
NEURAL REGENERATION RESEARCH www.nrronline.org

1308

RESEARCH ARTICLE

Fingolimod (FTY720) improves postoperative 
cognitive dysfunction in mice subjected to 
D-galactose-induced aging

*Correspondence to: 
Jie Zhang, MD, jie1375500@sina.com. 

orcid: 
0000-0002-5914-9390
(Jie Zhang) 

doi: 10.4103/1673-5374.272617

Received: July 16, 2019
Peer review started: July 18, 2019
Accepted: August 13, 2019
Published online: January 9, 2020    

Jie Zhang1, *, Bin Xiao2, Chen-Xu Li1, Yi Wang1

1 Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
2 Department of Orthopedics, the Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
  
Funding: This work was supported by the National Natural Science Foundation of China, No. 81500932 (YW).

Abstract  
Neurocognitive dysfunction is a common postoperative complication, especially in older adult patients. Fingolimod (FTY720) is a sphin-
gosine-1-phosphate receptor modulator that has been found to be neuroprotective in several animal models of central nervous system 
disease. However, few reports have examined whether FTY720 could mitigate postoperative cognitive dysfunction. In this study, we in-
vestigated whether FTY720 could prevent postoperative neurocognitive impairment in mice subjected to D-galactose-induced aging. We 
induced an accelerated model of aging by administering an intraperitoneal injection of D-galactose. Subsequently, we performed a partial 
hepatolobectomy under sevoflurane anesthesia. FTY720 (1 mg/kg) was administered intraperitoneally 3 hours before and 24 hours after 
anesthesia and surgery. Our results indicated that anesthesia and surgery significantly impaired spatial memory in the Y-maze test 6 hours 
after surgery. We also found that problem solving ability and long-term memory in the puzzle box test on postoperative days 2–4 were 
significantly improved by FTY720 treatment. Immunohistochemical staining and western blot assay demonstrated that FTY720 signifi-
cantly inhibited microglial activation in the hippocampal CA1 region of mice 6 hours and 3 days after anesthesia, and down-regulated the 
expression of synaptic-related proteins postsynaptic density protein 95 and GluR2 in the hippocampus. These results indicate that FTY720 
improved postoperative neurocognitive dysfunction in mice subjected to D-galactose-induced aging. This study was approved by the Ex-
perimental Animal Ethics Committee of the Third Xiangya Hospital of Central South University of China (approval No. LLSC (LA) 2016-
025) on September 27, 2016.
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Neuroprotective effect of Fingolimod (FTY720) on postoperative neurocognitive dysfunction in mice 
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Introduction 
Postoperative neurocognitive dysfunction (POCD) is a com-
plication related to the central nervous system. It is more 
common in older vs. younger patients following surgery (Li 
et al., 2019; Song et al., 2019), and includes postoperative de-
lirium, delayed neurocognitive recovery (up to 30 days after 
the procedure), and postoperative neurocognitive disorder 
(up to 12 months) (Evered et al., 2018). Although this post-
operative complication usually persists for a period of days 
to weeks after surgery, it can last for decades in severe cases, 
and even develop into dementia and affect mortality. The in-
cidence rate of POCD can range from 17% to 43%, depend-
ing on the patient characteristics (Evered et al., 2011). To 
date, the prevention and treatment of POCD are not optimal, 
and are still mainly focused on adjusting the risk factors, en-
hancing cognitive reserves, and administering symptomatic 
treatment (Feinkohl et al., 2017; Pappa et al., 2017; Kotekar 
et al., 2018; Liu et al., 2018). Among the many risk factors 
for neurocognitive dysfunction, including patient character-
istics, surgery type, anesthesia, and environment (Kotekar 
et al., 2014; Kulason et al., 2017; Kubota et al., 2018), age 
was identified as an independent risk factor (Kotekar et al., 
2014; Kubota et al., 2018). A prospective study by Kotekar 
et al. (2014) found that the incidence of POCD in individu-
als aged 60 years, 61–70 years, and 71–80 years was 12.5%, 
20.5%, and 40.9%, respectively, suggesting that POCD is 
strongly associated with age. Therefore, as many societies 
face aging populations, new and effective methods for pre-
venting POCD in older adult patients are urgently needed. 

