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Evaluation of the Use of Single- and
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Abstract
Digital pathology platforms with integrated artificial intelligence have the potential to increase the efficiency of the nonclinical
pathologist’s workflow through screening and prioritizing slides with lesions and highlighting areas with specific lesions for review.
Herein, we describe the comparison of various single- and multi-magnification convolutional neural network (CNN) architectures
to accelerate the detection of lesions in tissues. Different models were evaluated for defining performance characteristics and
efficiency in accurately identifying lesions in 5 key rat organs (liver, kidney, heart, lung, and brain). Cohorts for liver and kidney were
collected from TG-GATEs open-source repository, and heart, lung, and brain from internally selected R&D studies. Annotations
were performed, and models were trained on each of the available lesion classes in the available organs. Various class-consolidation
approaches were evaluated from generalized lesion detection to individual lesion detections. The relationship between the amount
of annotated lesions and the precision/accuracy of model performance is elucidated. The utility of multi-magnification CNN
implementations in specific tissue subtypes is also demonstrated. The use of these CNN-based models offers users the ability to
apply generalized lesion detection to whole-slide images, with the potential to generate novel quantitative data that would not be
possible with conventional image analysis techniques.
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Introduction

Toxicologic pathology is a branch of pathology that encom-

passes the evaluation of the histomorphological and pathophy-

siological effects induced by toxicants on living beings,

ranging from a molecular to a clinical level, via the evaluation

of tissues and body fluids, notably through the use of laboratory

animals in the context of nonclinical toxicity studies. The prin-

cipal reason for conducting nonclinical toxicity studies is to

ensure the safety of humans in trials testing investigational

drugs, particularly early in the development cycle of com-

pounds. According to Food and Drug Administration guidance

on rodent subchronic toxicity, it is recommended to assess

over 40 different tissues, in 20 animals of each sex, in each

group,1 resulting in more than 3000 tissues just for the control

and high-dose groups. Among these, toxicologic pathologists

observe a disproportionate amount of normal tissue to abnor-

mal tissues in comparison to their clinical peers. Furthermore,

the heterogeneity within tissue architectures and morphologies

gives rise to the potential presence of multiple different lesion

types per organ type per animal, while the complexity of these
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lesion types implies a vast spectrum of variant ontologies that

can be diagnosed per study.

Recently, the growing shortage of qualified veterinary

pathologists available to support this effort has presented a

challenge to the pharmaceutical industry.2 Efforts to address

the gap through productivity gains and novel approaches, such

as the application of artificial intelligence (AI), have been pro-

posed to alleviate the growing pressure within the industry. By

reducing the time spent by pathologists on more tedious tasks,

this will drive toward a more efficient workflow.3 With the

advent of AI and digital pathology, potential time-saving

opportunities can be identified by performing rudimentary

diagnostic triaging of hundreds of samples and highlighting

potential abnormalities in advance of a pathologist’s

assessment.

The use of AI-based approaches is contingent upon access

to high-quality digital images of the specimens. The signifi-

cant improvements in digital pathology performance over the

past 20 years have greatly influenced the recent transition

toward a digitized workflow in toxicologic pathology.

Whole-slide imaging (WSI) encompasses the digitization of

entire histology slides or preselected areas, at either �20 or

�40 magnification. Digital pathology scanners can now digi-

tize slides quickly, with high automation levels which, when

combined with new digital pathology software solutions, can

be demonstrated to deliver productivity on a par with conven-

tional microscopy.4 Other driving forces include advantages

in standardization and traceability where the WSIs are saved

permanently with easy and rapid retrieval of cases compared

to glass slides, for research and quality assurance. For peer

review or diagnostic concordance, digital analysis of the same

case can be conducted by different observers concurrently, the

results of which can be automatically integrated into the

pathology report, and various information systems. There are

numerous special interest groups5 or working groups estab-

lished such as the Society of Toxicologic Pathology’s (STP)

Scientific and Regulatory Policy committee to promote

appropriate industry practices for the adoption of digital

pathology in nonclinical settings. Concurrently, regulatory

hurdles are being overcome to facilitate regulated good

laboratory practice peer and primary review, with several

trials already underway.

The application of AI to digital pathology images mainly

utilizes “deep learning” (DL). Deep learning refers to a class

of machine learning methods that model high-level abstrac-

tions in data through the use of modular architectures, typically

composed of multiple nonlinear transformations estimated

by training procedures. Notably, DL architectures based on

“convolutional neural networks” (CNNs) hold state-of-the-art

accuracy in numerous image classification tasks without prior

feature selection. Previously, several DL methods have been

applied to the analysis of histological images for “clinical”

diagnosis, whereby DL has already displayed impressive effec-

tiveness and utility in the clinical arena detecting cancers and

dermatologic lesions.6-10 Convolutional neural networks are a

group of machine learning processes that learn to identify

features from images that have been used for training. Pixel

analysis, diagnostic patterns, and visual clues can be improved

through the analysis of quantitative data derived from the

images. The application of these approaches in toxicologic

pathology has yet to gain widespread momentum and garner

the full potential that digital workflows afford for revolutioniz-

ing the toxpath field.

Even with all of the potential offerings, controversy sur-

rounding the adoption of AI in pathology is still evident. This

stems from a minority of pathologists inferring its usage as a

replacement for primary diagnosis.11 A recent survey12 was

conducted to gain insight into the pathology community per-

ception, level of understanding, concerns, and opinions on the

emerging use of AI in pathology practice, research, and train-

ing. A small number reported being concerned (17.6%) or

extremely concerned (2.1%) that AI tools would displace

human jobs. Despite the positive attitudes toward AI tools,

most respondents felt that diagnostic decision-making should

remain a predominantly human task (48.3%). However, recent

successes of AI in computational pathology8,13-15 significantly

strengthen the positive narrative toward augmenting a digital

pathology workflow with AI.

The use of AI can help pathologists identify areas of interest

on tissue samples, thus improving efficiency and reducing time

observed examining the entire tissue sample.16 Workload has

been shown to be reduced upon using AI systems at multiple

opportunities, as a triaging system whereby tumor-negative

slides were omitted through the implementation of CNNs and

ultimately improving turnaround time and efficiency.17 Evalu-

ating potential toxicity often requires enumeration of certain

features, such as necrosis, infiltration of foamy macrophages

(phospholipidosis), or an increase in mitotic figures, a process

that can be quite prone to intra-user/inter-user variance. Con-

volutional neural networks developed specifically to automate

the classification and enumeration of single cells have been

reported18-21 and have been shown to be instrumental in

streamlining the analysis of hematoxylin and eosin (H&E)

slides.

Applying multiview information with DL has given greater

perspective over single field-of-view approaches,22 this added

layer of information provides greater context for the neural

network layers. An example of the application of a multiview

approach was reported in breast cancer classification whereby

a CNN classifies breast lesions as benign and malignant. Dur-

ing the observer performance test, the diagnostic results of all

human reviewers had increased area under the curve (AUC)

values and sensitivities after referring to the classification

results of the proposed CNN, and 80% of the AUCs were

significantly improved.23 Similarly, multi-magnification

makes use of the different magnification layers in a WSI. This

more closely resembles how a pathologist would analyze a

slide using a microscope. The use of different levels of mag-

nification allows the model to extract contextual features

around the point of interest, which may not be possible to

detect at a single magnification. Multi-magnification models

are an emergent technology in the field of computational
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pathology and have so far been applied to multiclass image

segmentation of breast cancer slides. Ho and colleagues24

developed a tissue segmentation architecture that processes

a set of patches from multiple magnifications for the analysis

of breast cancer histology images. They demonstrated far

more accurate predictions using this method in comparison

to standard DL approaches.

In this manuscript, we address the development of a robust

data set for lesion detection in key organs, and the application

of numerous segmentation models trained on nonclinical lung,

liver, brain, kidney, and heart H&E data to detect lesions in

these tissues. These include FCN8/FCN16-,25,26 SegNet-,27

DeepLabV3-,28 and U-Net-29 based architectures with Incep-

tionV3,30-32 ResNET,33-35 Xception,36,37 and EfficentNet38 as

backbones, which have shown great utility in the analysis of

clinical WSIs. An approach of adapting the existing model

architectures for use with multiple image magnification layers

is investigated herein to determine whether improved classifi-

cation can be achieved using this approach.

