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Abstract

Several neurodevelopmental diseases are characterized by impairments in cortical mor-

phology along with altered white matter connectivity. However, the relationship between

these two measures is not yet clear. In this study, we propose a novel methodology to com-

pute and display metrics of white matter connectivity at each cortical point. After co-register-

ing the extremities of the tractography streamlines with the cortical surface, we computed

two measures of connectivity at each cortical vertex: the mean tracts’ length, and the propor-

tion of short- and long-range connections. The proposed measures were tested in a clinical

sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically develop-

ing individuals. Using these novel measures, we achieved a fine-grained visualization of the

white matter connectivity patterns at each vertex of the cortical surface. We observed an

intriguing pattern of both increased and decreased short- and long-range connectivity in

22q11DS, that provides novel information about the nature and topology of white matter

alterations in the syndrome. We argue that the method presented in this study opens ave-

nues for additional analyses of the relationship between cortical properties and patterns of

underlying structural connectivity, which will help clarifying the intrinsic mechanisms that

lead to altered brain structure in neurodevelopmental disorders.

Introduction

Diffusion tensor imaging (DTI) provides a powerful method to examine patterns of white mat-

ter connectivity [1, 2]. Initial analyses used DTI to compute voxel-based measures of white

matter integrity, such as fractional anisotropy (FA) or axial (AD) and radial diffusivity (RD),

which reflect axonal organization and myelination [3, 4]. More recently, tractography has

been proposed to reconstruct the pathways of fiber tracts [5] and compute the structural

PLOS ONE | https://doi.org/10.1371/journal.pone.0187493 November 15, 2017 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Padula MC, Schaer M, Scariati E, Mutlu
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“connectome” of the brain [6, 7]. Quantitative comparisons of the white matter properties can

be conducted either by measuring the number of streamlines connecting different cortical

regions [8–12] or by quantifying the structure of the connectomes using measures of graph

theory [13].

The application of current DTI methods in healthy and clinical populations provided

insights about the normal and pathological patterns of white matter connectivity. However,

these techniques present some problems, mostly related to registration issues. Recent studies

indicated that volume-based registration techniques are less reliable than surface-based meth-

ods [14, 15]. The inaccuracy of volume-based registration algorithms is even more evident in

clinical populations, where alterations in individual brain morphology impair the optimal

matching with templates obtained from healthy populations [16, 17]. In turn, inaccurate regis-

tration can lead to imprecisions when comparing voxel-based metrics of fibers bundles’ integ-

rity between subjects [18]. Such a registration bias is usually less evident with tractography

reconstructions, where regions of interest (ROIs) can be defined on the cortical surface. How-

ever, the a priori defined ROIs used to generate connectivity matrices are typically based on

atlases composed of large brain regions that may encompass distinct functional areas [19, 20].

To overcome this issue, a number of investigations proposed methods to increase the resolu-

tion of the connectome reconstruction by increasing the number of ROIs (see for instance [6,

21, 22]). These studies showed that higher resolution reconstructions were reliable, but charac-

terised by greater inter-subjects variability, which can affect the accuracy of group compari-

sons. In sum, it remains challenging to provide metrics of altered white matter connectivity

that are not biased by registration issues or not restrained within anatomically constrained

regions.

In this study we propose an approach to obtain metrics of white matter connectivity in the

cortical surface space. We believe that the projection of the fiber tracts to the cortex would pro-

vide several advantages: 1) The use of well-validated inter-subject surface-based registration

algorithms [23, 24], which improve statistical power and ability to detect group differences; 2)

the computation of more fine-grained metrics of connectivity, unconstrained by anatomical

boundaries; and 3) a more easily interpretable visualization of the patterns of connectivity over

the cortex.

Several recent studies proposed innovative approaches to combine brain morphology and

white matter connectivity [25–30]. In particular, in [26], the authors used a similar approach

to represent the connectivity information as a continuous measure over the cortical space. The

authors defined connectivity metrics, indicating the percentage of connections from one lobe

to another, in the native space of each subject, using an original approach relying on a surface-

based quantification of connectivity. In [30] the authors defined indices reflecting the propor-

tion of short- and long-range connections and their development with age. Even if innovative,

both approaches were still based on the a priori definition of ROIs, thus preventing a high-res-

olution visualization of white matter over the cortex.