Fingolimod (FTY720) is a new immunosuppressant that is 
primarily used to treat relapsing-remitting multiple sclerosis 
(Kappos et al., 2010; Calabresi et al., 2014). FTY720 has been 
found to have neuroprotective and anti-inflammatory effects 
in several pre-clinical animal models of central nervous sys-
tem diseases, such as Alzheimer’s disease (Hemmati et al., 
2013; Aytan et al., 2016), ischemic stroke (Kraft et al., 2013; 
Nazari et al., 2016), cerebral hemorrhage (Lu et al., 2014), 
hyperoxia (Serdar et al., 2016) and Parkinson’s disease (Mo-
tyl et al., 2018). FTY720 has a carbon backbone, making it a 
highly lipophilic compound. Accordingly, it can easily tra-
verse the blood-brain barrier where it becomes localized in 
the white matter in the central nervous system (Foster et al., 
2007). FTY720 also modulates the sphingosine-1-phosphate 
receptor (S1PR), which is highly present in the central ner-
vous system (Cruz et al., 2014; Martin et al., 2014; Healy et 
al., 2016). Cannon et al. (2012) found that FTY720 combined 
with S1PR1 and quickly but reversibly reduced P-glycopro-
tein activity. As P-glycoprotein activity facilitates the entry 
of small-molecule drugs into the central nervous system 
through the blood-brain barrier, it appears that FTY720 can 
influence the blood-brain barrier. Therefore, FTY720 may 
enter the central nervous system and exert a neuroprotective 
effect on S1PR in central nervous system cells, including 
microglia (Noda et al., 2013; Cipriani et al., 2015), astrocytes 
(Dusaban et al., 2017; Rothhammer et al., 2017), oligoden-
drocytes (Segura-Ulate et al., 2017), and neurons (Di et al., 
2013). Many animal and clinical studies have confirmed that 
central nervous system cells and neuroinflammation play an 
indispensable role in the pathogenesis of POCD (Berger et 
al., 2019; Safavynia et al., 2019). Therefore, we hypothesized 

that FTY720 may be useful as a preventive drug that could 
alleviate postoperative cognitive impairment. Zhou et al. 
(2013) evaluated the effects of FTY720 on sevoflurane-in-
duced neurotoxicity in rat pups. They found that 1 mg/kg 
of FTY720 before exposure to sevoflurane significantly in-
hibited neuronal apoptosis, and that this could be abrogated 
by VPC23019 (S1P antagonist). Unfortunately, few studies 
have examined the impact of post-surgical administration of 
FTY720 in aged animals. Thus, the neuroprotective mecha-
nisms of FTY720 remain unknown.

Because animals injected with D-galactose exhibit a 
number of aging-related features, this technique has been 
extensively applied to the study of aging-related diseases (Ali 
et al., 2015; Sadigh-Eteghad et al., 2017; Shwe et al., 2018). 
Therefore, in the present study, we induced aging in mice via 
an intraperitoneal injection of D-galactose (1000 mg/kg). We 
then evaluated whether FTY720 could improve POCD in 
mice subjected to D-galactose-induced aging and explored 
the underlying mechanisms.
  
Materials and Methods  
Animals
All experiments were performed in accordance with the 
National Institutes of Health guidelines. The protocol was 
approved by the Animal Ethics Committee of the Third 
Xiangya Hospital of Central South University, China on 
September 27, 2016 (approval No. LLSC (LA) 2016-025). We 
purchased 2-month-old male C57BL/6J mice that weighed 
20–25 g from the Central South University of China [license 
No. SCXK (Xiang) 2016-0002]. All mice were housed for 
7 days before the experiments in a controlled environment 
(22–25°C, 12-hour light/dark cycle). The mice were allowed 
free access to water and food.