Methods

Data Set Collation and Processing

One of the key predicates for AI experimentation is the col-

lation of an extensive data set of both images and associated

pathology annotations. Image data for the experiments were

selected from a mixture of publicly available data and data

from the internal Janssen R&D database. Specifically, liver and

kidney digital slides were sourced from the “Open TG-

GATEs” open-source database,39 while the image data for the

brain, heart, and lung organs were provided by Janssen Phar-

maceutica. The diversity of the variant information sources and

annotation breakdown is outlined in Table 1.

TG-GATEs data set. The TG-GATEs database is a broad online

open toxicogenomics and histopathology database of 170 liver

and kidney toxicants whose administration is known to trigger

the occurrence of a wide variety of lesions in the 2 organs. All

participants were Crl: CD Sprague-Dawley rats. The original

data were generated and analyzed by a range of Japanese com-

panies and organizations over 10 years (National Institute of

Biomedical Innovation, National Institute of Health Sciences,

and a total of 18 pharmaceutical companies).40 All slides

available in the database were scanned using an Aperio Scan-

Scope AT (.svs files) and were made publicly available via

their open-source portal.

In this project, specific studies were selected by the extent

and amount of lesions reported. The total number of slides used

from TG-GATEs data sets was 4319 livers and 1474 kidneys,

originating from 67 different compounds.

Janssen data set. Toxicity studies conducted at Janssen R&D

(Belgium) on Sprague-Dawley rats for a duration of less than or

equal to 3 months were de-archived and provided for brain,

heart, and lung data analytics. These studies were primarily

selected based on the occurrence of test compound–related

findings in the high-dose group compared to the control (vehi-

cle) group. In total, the organs provided by Janssen R&D

amounted to 458 heart, 959 brain, and 470 lung samples. All

slides were scanned at �40 using a Hamamatsu NanoZoomer

XR whole-slide scanner (.ndpi files). The Janssen R&D find-

ings were reviewed by internal pathologists and adapted to

INHAND nomenclature.41

Review and Standardization of Metadata

Confirmation of findings in the TG-GATEs data set was per-

formed via peer review by Pathology Experts GmbH for all of

the liver and kidney studies. This resulted in full curation of

the original data sets and correction of findings, including the

adoption of SEND format and INHAND notation. All of the

metadata was amended accordingly to reflect updated peer-

reviewed findings. Finally, standardization of metadata repre-

sentation was performed across all organ cohorts prior to data

integration.

Development of Annotation Sets and Annotation Strategy

Prior to the application of AI, all images were annotated using

annotation software to indicate areas of lesions. Kidney, liver,

heart, lung, and brain studies were generally annotated at �10;

however, cellular changes were reannotated at �20 magnifica-

tion to facilitate documentation of specific features that were

not contextually visible at �10 magnification. The diversity of

annotated findings is outlined in Table 2. For the purpose of

this research, only lesions annotated in the �10 annotation sets

were used for training. The representation of each of the classes

Table 1. Breakdown of Content Used in This Study by Organ Type, Origin, Number of Slides Reviewed, Number of Slides Annotated, Tiles and
Pixels Annotated, Annotated Lesion Pixels, % of Tile Annotated, and % of Tiles Annotated as Lesion.

Organ Origin
Reviewed

slides
Annotated

slides
Annotated

tiles
Annotated

pixels
Annotated lesion

pixels
% of tile

annotated
% of tiles annotated

as lesion

Heart Janssen 420 155 1826 478,674,944 21,128,264 100 4
Lung Janssen 470 339 2670 687,635,094 45,449,429 98 6
Kidney TG-GATEs 841 373 5425 491,312,131 24,517,184 35 3
Liver TG-GATEs 1664 441 6701 286,407,173 103,410,586 16 6
Brain Janssen 251 34 470 70,831,946 2,231,786 57 2
Total 3646 1342 17,092 2,014,861,288 196,737,249 45 4
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Table 2. Representation of Lesion Distribution in Annotation Sets
Across Liver, Kidney, Heart, Lung, and Brain Cohorts.a

Organ Lesion
Annotated

pixels
Annotation

magnification

Liver Degeneration, hydropic 18,026,132 �10
Cytoplasmic alteration 17,147,565 �10
Necrosis 13,634,298 �10
Fatty change 11,893,205 �10
Hypertrophy,

hepatocellular
9,425,525 �10

Infiltration 4,080,865 �10
Bile duct hyperplasia 3,307,131 �10
Hepatocellular adenoma 3,269,991 �10
Hepatodiaphragmatic nodule 2,567,971 �10
Serositis 2,559,431 �10
Granuloma/mineralization 1,459,255 �10
Extramedullary

hematopoiesis
1,360,209 �10

Focus of cellular alteration 1,163,486 �10
Fibrosis
Granuloma

678,139
405,716

�10
�10

Amyloidosis 61,738 �10
Infiltration, neutrophil 35,474 �10
Bile duct metaplasia,

squamous
15,248 �10

Mineralization 4467 �10
Oval cell hyperplasia 3149 �10
Inclusions 847 �10
Karyocytomegaly 5,783,648 �20
Mitosis 2,308,005 �20
Fatty change 2,122,304 �20
Atrophy, bile duct epithelium 1,117,404 �20
Vacuolation, hepatocyte 725,106 �20
Hypertrophy, hepatocellular 483,517 �20
Single-cell necrosis

(apoptosis)
436,097 �20

Necrosis 148,383 �20
Ito cell hyperplasia 119,400 �20
Oval cell hyperplasia 39,693 �20
Hypertrophy, mesothelial

cell
26,494 �20

Degeneration hydropic 19,610 �20
Bile stasis 10,721 �20
Pigmentation 876 �20

Kidney Casts 84,461,55 �10
Degeneration, tubule 4,983,040 �10
Infiltrate, inflammatory

cell
1,587,612 �10

Cyst 1,531,495 �10
Regeneration, tubule 1,336,929 �10
Basophilia, tubule 1,312,782 �10
Dilation, tubule 1,273,031 �10
Necrosis/dilation, tubule 1,048,576 �10
Mineralization 679,483 �10
Vacuolation 618,716 �10
Fibrosis, interstitial 493,430 �10
Angiectasis 435,980 �10
Fatty change 93,800 �10
Atrophy, glomerulus 45,114 �10
Karyomegaly 39,967 �10

(continued)

Table 2. (continued)

Organ Lesion
Annotated

pixels
Annotation

magnification

Hypertrophy, tubule 18,726 �10
Atrophy, tubule 16,007 �10
Karyomegaly 439,121 �20
Mitotic figures, tubule 12,159 �20
Pigment 371 �20

Heart Inflammation, chronic 4,950,651 �10
Thrombus, atrium 3,296,941 �10
Edema, myocardium

Infiltrate,
mononuclear

2,545,431
1,973,988

�10
�10

Necrosis, cardiomyocyte 1,796,513 �10
Inflammation, acute 1,434,179 �10
Degeneration,

cardiomyocyte
1,374,072 �10

Mineralization,
cardiomyocyte

1,329,961 �10

Mineralization, media, artery 1,225,454 �10
Infiltrate, mixed 324,408 �10
Edema, epicardium 196,349 �10
Degeneration/necrosis,

artery
149,900 �10

Rupture, aorta 132,424 �10
Vacuolation, cardiomyocyte 130,722 �10
Fibrosis 109,922 �10
Hemorrhage 84,679 �10
Infiltrate, mononuclear

(foamy)
66,439 �10

Bacterial colonies 6231 �10
Lung Inflammation, acute 8,225,344 �10

Congestion 8,184,888 �10
Edema 8,041,972 �10
Aspiration blood 6,815,711 �10
Infiltrate, mononuclear 3,386,047 �10
Inflammation, chronic
Macrophages, increased

2,895,018
2,434,133

�10
�10

Infiltrate, eosinophilic 1,751,408 �10
Pleuritis 1,685,594 �10
Emphysema 1,310,720 �10
Hyperplasia, mucous cell 444,399 �10
Metaplasia, osseous 123,210 �10
Mineralization 107,619 �10
Infiltrate, mixed 37,894 �10
Fibrin 4878 �10
Hemorrhage (hemoglobin

crystals)
594 �10

Macrophages, increased 1,253,557 �20
Infiltrate, eosinophilic 974,776 �20
Mineralization 257,951 �20
Hemorrhage 252,228 �20
Hyperplasia, mucous cell 131,652 �20
Metaplasia, osseous 60,696 �20

Brain Pigment/foreign material,
eosinophilic

957,018 �20

Vacuolation, neuron 753,470 �20
Necrosis, neuron 237,013 �20
Foamy cells 177,780 �20
Infiltrate, neutrophilic 106,505 �20

aAnnotated pixel amount and magnification used to annotate are included.
Highlighted (in bold) lesions were selected for individual lesion classification.
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by annotation amount is illustrated in the corresponding pixel

quantity for each class, along with the corresponding annota-

tion magnification.