In the present work, we propose an alternative method to map the white matter tracts in

the cortical space and interrogate connectivity patterns from any cortical vertex using a conve-

nient visualization. Our method is not based on the reconstruction of a connectivity matrix,

but streamlines are generated and their extremities (starting and ending points) are mapped

on the cortical surface, as reconstructed with FreeSurfer, and attributed to a cortical vertex.

Therefore, the metrics we propose can be used for vertex-wise comparisons in the cortical

space, using reliable surface-based registration methods [24], further allowing for an intuitive

interpretation of the statistical group differences over the cortical surface. Another advantage

of our methodology is that it complements extant measures of cortical morphology, such as
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thickness and gyrification, and functional brain activation, thus representing an optimal tool

for multimodal investigations of brain connectivity.

The metrics that we propose in this study summarize information about average connec-

tion length, as well as measures of short- and long-range connection patterns. The distinction

of short- and long-range connectivity is important as it reflects different processes in the brain,

namely segregation and integration. Segregation is defined as the specialization of a brain area

to accomplish a specific function, therefore it is a process thought to be subserved by local con-

nections [31, 32]. Integration reflects instead the communication between distant brain areas

throughout long-range connections [31] and is essential for ensuring high order cognitive

functions such as visual recognition, language, cognitive control and social cognition [32].

Furthermore, these measures change through development with short-range connectivity

decreasing and long-range connectivity increasing, thus reflecting decreased segregation and

increased integration [33–36].

To examine the potential of our method to quantify meaningful differences in connectivity

patterns, we used a clinical dataset of 62 patients affected by 22q11.2 deletion syndrome

(22q11DS) and 57 typically developing individuals. 22q11DS is a neurogenetic disorder that

puts affected individuals at high-risk of developing schizophrenia [37, 38]. The common phe-

notype of patients with 22q11DS includes a characteristic facial appearance, cardiac defects

[39], cognitive impairments and psychiatric manifestations [38, 40–43]. Extant neuroimaging

studies have delineated the patterns of alterations in brain morphology [44–49] and structural

connectivity [50] in the syndrome. In particular, these studies reported reduced efficiency

[51] and reduced long-range connections [10, 50] in patients with 22q11DS, thus suggesting

reduced integration. Furthermore, the brain phenotype associated to 22q11DS includes poly-

microgyria [52], and reduced cortical gyrification has largely been reported in patients with

22q11DS [53–57]. A previous study using indices of short-range connectivity showed reduced

short connections in individuals with polymicrogyria [58]. Altered short-range connectivity

has also been reported in patients with other developmental disorders such as autism [36, 59,

60] and schizophrenia [36], and it has been suggested to be associated to impaired synaptic

pruning.

Therefore, we expect that our measures would better capture alterations in both short- and

long-range connections in patients with 22q11DS, providing a more precise localization of the

alterations over the cortical surface.

Materials and methods

Written informed consent was received from all the subjects and their parents using protocols

approved by the cantonal ethic commission of research.

Method overview

The purpose of the present study was to compute fine-grained measures of connectivity that

could be displayed on the cortical surface. Fig 1 summarizes the information flow of our

method. Briefly, T1-weighted images were used to reconstruct three-dimensional cortical sur-

faces. In parallel, tractographic reconstruction of the white matter bundles was performed

using the diffusion weighted (DWI) scans. The fiber tracts were then registered to the space of

the cortical surface. For each cortical vertex, we selected the fibers that had at least one of their

extremities within a 5 mm radius. The selected fibers were then used to compute 2 measures of

connectivity for each cortical vertex: 1) the mean tracts’ length, and 2) the connectivity index

(CI), a ratio that provides information about the proportion of short- or long-range connec-

tions over the cortical surface (see also Fig 2).
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0.1 Reconstruction of the cortical surface

The anatomical T1-weighted images were processed using the FreeSurfer software (http://

surfer.nmr.mgh.harvard.edu) to produce accurate 3D mesh models of the cortex in the native

space of each subject. The surface reconstruction process consists of previously validated steps

[23, 61], including resampling into cubic voxels, intensity normalization, skull stripping, tissue

segmentation and tessellation of the cortical surfaces. At the end of this procedure, cortical sur-

faces were obtained at the boundary between the white and gray matter (white surface), and at

the boundary between the gray matter and cephalo-spinal fluid (pial surface).