Experimental groups
The C57BL/6J mice received 1000 mg/kg of D-galactose 
(Sigma-Aldrich Co., St. Louis, MO, USA) via intraperito-
neal injection, once daily for 60 consecutive days. The same 
person conducted injections at the same time every day. 
This accelerated aging model was successfully established 
in a previous study in our laboratory (Duan et al., 2018). 
All mice subjected to D-galactose-induced aging were ran-
domly divided into four groups (n = 12/group): (1) The C 
group received no anesthesia, surgery, or FTY720; (2) the 
C + FTY720 group received FTY720 (1 mg/kg, intraperi-
toneally), but no anesthesia or surgery; (3) the S + vehicle 
group received 2% sevoflurane anesthesia for 2 hours, un-
derwent a partial hepatolobectomy, and received injections 
of vehicle (0.5 mL, intraperitoneally) 3 hours before and 24 
hours after surgery, and (4) the S + FTY720 group received 
2% sevoflurane anesthesia for 2 hours, underwent a partial 
hepatolobectomy, and received injections of FTY720 (1 
mg/kg, intraperitoneally) 3 hours before and 24 hours after 
surgery.

Drug administration
FTY720 is sparingly soluble in aqueous buffers. As per the 
instructions that accompanied FTY720, we first dissolved 
FTY720 (Cayman Chemical Co., Ann Arbor, MI, USA) in 
ethanol with a concentration of 20 µg/µL for maximum sol-
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ubility in aqueous buffers, and then diluted it with saline. 
FTY720 was freshly prepared for each intervention. The dose 
of FTY720 (1 mg/kg, administered intraperitoneally) was 
selected according to previous studies in neonatal rats (Zhou 
et al., 2013; Serdar et al., 2016). FTY720 was administered 3 
hours before and 24 hours after surgery. The vehicle solution 
was the same as the FTY720 solution except we did not add 
FTY720. The injection volume and age of the vehicle solu-
tion were the same as those for the FTY720 solution.

Anesthesia and partial hepatolobectomy
The anesthesia and surgery were conducted in accordance with 
previous studies (Tang et al., 2017; Duan et al., 2018). Mice 
were placed into an anesthesia induction chamber that was pre-
filled with 5% sevoflurane (Maruishi Pharmaceutical Co., Ltd., 
Osaka, Japan) mixed with high-flow oxygen (5 L/min). After 
the mice lost the righting reflex, they were given 3% sevo-
flurane and oxygen (80–85%) for 2 hours through a mask 
over the mouth and nose. Sevoflurane and oxygen concen-
trations were monitored using a multifunctional detector 
(Datex-Ohmeda, Helsinki, Finland). During anesthesia, the 
mice were subjected to a partial hepatolobectomy. After skin 
antisepsis and disinfection, a 2-cm incision was made just 
below the xiphoid process. Cutting the muscle layer exposed 
the abdominal cavity. The left lobe of the liver was then 
visualized and isolated, ligated, and carefully resected. Sub-
sequently, the incision was sutured using 5-0 thread. Finally, 
to relieve pain caused by the incision, lidocaine cream (2.5% 
lidocaine and 2.5% prilocaine) was applied to the skin inci-
sions immediately after the surgery and three times per day 
for the following 2 days. Anesthesia was induced for 2 hours, 
after which we removed the mask and placed the mice in a 
warm environment to recover naturally.

Behavioral tests
We used the Y-maze test and puzzle box test to assess wheth-
er the anesthesia and surgery impaired cognitive function 
and whether FTY720 could reverse this change. Spatial 
memory was evaluated via the Y-maze test 6 hours after sur-
gery, and executive function was assessed via the puzzle box 
on postoperative days 2–4.

Y-maze test
We used the Y-maze test to evaluate spatial memory abili-
ty, as previously described (Peng et al., 2016). The Y-maze 
consisted of a start arm (always open), second arm (always 
open), and novel arm (blocked during the first trial, open 
during the second trial). The angle between each arm was 
120 degrees. The Y-maze test consisted of two trials sepa-
rated by a 2-hour interval. In the first trial (training), which 
was 10 minutes long, the mouse freely explored the two 
arms (start arm and second arm) of the maze with the novel 
arm blocked. After a 2-hour interval, we conducted a second 
trial (retention) in which the mouse was placed in the maze 
at the start arm and allowed to explore all three arms for 5 
minutes. A logitech video camera was placed directly above 
the Y-maze such that it captured activity in all three arms. 
The number of entries and the time spent in each arm were 
recorded and analyzed. More entries in the novel arm (%) 
and a longer duration of time spent in the novel arm (%) 

indicated better spatial recognition memory. At the end of 
each experiment, a 75% ethanol solution was sprayed on the 
bottom and inner wall of the maze to remove odors, feces, 
and urine. 