All slides were uploaded to the Patholytix Preclinical

platform (Deciphex Ltd) for review, annotation, and analy-

sis. Annotations were performed by toxicologic pathologists

with the “AI Annotation Tool” available within Patholytix

Preclinical Study Browser. In each case, annotations were

added to the regions of the tissue where lesions were iden-

tified, after a review of the entire slide. Annotations were

also created in areas where no lesions were present to create

a diverse representation of normal tissue for each organ.

Annotations were ultimately represented as a series of

image tiles consisting of 512 � 512 pixels. Tiles are the

smallest units of the image that are directly used as input to

the training algorithm. The makeup of annotations by pixel

amount per lesion class is illustrated in Table 2. The number

of slides annotated for each organ depends on the presence

of lesions in the data set, the extent of lesions present, and

the overall number of slides available for that organ. High-

lighted (bold) lesions in Table 2 are selected for individual

analysis.

Annotations are tracked by pixel amount since lesions may

cover only a small portion of a 512� 512 tile. Annotated pixels

allow us to maintain a more accurate view on the ratio of the

annotated classes in the data sets and are incorporated into our

training data class-balancing strategy.

Consolidation of Annotation Sets

The work described in this article had 3 main goals:

� Evaluate the potential of CNN models to detect multiple

lesions concurrently as part of a multiclass classification

system.

� Evaluate the potential of CNN models to detect conso-

lidated lesions and provide a generalized lesion detec-

tion classifier for each tissue type.

� Evaluate the potential of CNN models to detect unique

lesions in the selected types of tissues.

To facilitate generation of training and testing data sets for

generalized lesion detection, the software was adapted to allow

us to consolidate pathologist annotations of individual lesions

into a common “lesion” class. This involves creating a copy of

the annotations made previously and mapping each of the

lesion class annotations to the new single lesion class. This

feature was also used to create “single lesion” versus “normal

tissue” training and testing sets. To facilitate this, a number of

lesions that have sufficient representation in the multiclass data

set are selected and binary classifiers are created for detecting

those lesions individually versus normal tissue. Remaining

lesions are removed from the annotation set and are excluded

from training those classifiers.

Infrastructure for AI Experimentation

Training and inference of models developed as part of

this study were managed using Patholytix AI software

(Deciphex), running on an on-premise multimachine graphics

processing unit (GPU) cluster. Patholytix AI is a framework

designed for digital pathology, facilitating the configuration

and coordination of the training and inference of AI models

across a computing grid. Model configurations are defined

using Patholytix AI and allocated to one of the processing

engines running in the cluster. Patholytix AI uses a Tensor-

Flow 2.0 environment to implement the model architecture.

The cluster consisted of NVIDIA GEFORCE GTX 1080 Ti

and RTX 2080 Ti GPU units running on both Windows and

Linux, in single- and multi-GPU configurations. Approxi-

mately 20 GPUs were generally available to perform the

experimental work. For these experiments, each model was

trained using a single GPU.

Model Selection and Implementation

The models utilized popular architectures, including

FCN8/FCN16-,25,26 SegNet-,27 DeepLabV3-,28 and U-Net-29

based architectures with InceptionV3,30-32 ResNET,33-35

Xception,36,37 and EfficientNet38 as backbones. The model

names and their corresponding architectures are given in

Table 3. We implement all models using TensorFlow. FCN8

and FCN16 are based on architectures previously described

in literature,25,26 similarly with DeepLabV3.28 For U-Net-based

architectures, the segmentation framework (Seg_Model)42

is used. The input tile size is 512 � 512 pixels, and the size

of an output prediction is 512� 512 pixels. The tiles that have

annotations are selected for training and extracted at the same

magnification layer as the annotations. No overlap is intro-

duced when extracting the tiles for a model that uses data from

a single-magnification layer. When multiple magnification

layers are used, the tiles from the lower magnification layers

overlap, whereas the base layer tiles do not overlap (see

Figure 1).

Model Training

For all experiments, the encoder networks were initialized

with pretrained ImageNet43 weights whereas the decoders

were initialized randomly using techniques previously

described in the literature.44 Focal loss45 was used as our

training loss function. For partially annotated tiles, the unla-

beled pixels were ignored during loss calculation. The

Adam optimizer was used, with a learning rate of 0.001, a

b1 of .9, and a b2 of .999. For model training, 70% of the

available annotated tiles were used as a training data set,

15% as a testing data set, and 15% as a blind validation data

set. The selection of the tiles is random and based on the

original distribution of the data set, making sure that each of

the splits has an equivalent distribution of the classes in the

data sets. The splits are mutually exclusive on the tile level,

Kuklyte et al. 819



which means that each tile belongs to a single-split bucket.

The training set is used to learn the features of each class in

the data set to update CNN model weights. The test set is

used to assess model training progress and to determine

when to save the model weights. Finally, the validation set

is a fully blinded set of data that is not seen during training

and is used to assess and compare the performance of each

classifier. Pixel segmentation masks, generated during vali-

dation, provide a visual representation of classification

results.

This data-split approach allows a single data set to be

used for training, testing, and validation by splitting it into

3 mutually exclusive sets. The tiles from the same slide can

belong to multiple sets; however, this potentially introduces

the adverse possibility of a model “overfitting,” with the

highest results on the test data set. An improvement to this

approach would be to make sure that the tiles from the same

slide are added to a single set (training, test, or validation)—

this requires a sufficient amount of slides to be annotated

for each class to allow for this. The ideal validation set would

be the annotated data set taken from different sources

and annotated by multiple pathologists to avoid annotation

bias.

Model Optimization

During classifier training, a number of parameters may be

modified including model-specific hyperparameters (eg, loss

function, optimizer learning rate), data-split parameters (eg,

train/test/validation percentages/class balancing for underre-

presented data), and data augmentation parameters (eg, color,

geometric and elastic deformation transformations to enrich

data representation). To develop optimal classifiers, combi-

natorial experiments were performed on each model, varying

the values for each of the parameters during training and

selecting the combination that produced the highest

performance.

Table 3. Models Used and Considered for Pixel Segmentation Task
and Their Corresponding Architectures.

Model name Model architecture Backbone

AE_Base8 Convolutional Autoencoder –
AE_FCN8 Full Convolution Network –
AE_FCN16 Full Convolution Network –
AE_Inception U-Net Inception
AE_InceptionV3 U-Net InceptionV3
AE_ResNet50 U-Net ResNet50
AE_Xception U-Net Xception
DeepLabV3Plus DeepLabV3Plus –
Seg_Model U-Net EfficientNetB0

Figure 1. Schematic representation of the Multi-Encoder Multi-Decoder Single Concatenation model architecture applied to all convolutional
neural network models.24 For simplicity purposes, only layers with skip connection to the decoder are shown. MBConv indicates mobile-inverted
bottleneck convolution.38 Red arrows are center-crop operations where cropping rates are written in red. The operation crops the center
regions of �5 and �2.5 feature maps in all channels to map the corresponding �10 feature maps.
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Class Balancing

Class balancing is implemented by augmenting the data set

using replication. The tiles that are underrepresented in the data

set are replicated to increase their representation in the data and

to introduce a more balanced view of the data. In total, 126

experiments were performed without class balancing and 475

experiments with class balancing, included in the pipeline.

Different effects of class balancing were observed when vary-

ing components in the classifier creation pipeline. To assess the

effect of class balancing in different scenarios, multiple experi-

ments were performed when varying model hyperparameters

such as dropout factor, number of layers, as well as augmenta-

tion based on color, geometric transformations, and elastic

deformation. The average F1 score is taken across the experi-

mental results.