0.2 Tractography

Fiber tracts were estimated from the DWI acquisition using different tools embedded in the

Human Connectome Mapper toolkit (http://connectomics.org, [62]). First, DWI images

were corrected for the effect of head motion and distortion of eddy currents using FSL

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). T1-weighted images were then registered in the

diffusion space using a boundary-based registration implemented in FreeSurfer and FSL

Fig 1. Overview of the method used to compute connectivity measures on the cortical surface. T1-weighted and diffusion weighted images (DWI)

were used to reconstruct the cortical surface and the white matter bundles, respectively. The tracts were then registered to the cortical surface space. The

mean fibers’ length was computed as the mean length of the fibers starting from each vertex. The connectivity index was defined as the ratio between the

number of short or long fibers over the total number of fibers starting from the vertex.

https://doi.org/10.1371/journal.pone.0187493.g001
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(https://surfer.nmr.mgh.harvard.edu/fswiki/bbregister). Then, tractography was computed

using a deterministic streamline algorithm provided with the camino software (http://

camino.cs.ucl.ac.uk). Default parameters were used for the streamlines reconstruction (cur-

vature threshold = 60, number of iterations 50) and a white matter mask obtained from the

freesurfer processing was used as seed. Two tensors were modelled at each voxel of the white

matter mask obtained from the FreeSurfer pipeline, and white matter streamlines were prop-

agated voxel by voxel until both ends reached the grey matter mask. As the number of recon-

structed streamline is proportional to their length we corrected this bias using a method

described in previous studies [63, 64]. In particular, we attributed to each streamline a weight

equal to the inverse of its length.

0.3 Connectivity measures in the cortical surface

After reconstruction, streamlines shorter than 3mm were removed and the remaining tracts

were registered to the cortical space using the transformation matrix computed above. For

each cortical vertex, we selected all streamlines that had one extremity within a 5 mm radius

from this vertex (“selection radius”). Hereafter, we refer to those fibers as “starting from the

vertex”. This definition is used only for clarity purposes, as the fiber tracts obtained with DTI

do not have any directionality. At this stage, it was possible to visualize where the streamlines

starting from each vertex ended on the cortical surface. The “ending point” of the fiber was

defined as the vertex closest to its other extremity. At each vertex, the mean tracts’ length was

computed as the mean length of all fibers starting from this point. The connectivity index was

computed as the ratio of the amount of short- or long-range fibers starting from the vertex

divided by the entire number of streamlines starting at that point (Fig 2). Specifically, the

CIshort (short-range connectivity index) was defined as:

CIshort ¼
n: short fibers
tot: n: fibers

� 100 ð1Þ

Fig 2. Computation of the connectivity index (CI). The point indicates the starting vertex, while the blue

and the orange arrows represent the selection and the threshold radius, respectively. The CI was defined as

the ratio between the number of fibers ending in the threshold sphere over the total number of fibers starting in

the selection sphere. The indices of short- and long-range connectivity are obtained by using different

threshold radii ranging from 5 to 100 mm.

https://doi.org/10.1371/journal.pone.0187493.g002
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where “n. short fibers” represents the number of short-range streamlines and “tot. n. fibers” is

the total number of streamlines starting from the vertex. Similarly, the CIlong (long-range con-

nectivity index) was defined as:

CIlong ¼
n: long fibers
tot: n: fibers

� 100 ð2Þ

where “n. long fibers” represents the number of long-range streamlines starting from the

vertex.

In the absence of any clear consensus about the definition of short- and long-range connec-

tions [60, 65–67], we decided to use the average mean tracts’ length measured in our group of

subjects (30 mm) as the cut-off. Thus, short fibers were defined as streamlines with a length

� 30 mm, long fibers as fibers with length� 30 mm. Given that this threshold can be consid-

ered arbitrary, we further tested the behaviour of our algorithm at different thresholds, from 5

to 30 mm for the CIshort and form 30 to 60 mm for the CIlong, with steps of 5 mm. Statistical

comparisons were computed at each threshold but for simplification purposes the cortical sig-

nificance maps are shown here for one threshold only: 20 mm for the short-range and 60 mm

for the long-range connectivity indices.

Reliability and inter-subject variability tests have been performed for both our indices using

the Intra Class Correlation and the Coefficient of Variation. The methods and results of this

analysis have been reported in Supporting Information (S1 and S2 Figs).