Puzzle box test
In accordance with a previous study (Zurek et al., 2016), we 
used the puzzle box test to assess executive function, includ-
ing problem solving and cognitive flexibility. The puzzle box 
was composed of a light box (58.0 × 28.0 × 27.5 cm3) and 
dark goal box (14.0 × 28.0 × 27.5 cm3), which were connect-
ed by a door and also by a covered tunnel. The mouse was 
required to travel from the light box to the dark box (the 
goal box). The puzzle box test consisted of four trials: the 1st 

trial (door open, tunnel open), 2nd trial (door closed, tunnel 
open), 3rd trial (door closed, bedding in tunnel), and 4th trial 
(door closed, obstacle in tunnel). Thus, the task difficulty 
was gradually increased from the 1st trial to the 4th trial. The 
mouse was placed in the middle of the bright box and al-
lowed to explore freely until it reached the dark box. If the 
mouse did not reach the dark box within 5 minutes, it was 
then gently guided to the dark box. The whole experiment 
was conducted over 3 days with three steps on each day. On 
the 1st day (trials 1-2-2), we conducted trial 1 (door open, 
tunnel open), in which the mouse could reach the dark box 
through the open door or the tunnel. After a 2-minute in-
terval, we conducted trial 2 (door closed, tunnel open), in 
which the mouse could get to the dark box only through 
the tunnel (problem-solving). After a 2-minute interval, we 
tested short-term memory for this task by repeating trial 2. 
On the 2nd day (trials 2-3-3), we conducted trial 2 to assess 
long-term memory for the task. After a 2-minute interval, 
we conducted trial 3 (door closed, bedding in tunnel), in 
which the mouse was required to burrow into the clean bed-
ding material to find the entrance to the tunnel and enter 
the dark box (more difficult problem-solving). After another 
2-minute interval, we repeated trial 3 to assess short-term 
memory for this task. On the 3rd day (trial 3), we repeated 
trial 3. We found that trial 4 was too difficult for the mouse, 
so we excluded this task. We recorded and analyzed the time 
required to solve each task. The mice were given 5 minutes 
for each trial, which was considered complete if the mouse 
had all four paws inside the goal box. Shorter task latency 
indicated better problem-solving, short-term memory, and 
long-term memory.

Immunohistochemistry
After anesthetizing the mice, they were perfused with 4% 
paraformaldehyde from the heart to the brain until the body 
was stiff. The brain tissue was then removed from the skull 
and fixed in 4% paraformaldehyde. After 2 days, the brain 
tissue was dehydrated with different concentrations of su-
crose (15%, 30%, 30%, and 35%) at 4°C. When the tissue 
sank to the bottom of the container, the brains were embed-
ded in OCT compound and stored at –80°C.

We used a pre-freezing sliding microtome (Leica CM1950, 
Wetzlar, Germany) to continuously cut brain tissue contain-
ing the hippocampus into 20-µm sections. These were washed 
three times using phosphate buffered saline and then exposed 
to 3% hydrogen peroxide for 10 minutes at room temperature. 
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After washing the slices again with phosphate buffered sa-
line, the sections were sealed with 5% bovine serum albumin 
(Sigma, St. Louis, MO, USA) for 1 hour, and then incubated 
in a rabbit anti-Iba-1 dilution (1:1000; Wako, Osaka, Japan; 
marker for microglial cells, polyclonal antibody) at room tem-
perature overnight. We conducted Iba1 staining according to 
the instructions for use of the 3,3′-diaminobenzidine reagent 
(Beijing Zhongshan Jinqiao Biological Technology Co., Ltd., 
Beijing, China). The sections were dried, de-waxed, dehydrat-
ed with different concentrations of alcohol (70%, 95%, 100%, 
and 100%), sealed, and dried overnight.

