were
built for small RNA for genome-alignment-based analysis (bowtie + Rsubread) with ITAS
and for SPORTS default analysis (Supplemental Figures S1–S3).

3.6. Case Studies— Fragments

Counts for tRNA-derived items were obtained from the SPORTS pipeline directly with
counts of small RNA. Rsubread was used to obtain reads, which were mapped on mature
tRNA loci. These reads were processed with Kallisto (accessed in September 2021) [32]
with k-mer length 11 with tsRNA from ITAS and then differential analysis was carried
out with DESeq2. Heatmaps and boxplots were built for tsRNA for genome-alignment-
based analysis (bowtie + Rsubread + Kallisto) with ITAS and for SPORTS default analysis
(Supplemental Figures S4–S6).

3.7. Program Code Availability

All scripts used for the ITAS processing and analysis are available on Github (accessed
on 25 April 2022), as well as the manual (accessed on 25 April 2022).

4. Discussion

Establishing best practices and analytic pipelines is important for sRNA expression
analysis. In this study, we integrated data from separate databases on different sRNA
types into ITAS transcript annotation in a commonly used gtf format for five species.
The use of ITAS allows us to employ alignment- and pseudo-alignment-based bioinformatic
approaches for transcriptomics analysis.

The conducted case studies using human sperm RNA-seq data [40–42] demonstrated
the advantages of ITAS. Mapping of reads to ITAS, which unifies in a single gtf format
database transcripts from all source databases, allowed for the identification of more
significant transcripts as compared with the ’map and remove’ approach. In particular,
for sRNA expression analysis, all cases revealed that the ITAS-based genome alignment
approach identified more significant transcripts than the ’map and remove’ pipeline with
default databases (11 vs. 66 for Donkin et al., 43 vs. 212 for Ingerslev et al., 26 vs. 242 for
Hua et al.).

https://github.com/EpiEpiMSU/ITAS_scripts
https://github.com/EpiEpiMSU/ITAS#readme
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For tsRNA expression analysis, the ’map and remove’ pipeline was not able to iden-
tify any tsRNA for Hua et al.’s data, unlike the ITAS-based genome alignment pipeline,
which identified 12 differentially expressed transcripts. Using Ingerslev et al.’s data, the
ITAS-based genome alignment approach identified more significant transcripts compared
to the ’map and remove’ pipeline (24 vs. 12 transcripts, respectively). However, using
Donkin et al.’s data, the ’map and remove’ pipeline identified more significant transcripts
compared to the ITAS-based genome alignment approach (5 vs. 3 transcripts, respectively).
Results of case studies illustrate the importance of high flexibility in the choice of bioinfor-
matic approaches to obtain a higher overall signal, which is exemplified through ITAS.

Moreover, we show the importance of the transcripts’ pre-filtering, which prevents
the reporting of transcripts that conflict with other entries. For example, Leu-CAG tRNA
was identified in the SPORTS-based ’map and remove’ analysis of Hua et al.’s data. This
transcript was filtered out while forming ITAS as intersecting with the hsa-piR-32972 piRNA
transcript. The filtered-out transcript cannot belong unambiguously to either Leu-CAG
tRNA or hsa-piR-32972 piRNA.

There were several issues described above while constructing the ITAS. The main
aim was to save as many transcripts as possible and to complete them with missing
information. It is not only the strength but may in some cases also be the limitation of
the ITAS. Sometimes, in-transcript conflicts can be caused by the LiftOver transformation
of coordinates. The large number of transcripts with loci shorter than the fasta sequence
only by one nucleotide may indicate a database-independent issue, which was successfully
solved by loci extending. However, a greater discrepancy between loci and fasta may
indicate the imperfection of existing databases or necessity for transcript rechecking and
verification due to the information loss on loci following LiftOver transformation.

This is especially important for MINTbase (Human tsRNA), since there were no
records with equal fasta sequence and locus lengths (Figure 3C). Moreover, 8120 tsRNA
lost their loci after LiftOver and were added to ITAS by mapping on the reference hg38
genome; 1718 records had severe in-transcript conflicts and were filtered out (Figure 3D).

The extension of a locus or sequence leads to the formation of a new transcript that is
considered correct. However, it is not presented in the existing databases or differs from
known transcripts. Therefore, the validity of such transcripts is questionable.

The ITAS was checked for in-base and inter-base intersections, but not for intersec-
tions with transcriptomes. Thus, some new or now existing loci may be in conflict with
other genes. In future, it should be checked further, and more data from newly pub-
lished databases and existing annotations should be added to ITAS, such as data for other
species or other small RNA types, including rsRNA, and data from the new database
(MirGeneDB 2.1) [47].