Elastic Deformation

Elastic deformation incorporated generating an elastic field of

random pixel offsets to which the image is warped, as

described by Ronneberger et al.29 We generate random displa-

cement vectors on a 512 � 512 grid, with one offset per pixel

that is then smoothed with a Gauss kernel size of 50. Per-pixel

displacements are then computed using bicubic interpolation.

Elastic deformation was applied to all replicated tiles as a pre-

processing step. In total, 330 experiments were run with elastic

deformation and 264 experiments were performed without

elastic deformation, all of which have class balancing applied

as elastic deformation is only performed on duplicated tiles. As

elastic deformation is only applied in combination with class

balancing, this might have an impact on the overall effect of

applying elastic deformation.

Color Augmentation

Standard colors including brightness, contrast, and saturation,

as described by Zarella et al,46 were used. Color temperature

augmentation was applied with a range of 2700 k to 8000 k to

simulate variation generated by the scanner lamp. All color

augmentations were applied randomly on both original and

replicated tiles, with a probability of .5 for each training epoch.

In total, 255 experiments were performed with color augmen-

tation in the pipeline and 342 experiments were run without

color augmentation.

Geometric Augmentation

Geometric augmentations (as described by Wang et al47)

included vertical and horizontal flips of the images. To evalu-

ate the effect of the geometric augmentation, 596 experiments

were performed on 4 data sets representing heart, lung, kidney,

and liver tissues. Experiments included variations of models,

color augmentations applied in parallel, and elastic deforma-

tion. In total, 296 experiments were performed with geometric

augmentation and 300 experiments were run without geometric

augmentation.

Multi-Magnification Strategy

For multi-magnification experiments, the CNN architectures

proposed by Ho et al24 are used. Specifically, the Multi-

Encoder Single Decoder (MESD) and Multi-Encoder Multi-

Decoder Single Concatenation (MEMD) architectures are

adapted to the best single-magnification models (U-Net with

EfficientNet B0 backbone as encoder). The MESD architecture

uses multiple encoders for �10, �5, and �2.5, but only uses a

single decoder as shown in Figure 1. The MEMD architecture

has multiple encoders and corresponding decoders for �10,

�5, and �2.5 as shown in Figure 2.

To extract multi-magnification tiles, each lower magnifica-

tion tile is constructed using fragments from the same magni-

fication level as shown in Figure 3.

Each model in the experiment was adapted to support input

image data from multiple magnification layers (from the WSI

pyramid) as opposed to the standard approach where data from

only a single-magnification layer are used for training. To

evaluate the performance of multi-magnification models,

experiments are first carried out without any augmentation to

assess the performance of different multi-magnification archi-

tectures against single magnification, then the combinatorial

experiments were run on a single-magnification layer to assess

parameter settings and identify the best models for each data

set. The best model, with optimal parameter settings, was then

used to create multi-magnification models based on 2 and 3

magnification layers. Each additional magnification layer adds

data from the layer that is smaller by a factor of 2, that means

when annotations are available at �10, the 2-layer model

includes image data from the�10 and�5 magnification layers.

In the 3-layer model 10�, �5, and �2.5 image data are used.

Consolidated Versus Single Lesion Detection

We evaluated training models on individual lesions in isolation

(specified lesion [as highlighted in bold in Table 1] vs normal

tissue) and compared the performance of these generated mod-

els against that of the consolidated lesion detection models.

The remaining lesions are removed from the annotation set and

were excluded from training those classifiers. The brain data

set did not have individual lesions that had sufficient represen-

tation to be included in this analysis. All of the rest of the

tissues have infiltrate selected as one of the classes. Kidney

and heart tissues have inflammation selected. The rest of the

lesions are selected for each organ on an individual basis based

on the extent of the data annotated and pathologists’ view on

the importance of the lesion. Necrosis, fatty change, and hepa-

tocellular hypertrophy lesions were selected for the liver tissue

as they had over 10 million pixels annotated each. For kidney

tissue, degeneration tubule and basophilia tubule were selected

for individual model creation as each had over a million pixels

annotated. Mineralization was also selected due to its impor-

tance to the diagnosis. Heart tissue lesion selection also

included edema myocardium, necrosis, and mineralization car-

diomyocyte. Lung tissue lesions selected for individual
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classification included congestion, mucous cell hyperplasia,

and increased macrophages. Two types of infiltrates were also

selected: mononuclear and eosinophilic. Seg_Model

architecture was used to train all of the models, and the results

are taken from the best-performing augmentation approach per

individual classifier.

Performance Evaluation

Understanding the goal of performance evaluation is key,

undoubtedly, interobserver and intraobserver variance in the

definition of lesions using digital annotation tools will occur,

driven by the relative experience of the pathologist and their

familiarity and experience with the annotation tool. If the pur-

pose of the evaluation is to define an exact spatial comparison

between predicted lesions and annotated lesions, then a pixel-

based classifier evaluation is appropriate. However, in the

event that the goal is to determine whether lesions can be

localized to a specific region of the slide, the object-level or

slide-level evaluation would be more suitable. Pixel-level eva-

luation is used for experiments herein to identify the results at

the most granular level. The F1 score is chosen as a metric to

allow focus on the “lesion class” and to avoid bias toward a

“normal tissue” class, which is dominant in the data sets used

for the experiments. Evaluation metrics are calculated on the

validation set, which consist of unseen annotated image tiles.

The validation set size corresponds to 15% of each data set and

has the same class distribution as the original annotated data set

used to train the model. Each WSI used in the experiment has

Figure 2. Schematic representation of the Multi-Encoder Single-Decoder model architecture applied to all convolutional neural network
models.24 For simplicity purposes, only layers with skip connection to the decoder are shown. MBConv indicates mobile-inverted bottleneck
convolution.38 Red arrows are center-crop operations where cropping rates are written in red. The operation crops the center regions of�5 and
�2.5 feature maps in all channels to map the corresponding �10 feature maps.

Figure 3. Multi-magnification centered tile extraction: red, blue, and
black lines indicate the physical tile boundaries for the whole-slide
image at�2.5,�5, and�10 levels, respectively. Each tile from a lower
magnification level (eg, �5) is constructed from 4 tile fragments of the
same magnification level.
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Figure 4. Example of F1 score for pixel-level evaluation of lesions in heart data sets. The tissue image is shown on the left, the annotation in the
middle, and the model prediction on the right. top to bottom: Organized thrombus (atrium), F1 ¼ 0.99; Mineralization, cardiomyocyte, F1 ¼ 0.7;
Artifact: vacuolated aspect of the whole tissue (perfusion fixation), F1 ¼ 0.3; Infiltrate, mononuclear; false-positive detection of a blood vessel as
“infiltrate, mononuclear,” F1 < 0.1.
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approximately 12 tiles annotated and only those annotated tiles

contribute to the evaluation metric calculation.

In the cases where different consolidations of the same data

set were compared, the validation set was not consistent

between those data sets; therefore, the entire annotated data set

was used to compare the results. This data set includes training,

testing, and validation tiles that are annotated for the experi-

ment. The tiles for the validation set are extracted without

overlap and first evaluated independently followed by accumu-

lation of the results for the final metric. This approach was used

only as a comparison of the results between different

consolidations.

Pixel-Based Classifier Evaluation

The most granular level of evaluation is pixel based. Each pixel

that has annotations contributes to prediction metrics. For gen-

eralized lesion detection, we have 3 classes: background (area

around the tissue), tissue (normal tissue), and lesion (a class

that includes all the lesions annotated for the particular tissue).

The background class is excluded from calculations as it does

not have any significance in the lesion detection evaluation.

The evaluation metrics are calculated by taking the lesion class

as a positive class and the normal tissue class as a negative

class. In this scenario, if a pixel is annotated as lesion and the

same pixel is predicted as belonging to the lesion class by the

classifier, this is a true positive (TP), where a pixel is annotated

as a lesion and the classifier predicts this pixel as normal tissue

this is a false negative (FN), where an annotated normal tissue

pixel is predicted as a lesion this is a false positive (FP), where

a normal tissue pixel is predicted as a normal tissue—this is a

true negative (TN). Those 4 base metrics form a basis for most

of the evaluation metrics. Individual lesion detection has the

same evaluation approach as generalized lesion detection, the

only difference is the formation of classes. Instead of using a

lesion class as a combination of all the lesions annotated in the

tissue, the lesion class represents only a single lesion class and

the rest of the lesion classes are excluded from the training and

evaluation data sets.