Activated microglia cells were counted using a microscope 
(Nikon, Tokyo, Japan). The procedure for counting activated 
microglia cells in CA1 was consistent with that used in a 
previous study (Cerbai et al., 2012). First, we established cri-
teria for determining whether microglia cells were “resting” 
or “reactive”. According to the literature, resting microglia 
cells were defined as small, round, thin, and branched with 
protuberations around the cell body. Reactive microglia cells 
were defined as multipolar (bipolar, tripolar, or spindle/rod 
shaped), short branched, wound, or asymmetrically distrib-
uted, with larger cell bodies compared with resting cells.

western blot assay
We used a western blot assay to assess the expression of syn-
aptophysin (SYN), postsynaptic density protein 95 (PSD95), 
and GluR2 in the hippocampus. After anesthesia and per-
fusion with 4% paraformaldehyde, the hippocampal tissues 
were extracted and stored in liquid nitrogen. The hippo-
campal samples were then treated with histone lysate, which 
contained NP40 lysate, a 1% phosphatase inhibitor, and a 1% 
protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA). The 
tissue samples were homogenized via a probe, centrifuged at 
12,000 × g at 4°C, and the supernatant was obtained. Total 
protein concentration was assessed according to the in-
structions that accompanied the bicinchoninic acid protein 
assay kit (CWBio, Beijing, China). We added the marker and 
protein sample directly to sodium dodecylsulfate-polyacryl-
amide electrophoresis gel. We then conducted electrophore-
sis at a constant voltage of 80 V until the marker separated, 
at which point we increased the voltage to 110 V. After trans-
ferring the sample onto a polyvinylidene fluoride membrane 
(BioRad, Hercules, CA, USA), the membrane was placed in 
Tris-buffered saline Tween + 5% non-fat milk, and sealed at 
room temperature for 60 minutes. Subsequently, the mem-
brane was incubated with rabbit anti-SYN (1:500; Protein-
tech, Chicago, IL, USA; a marker for presynaptic terminals, 
polyclonal antibody), rabbit anti-PSD95 (1:1000; Abcam, 
Cambridge, MA, USA; a marker for postsynaptic terminals, 
polyclonal antibody), rabbit anti-GluR2 (1:1000; Proteintech; 
a glutamate receptor subunit, polyclonal antibody), and rab-
bit anti-β-actin (1:2000; Proteintech; polyclonal antibody) at 
4°C overnight. After three washes with Tris-buffered saline 
Tween, the membrane was treated with the diluted sec-
ondary antibody (1:8000; anti-rabbit, 926–32211, Li-CORr, 
polyclonal antibody) and slowly shaken at room temperature 
for 60 minutes. The immunoblot bands were detected using 
Odyssey-CLX infrared imaging visualizer (Li-CORr). The 
relative protein levels of SYN, PSD95, and Glu R2 compared 
with β-actin were analyzed using ImageJ software (National 

Institutes of Health, Bethesda, MD, USA). 

Statistical analysis
We used GraphPad Prism 6.0 software (GraphPad Software 
Inc., La Jolla, CA, USA) for statistical analysis. All data are 
presented as the mean ± SEM. The results of the Y-maze 
test, microglia activated ratio, and western blots were an-
alyzed using a one-way analysis of variance followed by 
Tukey’s post hoc test. The results of the puzzle box test were 
analyzed using a two-way analysis of variance followed by 
Tukey’s post hoc test. P-values < 0.05 were considered statis-
tically significant.