5. Conclusions

We have identified several issues during the inference of existing databases containing
information on sRNA transcript sequences and annotation for several species (Homo sapiens,
Mus musculus, Rattus norvegicus, Drosophila melanogaster, Caenorhabditis elegans). Some
transcripts had missing information on their sequences or loci; for others, their genome
locus-retrieved sequence and database provided-sequence were not matching. Transcripts
had both in-database and inter-database intersecting loci with other entries. This can pose
problems towards the flexibility and robustness of transcriptomics analysis recruiting this
annotation information.

To address these drawbacks, we established ITAS, a filtered, corrected and integrated
database for five species, in the widely used gtf format.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ncrna8030030/s1, Figure S1: Top differentially expressed small RNA
(sRNA) using Donkin et.al., 2016 data, processed with SPORTS vs integrated transcript annotation
for small RNA (ITAS) based genome-alignment (bowtie + Rsubread) pipelines. Figure S2: Top
differentially expressed sRNA using Ingerslev et.al., 2018 data, processed with SPORTS vs ITAS

https://www.mdpi.com/article/10.3390/ncrna8030030/s1
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based genome-alignment (bowtie + Rsubread) pipelines. Figure S3: Top differentially expressed
sRNA using Hua et.al., 2019 data, processed with SPORTS vs ITAS based genome-alignment (bowtie
+ Rsubread) pipelines. Figure S4: Top differentially expressed tRNA-derived small RNA (tsRNA)
using Donkin et.al., 2016 data, processed by SPORTS vs ITAS based genome-alignment (bowtie +
Rsubread + kallisto) pipelines. Figure S5: Top differentially expressed tsRNA using Ingerslev et.al.,
2018 data, processed by SPORTS vs ITAS based genome-alignment (bowtie + Rsubread + kallisto)
pipelines. Figure S6: Top differentially expressed tsRNA using Hua et.al., 2019 data, processed by
ITAS based genome-alignment (bowtie + Rsubread + kallisto) pipeline. Using SPORTS pipeline,
no differential expressed tsRNA were identified. Table S1: Differentially expressed sRNA using
Donkin et.al., 2016 data, processed with SPORTS. Table S2: Differentially expressed tsRNA using
Donkin et.al., 2016 data, processed with SPORTS. Table S3: Differentially expressed sRNA using
Donkin et.al., 2016 data, processed with integrated transcript annotation for small RNA (ITAS) based
genome-alignment (bowtie + Rsubread) pipeline. Table S4: Differentially expressed tsRNA using
Donkin et.al., 2016 data, processed with ITAS based genome-alignment (bowtie + Rsubread + kallisto)
pipeline. Table S5: Differentially expressed sRNA using Hua et.al., 2019 data, processed with SPORTS.
Table S6: Differentially expressed sRNA using Hua et.al., 2019 data, processed with ITAS based
genome-alignment (bowtie + Rsubread) pipeline. Table S7: Differentially expressed tsRNA using
Hua et.al., 2019 data, processed with ITAS based genome-alignment (bowtie + Rsubread + kallisto)
pipeline. Table S8: Differentially expressed sRNA using Ingerslev et.al., 2018 data, processed with
SPORTS. Table S9: Differentially expressed tsRNA using Ingerslev et.al., 2018 data, processed with
SPORTS. Table S10: Differentially expressed sRNA using Ingerslev et.al., 2018 data, processed with
ITAS based genome-alignment (bowtie + Rsubread) pipeline. Table S11: Differentially expressed
tsRNA using Ingerslev et.al., 2018 data, processed with ITAS based genome-alignment (bowtie +
Rsubread + kallisto) pipeline. Table S12: Statistics on correction events in Mus musculus transcript
entries: cases when both locus and sequence were present (Loci & Seq, no correction), only locus or
only sequence (Loci only, Seq only, sequence or locus retrieved from genome); cases that required
extending entry’s locus, sequence or both (Ext Loci & Seq, Loci & Ext Seq, Ext Loci & Ext Seq). Table
S13: Statistics on correction events in Rattus norvegicus transcript entries: cases when both locus and
sequence were present (Loci & Seq, no correction), only locus or only sequence (Loci only, Seq only,
sequence or locus retrieved from genome); cases that required extending entry’s locus, sequence or
both (Ext Loci & Seq, Loci & Ext Seq, Ext Loci & Ext Seq). Table S14: Statistics on correction events in
Drosophila melanogaster transcript entries: cases when both locus and sequence were present (Loci
& Seq, no correction), only locus or only sequence (Loci only, Seq only, sequence or locus retrieved
from genome); cases that required extending entry’s locus, sequence or both (Ext Loci & Seq, Loci
& Ext Seq, Ext Loci & Ext Seq). Table S15: Statistics on correction events in Caenorhabditis elegans
transcript entries: cases when both locus and sequence were present (Loci & Seq, no correction),
only locus or only sequence (Loci only, Seq only, sequence or locus retrieved from genome); cases
that required extending entry’s locus, sequence or both (Ext Loci & Seq, Loci & Ext Seq, Ext Loci &
Ext Seq).
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