In the multiclass evaluation, the same approach is used,

where the positive class is the one to be evaluated and the rest

of the classes are combined to form a negative class. In the

multiclass evaluation, a confusion matrix has been used to

support analysis. The name stems from the fact that it makes

it easy to see if the system is confusing 2 classes (ie, commonly

mislabeling one as another).

For assessment of CNN performance, the most commonly

used evaluation metrics for pixel segmentation are Accuracy,

Specificity, Sensitivity, and F1 score.48-51 The most used eva-

luation metric for classifiers is accuracy, this is the number of

accurate detections versus the number of samples overall. This

metric is not ideal for evaluation data sets that have unbalanced

classes where the normal class has significantly more data than

the abnormal one, which is the case in the datasets used for the

experiments in this article. The results of the Accuracy metric

are skewed toward the class that has higher representation, in

this case, normal tissues.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

The F1 score is an overall measure of the performance of a

model that gives an idea of how well the positive samples are

Figure 5. Average F1 scores for consolidated lesions in each organ when class balancing is turned on/off. The convolutional neural network
performance shown is derived from Seg_Model analysis with all augmentation turned off.
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distinguished from the negative samples. It considers both the

precision (p) and the recall (r) of the model: p is the number of

correct positive results divided by the number of all positive

results returned by the classifier, and r is the number of correct

positive results divided by the number of all relevant samples.

Precision indicates how many of the positive detections made

by the model are correct and recall indicates how many of the

actual positive examples contained in the data were found.

Precision is also known as the positive predicted value. Recall

is also referred to as Sensitivity or the True Positive Rate.

Precision ¼ TP

TPþ FP
Recall ¼ TP

TPþ FN

F1 ¼ 2� Precision� Recall

Precisionþ Recall

The F1 score combines precision and recall by way of the

harmonic mean to determine how well the classifier is perform-

ing and gives a result between 0 and 1, where 1 means that the

predicted segmentation matches the annotated image perfectly.

Where the maximum F1 score is used, it is the F1 score of the

best performing model/augmentation techniques. The F1 score

gives a representative view on lesion detection capabilities as it

focuses on single-class detection results and presents no bias

toward the more representative class which in these experi-

ments is normal tissue. To give visual context on the distribu-

tion of F1 score for pixel-level evaluations, generated tissue

masks from predictions made using an example model on heart

data and the corresponding F1 score for that mask are illu-

strated in Figure 4. Based on the above examples and several

others considered, it was anticipated that an F1 score of 0.7 or

greater will represent a “good” detection of lesions in the test

data with limited presence of FP pixels.

Results

The results are broken down into 2 main sections: first, a report

out on model optimization strategies to support generalized

lesion detection, and second, an in-depth assessment of the

optimized techniques to detect lesions in data sets of various

designs.

Section 1: Model Optimization Strategy and Performance
Evaluation of Consolidated Lesion Data Sets

Based on the examples of various lesions available to us, there

are between 20 and 30 lesion classes in each of the liver,

kidney, lung, and heart data sets (Table 2). Collectively, the

image cohort described herein does not represent an exhaustive

list of all the findings/lesions that may occur in each of the

selected organs. The presence of lesions that surpass basal

levels depends not only on external elements, such as the test

compound, but also on interindividual variability, such as spon-

taneous changes (concept of exposome). This heterogeneous

data set poses several constraints in optimal individual lesion

detection of lower represented classes.

In the first part of the experiments, a method to cumulatively

assess all lesions in a single approach was investigated with the

best-performing model/parameters identified at the end.

Requirement for and application of class balancing to training data.
A precursor to CNN training, class balancing can enhance poor

classifier performance on underrepresented classes where there

is a significant difference in data availability for classes in a

data set. Should the number of training annotations in one class

significantly outweigh the other classes, feature learning by the

applied CNNs does not occur proportionally. A typical scenario

encountered in this application is the overrepresentation of

normal tissue in training data due to its relative extent and

through the provision of contextual normal tissue annotations

surrounding abnormal lesion areas. Buda et al52 demonstrated

Figure 6. A, Area of necrosis in liver tissue. B, Partial annotations
performed only on the lesion, pink: necrosis. C, Full 512 � 512 tiles
where blue represents background, green: normal tissue, and pink:
necrosis. Images are snapshots taken at �10 magnification.
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that the method to address class imbalances that emerged as

favorable in almost all analyzed scenarios was oversampling.

This rectifies underrepresentation of classes present by ran-

domly replicating selected examples from poorly represented

classes in the training data.

The results of introducing class balancing for lesion detection

in 5 different nonclinical tissues are demonstrated in Figure 5.

The average F1 scores from a number of experiments that were

run with class balancing enabled (on) and disabled (off) is illu-

strated (Figure 5). Here, it is evident that brain, heart, and lung

lesion detection results improved significantly with class balan-

cing. Lung lesion detection improvements were shown to be the

highest, with an initial F1 score of 0.55 improved to 0.76 when

class balancing was turned on. Annotation strategy can have a

significant impact on the potential success of this approach.

Where whole tiles are annotated, normal tissue can contribute

significantly to the overall number of annotated pixels. By anno-

tating lesions and smaller amounts of normal tissue surrounding

lesions for added context, the challenges in facilitating class

balancing are somewhat diminished as illustrated in Figure 6.

From Table 1, we can see that the amount of pixels annotated for

each data set (except brain) averages approximately 450 million

pixels. If we look at the number of tiles annotated, liver and

kidney tissue had at least double the amount of annotated tiles

in comparison to heart and brain. The average percentage of tiles

annotated for each data set can be also seen in Table 1. There we

can see that on average 35% of tiles in the kidney data set are

annotated, and in contrast the majority of heart and lung annota-

tions cover full tile areas.

The results of lesion detection in the brain tissue are compa-

rable to the results of the rest of the tissues, yet in the brain data set,

there were only 70 tiles available for evaluation and the extent of

the data is not sufficient to draw significant conclusions. Hence, in

the remaining experiments, the heart, lung, liver, and kidney tis-

sues are considered, and brain tissue excluded.

Impact of use of image augmentation strategies. Data augmenta-

tion techniques are frequently used to prevent overfitting of neural

networks.53 Techniques applied herein include geometric spatial

augmentation, elastic deformation, and color augmentation. A

meta-analysis of the effects that varying augmentation parameters

had on the performance of models was investigated using the

consolidated lesion data sets from the various organs. All of the

data sets had 3 classes of interest: background, tissue, and lesion,

where the background class is ignored as it represents the area on

the slide outside the tissue, the tissue class represents normal

tissue, and the lesion class represents all the lesions that are anno-

tated in that tissue. This meta-analysis provided insight into the

value of each augmentation approach on model performance.

Geometric augmentation. Figure 7 illustrates the average F1 score

achieved across all models evaluated with geometric variation

enabled (on) and disabled (off). Geometric augmentations are

generally characterized by their ease of implementation. It is

evident from experimental results that this data preprocessing

step can yield positive effects with very little resources required.

This form of augmentation presents a good solution when posi-

tional biases may be present in the training data.54

Figure 7. Average F1 scores for consolidated lesions across all convolutional neural network models investigated illustrating the impact of
geometric augmentation for each of the organs: heart, lung, kidney, and liver.

826 Toxicologic Pathology 49(4)



Elastic deformation. The next augmentation technique investi-

gated was elastic deformation. While geometric augmentation

is generally a simple transformation of the image data, elastic

deformation is a more fundamental distortion of the input training

data, generating distorted variants of the input. These distortions

can potentially lead to the presentation of artificial scenarios to the

Figure 8. Average F1 score for consolidated lesions across all of the convolutional neural network models investigated for the impact of elastic
deformation for each of the organs: heart, lung, kidney, and liver.

Figure 9. Average F1 score for consolidated lesions across all of the convolutional neural network models investigated for the impact of color
augmentation for each of the organs: heart, lung, kidney, and liver.
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Figure 10. Illustration of the visual variation observed across the different data sets at �10. As heart (A) and lung (B) originate from a single lab,
the variation in color is less than that in kidney (C) and liver (D), which have originated from multiple contributing laboratories. Images are
snapshots taken at �10 magnification.
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models potentially negatively impacting the training process. The

distortions used in this work are subtle. When assessing the aver-

age F1 scores across all of the models, elastic deformation showed

improved performance on the lung data set (Figure 8) but the rest

of the data sets were negatively affected.