0.4 Application in a clinical sample

The method was tested in a group of 62 patients affected by 22q11.2 deletion syndrome

(22q11DS) and 57 control participants. The patients with 22q11DS were aged from 6 to 28

years old (mean age = 15.7±5.2; 30 males) and their mean IQ was 67.5±10.6. The presence of a

22q11.2 microdeletion was confirmed using quantitative fluorescent polymerase chain reac-

tion. The control participants were aged from 6 to 28 years old (mean age = 17.3±5.7; 26

males) with a mean IQ of 106.4±12.3. Participants’ handedness was assessed using the Edin-

burgh laterality quotient [68]. The proportion of right-handed did not significantly differ

between the control and the patient groups (74% of right-handed in the control group and

77% in the patients, χ2 = 0.225, p = 0.635).

In this sample of participants, T1-weighted and diffusion tensor images were acquired

using a Siemens Trio 3 Tesla scanner at the Geneva Center of Biomedical Imaging (CIBM).

The anatomical sequence had the following parameters: TR = 2500 ms, TE = 3 ms, flip

angle = 8˚, acquisition matrix = 224 x 256, field of view = 220 mm, slice thickness = 1.1 mm,

192 slices. The diffusion weighted imaging scans were acquired using the following sequence:

number of directions = 30, b = 1000 s/mm2, TR = [8300–8800] ms, TE = 82 ms, flip

angle = 90˚, acquisition matrix = 128 x 128, field of view = 25.6 cm, slice thickness = 2 mm.

0.5 Statistical analysis

In order to compare the mean tracts’ length and the CIs between groups, the cortical surface of

each subject was registered to an average spherical surface [24]. Data were then resampled to

the common average spherical coordinate system and smoothed using a nearest-neighbor

averaging procedure with a full-width at half-maximum (FWHM) of 10 mm. Statistical differ-

ences between groups were evaluated using a general linear model (GLM) with the Query

Design Estimate Contrast (QDEC) interface of FreeSurfer, including age and gender as covari-

ates. Given the previously reported reduced white matter volume in patients with 22q11DS

[69, 70], we repeated the analysis taking white matter volume into account in the model.

Quantifying indices of short- and long-range white matter connectivity at each cortical vertex
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Montecarlo multiple comparisons correction was performed for the mean tracts’ length and at

each threshold of the short and long connectivity indices. To provide robust protection against

type 1 errors, we used a stringent cluster wise p-value threshold at p<0.01 [71].

Results

0.6 Group differences in the mean tracts’ length

Fig 3 depicts the average mean tracts’ length for each cortical point in the group of controls

and patients with 22q11DS. In both groups, longer streamlines (blue color) were located in the

dorsal medial frontal and parietal cortices and in the lateral superior and middle frontal corti-

ces. Local minima in the mean tracts’ length (red color) were instead observed in postcentral

and superior temporal cortices as well as in orbitofrontal and inferior temporal regions.

As shown in Fig 4 and Table 1, the clusters where the mean tracts’ length was significantly

reduced in patients with 22q11DS were mostly symmetrical in both hemispheres and were

located in the inferior parietal cortex extending medially to the precuneus and in dorsal medial

frontal regions including the left cingulate cortex. One cluster of significantly increased mean

tracts’ length was found in 22q11DS, comprising the lateral pre and postcentral cortices and

spanning trough the supramarginal gyrus. When including white matter volume as a covariate

in the model, the differences in the left hemisphere remained significant in all previously

found regions except for the anterior cingulate cortex, while in the right hemisphere only the

pre/postcentral cluster remained significant (see also the details in Table 1).

To better understand the altered patterns of white matter connectivity driving the observed

differences in mean tracts’ length, we examined the topology of the fibers starting at the verti-

ces of maximal between-group differences. Fig 5 illustrates the terminations of the fibers start-

ing at the vertex of peak significance for the cluster located in the left dorso-medial prefrontal

and anterior cingulate cortex (panel A), where we observed reduced mean tracts’ length, and

the cluster in the right pre/postcentral cortices and supramarginal gyrus (panel B), where we

observed increased mean tracts’ length in 22q11DS. In the control group (Fig 5A, top row), the

fibers starting in the dorso-medial prefrontal/anterior cingulate cortex ended mostly locally in

the same region as well as in the posterior cingulate cortex, genu, body and splenium of the

corpus callosum, inferior, superior and medial frontal cortex, orbitofrontal cortex, precuneus,

superior temporal sulcus. These results are in agreement with the previously reported connec-

tivity patterns of the anterior cingulate cortex [72–74]. In the group of patients with 22q11DS

(Fig 5A, bottom row), the localization of the terminations was almost overlapping except for

an increased number of local connections with the inferior frontal cortex and a reduced num-

ber of long-range connections to the precuneus and the posterior part of the corpus callosum.