Results
Perioperative FTY720 administration ameliorates 
postoperative cognitive impairment in mice subjected to 
D-galactose-induced aging 
In the Y-maze test, the percentage of entries in the novel arm 
and the percentage of time spent in the novel arm were sta-
tistically different among the groups (entries in novel arm% 
F(3, 43) = 3.470, P = 0.024; time spent in novel arm% F(3, 43) = 
4.485, P = 0.008; Figure 1A and B). Tukey’s post hoc analysis 
confirmed that the percentage of entries in the novel arm 
was significantly lower in the S + vehicle group compared 
with the C group, and that the percentage of time spent 
in the novel arm was significantly lower in the S + vehicle 
group compared with the C + FTY720 group (entries in 
novel arm%: S + vehicle vs. C, P < 0.05; time spent in nov-
el arm%: S + vehicle vs. C + FTY720: P < 0.05; Figure 1A 
and B). There was no statistical difference between the S + 
FTY720 group and S + vehicle group (entries in novel arm%, 
P = 0.498; time spent in novel arm%, P = 0.788). These data 
suggest that anesthesia and surgery impaired spatial memory 
in mice subjected to D-galactose-induced aging.

Finally, we assessed changes in problem solving and 
memory, as revealed by performance in the Puzzle Box test. 
Problem solving ability was assessed according to the time 
taken to enter the dark box. The difficulty of the task was 
progressively increased. As shown in Figure 1, in terms of 
problem solving ability, the mice in all groups took longer 
to reach the dark box when they were required to burrow 
into the tunnel, compared with when the tunnel was open 
and when both the door and tunnel were open (two-way 
analysis of variance: group, F(3, 99) = 6.117, P < 0.001; interac-
tion, F(6, 99) = 4.611, P < 0.001; Figure 1C). Tukey’s multiple 
comparisons showed that the mice in the S + vehicle group 
spent significantly more time to solve the burrowing task 
than those in the other groups (S + vehicle vs. C, P = 0.0001; 
S + vehicle vs. C + FTY720, P < 0.0001; S + vehicle vs. S + 
FTY720, P < 0.0001; Figure 1C). We assessed short-term 
memory and long-term memory by retesting the mice 2 
minutes and 24 hours, respectively, after first exposing the 
mice to the task. In terms of short-term memory, we found 
no significant difference among the four groups (two-way 
analysis of variance; group, F(3, 66) = 1.067, P = 0.369; interac-
tion, F(3, 66) = 0.297, P = 0.828; Figure 1D). In terms of long-
term memory, the four groups of mice exhibited a similar 
latency in the open tunnel task. However, the time required 
to complete the burrowing task was longer in the S + vehicle 
group compared with the other groups (two-way analysis of 
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variance; group, F(3, 66) = 3.504, P < 0.05; interaction, F(3, 66) = 
2.374, P = 0.078. Tukey’s multiple comparisons: S + vehicle 
vs. C, P < 0.01; S + vehicle vs. C + FTY720, P < 0.01; S + ve-
hicle vs. S + FTY720: P < 0.05; Figure 1E).

These data suggest that anesthesia and surgery impaired 
problem-solving ability and long-term memory and that 
while mice subjected to D-galactose-induced aging had 
more difficultly completing the tasks, FTY720 ameliorated 
these impairments.

Perioperative FTY720 administration inhibits microglial 
activation after anesthesia and surgery in mice subjected 
to D-galactose-induced aging 
Microglial over-activation has been reported to drive neu-
roinflammation via positive feedback mechanisms, which is 
an important pathological mechanism of postoperative cog-
nitive impairment (Hovens et al., 2014). Next, we examined 
the degree to which microglia were activated in the hippo-
campal CA1 area.

Our results showed that the percentage of activated mi-
croglia was statistically different among the four groups (6 
hours: F(3, 12) = 17.24, P = 0.0001; 3 days: F(3, 12) = 12.82, P = 
0.0005). Tukey’s post hoc analysis showed that microglia in 
the S + vehicle group were significantly activated in the CA1 
area compared with those in the C group and C + FTY720 
group at 6 hours and 3 days after surgery (6 hours: S + vehi-
cle vs. C, P < 0.001; S + vehicle vs. C + FTY720, P < 0.001; 3 
days: S + vehicle vs. C, P < 0.01; S + vehicle vs. C + FTY720, 
P < 0.001; Figure 2). Compared with that in the S + vehicle 
group, the ratio of activated microglia in the S + FTY720 
group was clearly lower at 6 hours and 3 days after surgery (6 
hours: S + vehicle vs. S + FTY720, P < 0.05; 3 days: S + vehi-
cle vs. S + FTY720, P < 0.05; Figure 2). These results suggest 
that FTY720 inhibited microglial activation after anesthesia 
and surgery in mice subjected to D-Gal-induced aging.