Color augmentation. Similar but nonidentical color appearances

are generated due to staining process variation between differ-

ent pathology laboratories. Figure 9 illustrates the color varia-

tion observed across the 4 data sets used herein. The heart and

lung data sets were collated from a single data source, while

kidney and liver tissue data were collected from multiple

sources. Due to possible color variance of the digital slides

collected between laboratories, models trained with images

from one organization might underperform on unseen images

from another. Several techniques have been proposed to reduce

the generalization error, mainly grouped into 2 categories:

color augmentation and color normalization. As Figure 10

shows, the result of color augmentation is positive on the per-

formance for all of the organs, except for the heart. Kidney and

liver data sets are collected from multiple sources and therefore

have inherent color variation in the data. The validation set is a

subset of the same data set; hence, it has a high level of hetero-

geneity and generalization of the model has a positive impact

on the results. The lung and heart data sets are generated from a

single source; therefore, the validation set data from which the

models are evaluated are not as diverse. Hence, the general-

ization effect of color augmentation on those data sets might

not be visible in the results. Nevertheless, the lung data set

demonstrated a positive impact on model performance when

color augmentation is applied. Color augmentation applied to

the heart data set had a negative impact, and when reviewing

the results we identified that some of the lesions classified

might be detected via tinctorial changes and color as such are

missed when color augmentation is used.

Optimal model architecture selection. Once optimal parameters

for comparative review were selected based on the meta-

analysis results, the CNN architecture was chosen. Numerous

CNN segmentation model architectures exist, and many have

been applied to tasks within the medical domain. Over the

course of our research, we have reviewed and selected 10

architectures to include in Patholytix AI (Table 3). These mod-

els all operate on the same basic goal, to assign each pixel in an

image to one of the annotated categories observed during train-

ing. The structure of the image segmentation models can be

broken down into 2 parts. The first part, the encoder, learns the

features that distinguish between the tissue classes. The second

part, the decoder, learns how to take the encoded features and

use them to classify each image pixel into one of the classes

(resulting in a segmented image). Our model selection is based

on popular image segmentation architectures and specifically

those that have proven successful on histology samples. The

models utilized include FCN8/FCN16,25,26 U-net,29 and Dee-

pLabV3Plus.28 For the U-Net architecture, we choose to

experiment with different backbone structures including

ResNet,33,34,35 Inception,30 InceptionV3,31,32 Xception,36,37

and EfficientNet.38 FCN16 and Inception were then further

excluded from the analysis based on comparable performance

with the FCN8 and InceptionV3 variants of those models. The

remaining list of 6 models evaluated were FCN8, InceptionV3,

ResNet50, Xception, DeepLabV3Plus, and Seg_Model. The

comparative analysis of their performance on consolidated

Figure 11. Illustration of maximum F1 scores achieved for each
model, across all configurations attempted, evaluated on consolidated
lesions from the heart, kidney, liver, and lung.

Table 4. Maximum F1 Scores Achieved on Generalized
(Consolidated) Lesion Detection Task for Each Organ Across Single-
and Multi-Magnification Models.a

Organ
Seg_Model
(1 layer)

MESD
(2 layers)

MESD
(3 layers)

MEMD
(2 layers)

MEMD
(3 layers)

Kidney 0.628 0.678 0.717 0.652 0.228
Lung 0.633 0.621 0.633 0.431 0.021
Liver 0.764 0.756 0.683 0.620 0.568
Heart 0.666 0.703 0.666 0.628 0.379
Brain 0.661 0.608 0.517 0.536 0.315

aAll the results are shown without augmentation and class balancing steps to
have an equivalent baseline comparison of the architectures.

Table 5. F1 Scores Achieved Using MESD Model Architecture on
Consolidated Lesions for Selected Organs With 1, 2, and 3
Magnification Layers With the Best Augmentation Configurations
Found in Single-Magnification Experiments.

Organ Augmentation
Seg_Model
(1 layer)

MESD (2
layers)

MESD (3
layers)

Kidney geometric, class
balancing

0.778 0.839 0.825

Liver geometric, class
balancing, elastic
deformation

0.773 0.742 0.734

Heart geometric, class
balancing

0.778 0.734 0.727

Lung color, geometric, class
balancing, elastic
deformation

0.765 0.825 0.803
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lesion data sets is illustrated in Figure 11. It can be observed

that the Seg_Model architecture yields the best performance in

all 4 data sets used for the experiments. Xception and Incep-

tionV3 architecture perform equally well on the liver data set

but have significantly lower results on the heart, lung, and

kidney data sets.

Multi-Magnification architecture evaluation. Multi-magnification

models make use of the different image magnification layers

in a WSI. The use of different levels of magnification allows

the model to extract contextual information around the point of

interest, which may not be possible to detect at a single mag-

nification. To evaluate the effect of different multi-

Figure 12. Illustration of segmentation prediction by the application of single- and multiple magnification layers using best augmentation
configuration. From left to right: (A) original lung tissue, annotation overlaid over tissue. B, Seg_Model results with 1 magnification layer, MESD
with 2 magnification layers, and MESD with 3 magnification layers. Images are snapshots taken at �10 magnification. Green: Normal tissue; Red:
Lesions (infiltrate).

830 Toxicologic Pathology 49(4)



magnification architectures on the performance of consolidated

lesion detection tasks, experiments were performed with 1, 2,

and 3 levels of magnification. The base magnification layer of

�10 was used for all the experiments, where 2 layers were

used, information from �5 magnification was also included.

Similarly, where 3 layers were used, information from the �5

and �2.5 layers were added to the training data. Initially, the

experiments were run without image augmentation to assess

the performance against the single-magnification approach. All

multi-magnification models are constructed using Efficient-

NetB0 as the encoder similar to the Seg_Model since it was

shown to have the best overall performance in the single-

magnification level experiments. The results were evaluated

for 4 different tissue types and 2 multi-magnification architec-

tures were evaluated.

Table 4 presents the summary of the results. It is evident

from this analysis that kidney lesion classification, in partic-

ular, was improved for lesion detection when using multi-

magnification approaches. Results on the heart data set

showed improvement where the F1 score increased from

0.666 on a single-magnification architecture to 0.703 with 2

magnification layers used. In contrast, a significant benefit

was not observed in the liver or lung, whereby largely similar

results to the single-magnification alternative were observed.

The improvements observed in the kidney and heart are only

observed with the MESD architecture. Interestingly, the

MEMD multi-magnification model architecture either did not

improve the results or showed lower results than the single-

magnification equivalent. A marked improvement of the F1

score can be observed when using the MESD multi-

magnification architecture for the classification of kidney

lesions where the result was improved from 0.628 to 0.717.

This can potentially be attributed to the complex and distinct

morphologies of the main components of the renal parench-

yma (tubules–glomeruli–vessels). To investigate if the multi-

magnification model can improve the results further, the best

augmentation configurations observed in single-

magnification experiments were applied to 1 heterogeneous

(kidney) and 2 homogeneous (liver, heart) tissue organs, the

results of which are summarized in Table 5.

By using the best augmentation configuration derived from

the experiments performed on a single-magnification model, an

improvement over all of the organs was observed compared to

unaugmented analysis. With augmentation, all the data sets had

an F1 score above 0.77, and without augmentation, the F1

scores varied between 0.628 and 0.764. When comparing

Figure 12. (continued).
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overall results without any augmentation and utilizing the best-

performing augmentation parameters, the optimal augmenta-

tion improved results by 9% using 1 magnification layer, by

6% using 2 magnification layers, and by 7% using 3 magnifi-

cation layers as input data for the classifier. In comparison to

the best single-magnification results, MESD shows the most

improvement on lesion detection in kidney tissues where the F1

score is increased by 6% and 5%, respectively, when using 2

and 3 magnification layers.