Perioperative FTY720 administration increases synaptic 
protein expression in mice subjected to D-Gal-induced 
aging mice
Synaptic plasticity-associated proteins including presynaptic 
protein SYN, PSD95, and AMPAR are involved in postoper-
ative cognition (Jiang et al., 2018; Zhang et al., 2018; Zhou et 
al., 2018). Here, we measured the expression of SYN, PSD95, 
and the AMPAR subunit GluR2 in the hippocampus at 6 
hours and 3 days after anesthesia and surgery (Figure 3). 
The expression of PSD95 and GluR2 proteins in the hippo-
campus was statistically different among the four groups at 6 
hours and 3 days after surgery (PSD95: 6 hours: F(3, 8) = 7.707, 
P = 0.010; 3 days: F(3, 8) = 66.24, P < 0.0001; GluR2: 6 hours: 
F(3, 8) = 33.36, P < 0.0001; 3 days: F(3, 8) = 28.63, P = 0.0001). 
Tukey’s post hoc tests showed that, compared with that in the 
C group, C + FTY720 group, and S + FTY720 group, hippo-
campal expression of PSD95 and GluR2 proteins in the S + 
vehicle group was significantly lower at 6 hours and 3 days 
after surgery (all P < 0.05; Figure 3). There were no signif-
icant differences in SYN expression among the four groups 
at 6 hours and 3 days after surgery (all P > 0.05; Figure 3). 
These results showed that anesthesia and surgery induced 
significant decreases in GluR2 and PSD95 expression in the 
hippocampus, which were then alleviated by perioperative 
FTY720 treatment.

Discussion
In this study, we sought to determine whether FTY720 could 
improve POCD in mice subjected to D-Gal-induced aging, 
and to examine the possible mechanisms underlying this 
phenomenon. Our results demonstrated that FTY720 treat-
ment alleviated postoperative decreases in problem solving 
ability and long-term memory in the puzzle box test on 
postoperative days 2–4. Corresponding with this behavioral 
improvement, FTY720 also alleviated postoperative microg-
lial activation and the loss of synaptic plasticity-associated 
proteins (PSD95, GluR2). These results suggest that FTY720 
is neuroprotective and thus represents a potential preventive 
reagent for POCD.

POCD is a common central nervous system complication 
after surgery. Age, frailty, surgery-induced inflammation, an-
esthetic toxicity, sleep disturbances, and pain all are closely 
associated with the occurrence and development of POCD 
(Callaway et al., 2015; Hovens et al., 2016; Gu et al., 2018). 
To date, the main preventive strategies have addressed vari-
ous risk factors involving the patient, surgery methods, and 
anesthesia. Pharmacological agents such as acetylcholine es-
terase inhibitors, COX-2 inhibitors, dexmedetomidine, and 
statins have been studied in terms of their potential to relieve 
the symptoms of POCD (Safavynia et al., 2019). However, 
the pathogenesis of POCD is not fully understood, and so an 
optimal solution for preventing and treating POCD has yet 
to be established. The high prevalence of POCD remains a 
clinical challenge.