Pixel-level lesion segmentation results of lung tissue using

1, 2, and 3 magnification layers to train the classifier is illu-

strated in Figure 12. Single-magnification results show over-

detection of the lesion class, whereas 2- and 3-layer model

architectures are shown to refine the detected lesion area in

Figure 13. Illustration of segmentation prediction by the application of single- and multiple magnification layers using best augmentation
configuration. From left to right: (A) original kidney tissue, annotation overlaid over tissue. B, Seg_Model results with 1 magnification layer,
MESD with 2 magnification layers, and MESD with 3 magnification layers. Images are snapshots taken at �10 magnification. Red: Lesions
(lymphocytes); Blue: Background.
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concordance with the annotation provided by the pathologist.

The 3-layer model appears to under-detect some lesion areas;

therefore, a lower F1 score is observed when compared with the

2-layer multi-magnification architecture results.

Figure 13 illustrates the multiclass segmentation prediction

results of the kidney tissue using both single and multiple

magnifications. It can be observed that lesion areas that are not

detected in the single-layer model architecture are detected

when more context is added from the higher magnification

layer.

When a third layer of magnification is included in the train-

ing data, the areas that are detected as lesions are amplified

when compared to the 2-layer approach; therefore, in this

scenario, adding more context from the third layer (�2.5 in

this analysis) leads the model to over-detect the lesion. This

can be observed in Table 6, where both precision and sensitiv-

ity have improved when using multiple magnification layers

for the kidney; however, the 3 magnification layers result in

lower precision, but higher sensitivity when compared to the

model using 2 magnification layers.

Section 2: Data Set Optimization Strategy and
Classification Performance

Performance on individual lesion detection and identification using a
single CNN model. The capability of a single classifier to iden-

tify all the annotated lesions in a single tissue type was inves-

tigated. As illustrated by the results for the heart data set

(Figure 14), poor performance was generally observed when

using this approach. In many cases, lesions were detected as

“normal tissue,” resulting in a high level of FNs. It is antici-

pated that performance was affected by the extent of the rep-

resentation of individual lesion classes in the data set (fibrosis;

hemorrhage; infiltrate, mononuclear (foamy); bacterial colo-

nies) where there were less than 10 examples of each class

available in the training data set. Confusion was also noted

Table 6. Precision, Sensitivity, and F1 Scores Achieved for Single- and
Multi-Magnification Models for Kidney.

Magnification layers Precision Sensitivity F1

1 0.733 0.829 0.778
2 0.830 0.848 0.839
3 0.801 0.852 0.825

Note: Bold indicates highest scores achieved per parameter

Figure 13. (continued).
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between classes (mineralization, cardiomyocyte; mineraliza-

tion, media, artery) where pixels of one class are classified

as the other.

Performance on consolidated lesion detection using CNN models. To

mitigate the problems identified in the multiclass classifier,

consolidated training data sets, where all lesions were con-

solidated into a single “lesion” class, were created. These

consolidated data sets consist of 3 classes: background, tis-

sue, and lesion. The lesion class is a combination of all

lesion classes in a given organ data set. Comparison

between the classifier created for the heart using individual

lesion classes and a single combined lesion classifier can be

seen in Figure 15.

When lesions are consolidated into a single lesion class, a

significant improvement in the detection of lesions in general is

observed, the overall lesion detection rate in heart increased

from 23% to 76.4% following consolidation. Figures 16 and 17

illustrate the mask predictions generated for lesions within the

kidney and liver and the heart and lung slides that were

achieved using the consolidated lesion training set. In particu-

lar, we note a measured improvement in the detection of poorly

represented lesions by these models, with the detection of each

of the classes individually improved by an average of 53%.

Figure 14. Confusion matrix of variant classes in the heart lesion annotation using Seg_Model classification. Left to right: For each lesion class, the
proportions of the pixels classified as each of the available classes are shown (max ¼ 1).

834 Toxicologic Pathology 49(4)



Figure 15. Representation of sensitivity in unconsolidated/consolidated classes of heart tissue using Seg_Model (max ¼ 1). The first column
shows the lesion detection rate in an unconsolidated annotation set where each class is to be detected individually. The second column shows the
equivalent results from the consolidated lesion classifier set where all of the lesion classes are combined into a single class. The last column
illustrates the proportion of the data set that each of the classes represent. All of the results are shown on the complete annotated data set,
including training, testing, and validation data.
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This consolidation approach was applied across all data

sets, as it was hypothesized that it may be beneficial where

tinctorial changes such as basophilia in the kidney tubules,

hepatocellular cytoplasmic alteration, or minimal hepato-

cellular hypertrophy may be challenging to detect, espe-

cially when they are observed early in their development

timeline.

To investigate the potential impact of this approach, single

lesion analysis was performed on selected findings from each

of the organs and compared to the average consolidated result

for lesion detection.

Performance on single lesion detection and identification using CNN
models. We observed a varying level of performance in results

Figure 16. Tissue/associated prediction masks for the kidney and liver achieved with the best-performing classifier on the consolidated lesion
training set. Hematoxylin and eosin, �10 magnification. (A) Casts, medullary tubules/kidney; (B) Hypertrophy, centrilobular/liver; (C) Prediction
mask for lesions (red), normal tissue (green); and (D) Prediction mask for lesions (red), normal tissue (green).
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when identifying individual lesions (Figure 18), with some

lesion classifications performing almost perfectly (the F1 score

for fatty change and necrosis in liver tissue was >0.97) where

other lesions were poorly determined in comparison to the

consolidated lesion detection model (necrosis in the heart tis-

sue and mononuclear infiltrate in the lung tissue showed resul-

tant F1 scores of <0.5).

Overall, liver and kidney nonclinical tissue analysis outper-

formed the heart, lung, and brain in terms of the classification

capabilities of the CNN, which can largely be attributed to the

extensive volume of annotated lesions within those data sets.

When comparing the proportion of annotated pixels to the

classification performance (Figure 19), it can be observed that

high F1 scores were achieved when the extent of lesions in the

training set exceeds 10 million pixels, this threshold is depen-

dent on lesion representation in comparison to the normal

classes.

Discussion

The application of AI in toxicology pathology and safety

assessment is gaining significant momentum due to the

advancements and techniques in the field of digital pathology.

With the aim of developing optimized algorithms for

Figure 17. Tissue/associated prediction masks for the lung and heart achieved with the best-performing classifier on the consolidated lesion
training set. (A) Congestion and edema/lung; (B) Inflammation, chronic/heart; (C) Prediction masks for lesions (red), normal lung tissue (green);
and (D) Prediction masks for lesions (red), normal heart tissue (green). Images are snapshots taken at �10 magnification.
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automated lesion detection in nonclinical organs, and to

streamline workflow for pathologists, a multidisciplinary effort

involving teams from 3 different organizations including

pathologists, data scientists, and AI engineers was undertaken

as described herein. The success of any machine learning proj-

ect is generally impacted by the quality and quantity of avail-

able data. The TG-GATEs data set is a highly comprehensive

collection of nonclinical toxicologic studies that offers an

extensive range of lesions and severity across both liver and

kidney data sets, while also providing diversity in the appear-

ance of staining and processing. In comparison to the highly

curated and consistent internal R&D data set analyzed, the TG-

GATEs data set has accompanying metadata that do not accu-

rately correlate, either in range of lesions present or extent of

lesion severity, with findings visually apparent within each

slide. This discrepancy was corrected in our internal data sets

once peer-reviewed by pathologists as part of this work. Stan-

dardization of ontologies is critical when considering the use of

data from multiple origins and we have adhered to SEND and

INHAND standards41 to ensure standardization and interoper-

ability of our consolidated data sets. To achieve the broadest

coverage of potential lesions assessed, along with degrees of

severity, contributing pathologists were tasked with reviewing

each of the studies, peer reviewing, and updating all findings,

along with annotating examples of lesions in those tissues. For

this study, pathologists have spent approximately 650 hours on

this endeavor. Over 3600 slides have been reviewed, of which

1300 were annotated, generating 17,000 annotated tiles, with

over 2 billion annotated pixels containing approximately 200

million annotated lesion pixels. Three different variants of the

data sets were generated to explore the impact of different

consolidation approaches on the classifiers ability to detect and

identify lesions. The first approach was to train a single model

on all of the lesions available for a particular tissue type. Sub-

sequently, the variants of each data set were generated to com-

bine all of the lesions into a single class and to pick out the

lesion classes of interest and train a classifier to identify only

those. The classifiers are evaluated based on the blinded set of

tiles that consisted of 15% of the total tiles available with

annotations. Despite the large amounts of annotated tiles, anno-

tation bias may be observed in generated classifiers depending

on the validation technique used to assess classifier perfor-

mance due to the fact that validation data are annotated by the

same pathologist as the training data. Subsequent work from

this research aims at developing validation studies from diverse

sources, which are annotated but not used for training.

Augmentation techniques including geometric augmenta-

tion and elastic deformation were shown to have a varied

effect on the F1 scores of organ-specific classifiers. Geo-

metric augmentation improved the F1 scores compared to

when no augmentation was used; however, elastic deforma-

tion only improved F1 scores on the lung data set. This was

expected, as a minimal representation of lesions and annota-

tions were present in the lung cohort, which in turn high-

lighted the benefits of elastic deformation and generation of

simulated realistic deformation examples provided when lim-

ited training data are available. For color augmentation, it was

evident that the heart slides were carefully curated from a

single lab source and digitized using a single scanner, where

limited variation in staining intensity or color variation is

observed. Whereas for both the liver and kidney data sets, a

variety of sources were used in the compilation of the cohorts

where disparity is apparent. This lack of standardization

within slide preprocessing, owing to variations in staining

protocols and digitization, likely leads to color imbalances

and varying tinctorial differences across the cohort. This is

visually illustrated in Figures 9 and 10, which subsequently

showed the increased benefit in F1 scores from color augmen-

tation. Six models were evaluated: FCN8, InceptionV3,

ResNet50, Xception, DeepLabV3Plus, and Seg_Model, with

Seg_Model providing the most superior results across all

organs. This model is an implementation of the Segmentation

Models library by Yakubovskiy.42 Instead of one single

model architecture, this model allows the user, through the

use of the hyperparameters, to create an encoder–decoder

model based on one of 4 popular architectures: Unet, FPN,

Linknet, and PSPNet. These models are then enhanced with a

pretrained backbone, which defines the structure of the enco-

der and, shown by these results, allows it to benefit from the

features already learned from these models that have been

pretrained on very large data sets.

Using Seg_Model, the application of multi-magnification

training was assessed. In contrast to the findings reported in

Ho et al,24 where MEMD performed better than MESD, we

Figure 18. F1 score for consolidated lesion detection for each of the
organs, heart, lung, kidney, and liver, and individual class analysis via a
“one-versus-all” classification approach using Seg_Model/MESD,
where optimal.
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have found that additional contextual information is more

useful when concatenated at the encoder level rather than at

the decoder level. Another potential reason why MESD

excelled in this situation may be due to the smaller number

of available training examples, in comparison to data sets

previously reported by Ho and colleagues.24 By excluding

decoders at lower magnification levels, MESD required less

training examples.

Based on the experiments performed without augmentation

(Table 5), improvements are evident on the kidney and heart

data when using the MESD model; however, once the stan-

dardized augmentation techniques were applied, only

the kidney and lung had observable beneficial effects from

the incorporation of MESD (Table 5). Detecting lesion

boundaries in the lung tissue was improved when 2 magnifi-

cation layers were included to train the algorithm, as can be

observed from the examples in Figure 11. Kidney classifica-

tion using 2 magnification layers also had an ameliorative

effect on the F1 score as opposed to a single layer, or even

3 layers; this classification can be visually observed in Figure

12. This result suggests that the advantage offered by adding

additional contextual information during the training of AI

models is largely dependent on the tissue architecture and

heterogeneity of the structures. Any improvement of model

classification performance observed while using multi-

magnification approaches is deemed to vary significantly

depending on the organ type. However, in these certain sce-

narios, the application of multi-magnification approaches can

prove very beneficial.

The development of a multiclass classifier that facilitates

the detection of multiple lesion types concurrently is attrac-

tive due to its computational efficiency. When a model was

trained on a data set where lesions are combined into a single

class, a 53% improvement was seen in the detection of lower

represented lesions. This gives rise to the theory that the con-

solidated classifier may have the ability to generalize beyond

training examples. In the training data, representation of cer-

tain lesion classes was very low, yet in the validation data, the

model detects those lesions reasonably well (Figure 14). This

means that the consolidated lesion models, based on the data

available to us, have the potential to generalize for unseen

examples; however, as an external annotated data set is not

available to fully evaluate the generalization capability of the

classifiers, further evaluation will be required to determine

the potential of the models to generalize on data sets from

unseen sources.

Figure 19. Relationship between the extent of representation of a specific lesion in the training set (number of pixels) and the classification
performance of the model for that lesion in the validation data set (best F1 score) is graphically represented. A 95% confidence interval was applied
(dotted line).
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There is a general trend observable within the data where the

greater the level of representation of a given lesion in the

annotation set, the higher the likelihood of detection in valida-

tion data (Figure 18). Outliers have been observed with certain

lesions substantially over and under achieving with respect to

the general trend, even when class balancing is applied. This is

due to the limited array of examples that can be generated using

class balancing, which cannot generate true diversity. Miner-

alization in the kidney, which delivered high-yielding classifi-

cation performance from a relatively low number of annotated

pixels, routinely presents as basophilic deposits that may

involve the tubule epithelia and/or the interstitium, is often

an evident and apparently easy finding to visually interpret.

However, more challenging changes such as tubular degenera-

tion or tubular basophilia, which may already be very subtle to

distinguish from a pathologist’s perspective, when the severity

grade is minimal, still show a poorer performance despite hav-

ing a higher number of pixels annotated than mineralization.

Similarly, centrilobular hepatocellular hypertrophy, with large

numbers of annotations, can be quite a subtle change when the

degree of severity is low, thus subject to interobserver varia-

bility and hence not as easily predicted by the models. In the

lung, confusion between real infiltrates of mononuclear cells or

eosinophils and bronchus-associated lymphoid tissue see-

mingly lowered the performance score. Interestingly, the F1

score for heart, “infiltrate, mononuclear” is low, but after

extraction and review of the annotated tiles, it was evident that

there was confusion with blood vessels, and confusion between

the “inflammation, chronic class” and the “infiltrate, mono-

nuclear” class, a result which is not so surprising, given that

mononuclear cells are very often a feature of chronic inflam-

mation. Overall, the relationship between the F1 score and the

number of pixels annotated appears proportional and is affected

not only by the extent of the annotation set and representation

of the lesions (number of pixels) but also by confusion between

similar classes/between normal components of the tissue that

may appear lesion-like to the model. This is further com-

pounded by the subtlety of the change observed in the tissue

(subtle morphological variation, faint tinctorial changes). This

emphasizes the shortcomings observed within the data set for

lung, which had a lower number of minimally represented

lesions, which may be attributed to the lower F1 scores

observed. Future improvements for this research will focus

on the enhancement of these models without the need for fur-

ther annotations. The robustness of models produced from DL

strategies will vary depending on the quality and extent of

curated content used for training. Robust training data sets will

be required from a diversity of contributing laboratories to

ensure the general applicability of models outside the data they

are generated from. We believe that large repositories of con-

solidated data cohorts are required. Initiatives like the Big Data

for Better Outcomes initiative55 will make these goals more

attainable for model developers universally and will do a lot to

enhance and scale validation efforts in this regard. Even if the

data deficit can be addressed, we believe that new models need

to be proposed that can robustly detect “unseen” lesion

examples based on a generalized model of normal tissues; we

also believe that approaches such as multiple instance learn-

ing56 can be leveraged to utilize sparsely annotated data sets

and hence reduce the overheads on pathologist time required to

annotate copious examples of various lesions.

Conclusion

Overall, herein, we have demonstrated that generalized lesion

classifiers trained on examples of multiple different lesions can

work effectively in determining lesions in validation cohorts.

Additionally, models of this nature can potentially generalize

well, efficiently detecting poorly represented lesions in the

training data. Similarly, we have demonstrated that models can

be developed to detect specific lesions in specific organs; how-

ever, their performance is contingent on the extent of represen-

tation of that lesion in the training data and potentially on the

subtlety of the lesion in question.

We have provided a framework on how researchers in this

space can develop and optimize CNN models for specific non-

clinical tissues, incorporating a variety of enhancement strate-

gies including class balancing, geometric, and color

augmentation techniques. Finally, we have illustrated the

potential of multi-magnification models in certain limited eva-

luations and have observed its benefit in lesion determination

in the kidney, where normal morphology is complex and struc-

tural context from lower resolutions may enhance detection.
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