S1P receptors are widely expressed in cells in the brain, 
heart, liver, stomach, and retina, with the exception of leu-
cocytes and lymphocytes (Subei et al., 2015; Chaudhry et 
al., 2017). FTY720 is a functional S1P receptor modulator 
that has been used to treat patients with multiple sclerosis, 
immune diseases, organ transplants, myasthenia gravis, and 
some metastatic cancers (Mandal et al., 2017; Huwiler et al., 
2018). FTY720 has been reported to exert neuroprotective 
and anti-inflammatory effects in the central nervous system 
disease model, while neuroinflammation is one mechanism 
of POCD (Luo et al., 2019; Safavynia et al., 2019). However, 
few studies have examined the use of FTY720 for treating 
POCD. In this study, we measured the preventive role of 
FTY720 in mice subjected to POCD-induced aging. We 
found that FTY720 treatment alleviated postoperative im-
pairment in terms of problem solving ability and long-term 
memory in the puzzle box test on postoperative days 2–4. 
Corresponding with this behavioral improvement, FTY720 
also alleviated postoperative microglia activation and syn-
aptic plasticity-associated protein loss (PSD95, GluR2). 
These results are in accordance with previous studies (Zhou 
et al., 2013; Miguez et al., 2015; Nazari et al., 2016; Serdar 
et al., 2016; Xu et al., 2017). For example, Zhou et al. (2013) 
demonstrated that FTY720 attenuated sevoflurane-induced 
neurotoxicity in rat pups, whereas VPC23019 (S1P antag-
onist) inhibited the protective action of FTY720. These 
results suggest that FTY720 has a protective effect against 
sevoflurane-induced neurotoxicity in developing rats. In 
a neonatal model of hyperoxia, Serdar et al. (2016) found 
that FTY720 could reduce hyperoxia-induced cognitive 
dysfunction, microglial activation, and associated pro-in-
flammatory cytokine expression. Furthermore, to ascertain 
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Figure 1 Effect of fingolimod (FTY720) on postoperative cognitive dysfunction in mice subjected to D-galactose-induced aging.
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analysis of variance followed by Tukey’s post hoc test). *P < 0.05. C group: Received no anesthesia, surgery, or FTY720; C + FTY720 group: received 
FTY720, but no anesthesia or surgery; S + vehicle group: received vehicle, anesthesia, and surgery; S + FTY720 group: received FTY720, anesthesia, 
and surgery.
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D-galactose-induced aging.
Representative images showing Iba-1 staining (yellow) in CA1 at 6 hours and 3 days after surgery. Typical Iba-1-stained activated microglia cells in 
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Figure 3 Perioperative fingolimod (FTY720) administration selectively increases postoperative synaptic protein expressions in mice 
subjected to D-galactose-induced aging.
Representative images and analysis showing the expression levels of SYN, GluR2, and PSD95 in the hippocampus, as revealed by western blot assay, 
at 6 hours (A) and 3 days (B) after surgery. Data are expressed as the mean ± SEM (n = 3; one-way analysis of variance followed by Tukey’s post hoc 
tests). *P < 0.05. C group: Received no anesthesia, surgery, or FTY720; C + FTY720 group: received FTY720, but no anesthesia or surgery; S + ve-
hicle group: received vehicle, anesthesia, and surgery; S + FTY720 group: received FTY720, anesthesia, and surgery. GluR2: Glutamate receptor 2; 
PSD95: postsynaptic density protein 95; SYN: synaptophysin.

whether the memory-enhancing effect of FTY720 was cor-
related with synaptic plasticity in the hyperactivity disorder 
model, Miguez et al. (2015) examined the expression of 
PSD-95 in the hippocampus and found that FTY720 treat-
ment prevented the expected decrease in PSD-95 protein 
levels, indicating a role for FTY720 in modulating structur-
al synaptic plasticity. All of these previous studies demon-
strate that FTY720 has a protective effect on the central 
nervous system and that it can rescue impaired cognitive 
function. S1P receptors are widely expressed in lympho-
cytes and neural cells. Furthermore, FTY720 is fat-soluble 
and can penetrate the blood-brain barrier. In future work, 
we hope to determine whether FTY720 improves the symp-
toms of POCD by limiting the infiltration of lymphocytes 
into the brain or by directly acting on neural cells. 

Few studies have examined the protective effect of 
FTY720 on POCD. In this exploratory study, we examined 
the effect of FTY720 on postoperative cognitive function 
in a mouse model of rapid aging. We found that FTY720 
could improve postoperative cognitive impairment in mice 
subjected to D-galactose-induced aging, which is associated 
with inhibitory microglial activation and the loss of synaptic 
proteins (PSD95, GluR2). However, additional factors might 
be involved in the neuroprotective mechanisms of FTY720. 
S1PR is also expressed in astrocytes, oligodendrocytes, and 
neurons. Thus, further studies are needed to investigate oth-
er possible mechanisms of the effect of FTY720 on POCD, 
and particularly to determine which brain cells are mainly 
affected.
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