This observation suggest that the reduced mean fibers’ length observed in the anterior cingu-

late cortex in patients with 22q11DS may be related to a reduced number of long-range con-

nections starting from this region. We also plotted the terminations of the fibers starting at the

vertex of peak significance for the cluster in the right pre/postcentral cortices and supramargi-

nal gyrus (Fig 5B). In agreement with previous studies [75–77], the fibers starting from the ver-

tex in the supramarginal gyrus ended mostly locally and in the central and postcentral sulci,

inferior frontal cortex, insula, superior temporal cortex, splenium of the corpus callosum, pos-

terior cingulate cortex, precuneus and medial paracentral cortex in both control individuals

(Fig 5B, top row) and patients with 22q11DS (Fig 5B, bottom row). However, the amount of

streamlines terminating in the splenium of the corpus callosum and the posterior cingulate

cortex was higher in patients with 22q11DS than in controls. This evidence suggest that the

increased mean path length observed in the superior temporal cortex in 22q11DS may in part

rely on the increased number of long-range inter-hemispheric connections.
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Fig 3. Cortical maps of the mean tracts’ length and corresponding histograms. The maps represent the average measures

of mean tracts’ length for each group. The dorsomedial cortical regions had longer streamlines, followed by ventromedial

prefrontal regions, post-central and prefrontal cortices.

https://doi.org/10.1371/journal.pone.0187493.g003
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From the cortical maps in Fig 5, we observe that the majority of the terminations are located

in sulcal rather than gyral regions. While this can seem contradictory with previous evidence

showing that white matter tracts preferentially end in gyri [78], it should be noted that the

maps presented in Fig 5 represent a subsample of fibers that start in a specific region, and not

Fig 4. Clusters of significant between-groups difference in mean tracts’ length. Most of the clusters of decreased mean fibers’ length in patients

compared to controls (yellow/red) were symmetrical. Only one cluster of increased mean tracts’ length (blue scale) was found, in the bilateral pre/post central

cortices spanning trough the supramarginal gyrus.The plots represent the values of average length in each cluster.

https://doi.org/10.1371/journal.pone.0187493.g004

Table 1. Clusters with between-groups statistical difference in mean tracts’ length.

Region Difference Cluster size Peak coordinates (x y z) Cluster wise p Effect size

Left

Anterior cingulate cortex Contr>22q11 6754 mm2 -1.5 24.3 15.4 0.0001 0.6773

Superior parietal cortex* Contr>22q11 3570 mm2 -22.6 -65.7 29.4 0.0001 0.6404

Precentral cortex* 22q11>Contr 3344 mm2 -50.1 -7.6 37.4 0.0001 -0.6034

Right

Supramarginal gyrus* 22q11>Contr 5463 mm2 52.9 -28.9 40.2 0.0001 -0.7207

Precentral/superior frontal cortex Contr>22q11 8436 mm2 16.8 -13.6 61.2 0.0001 0.6292

Precuneus Contr>22q11 2034 mm2 14.1 -70.5 40.2 0.0003 0.6169

The * indicates that the difference remained significant after covarying for total white matter volume. Peak coordinates are given in Talairach coordinates, in

mm.

https://doi.org/10.1371/journal.pone.0187493.t001
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all the reconstructed fibers’ tract. In Supporting Information, we show that most of the recon-

structed streamlines terminate in gyri (S3 Fig), consistently with previously published results

[78].

0.7 Group differences in short- and long-range connectivity

Cortical maps showing significant between-group comparison in short-range connectivity are

depicted in Fig 6, and maps of significant long-range connectivity differences are shown in Fig

7. As explained in the method section, the results are shown for the proportion of fibers shorter

than 20 mm for the short-range CI, and for the proportion of fibers longer than 60 mm for the

long-range CI. However, to further verify how the indices change as a function of the thresh-

old, we display in the plots the values of CIshort and the CIlong for each threshold from 5 to 30

mm and from 30 to 60 mm, respectively.

As illustrated in Fig 6, we found clusters of reduced proportion of short fibers in patients

compared to controls around the inferior region of the precentral gyrus bilaterally and in the

left precuneus, calcarine and paracentral/posterior cingulate cortices. In addition, we also

found one cluster of increased short-range connectivity in the left right anterior inferior tem-

poral cortex, but this cluster of increased CIshort did not remain significant after covarying for

total white matter volume.

Fig 5. Terminations of the tracts starting from the vertices of maximally reduced and increased mean tracts’ length. In 22q11DS an increased

proportion of connections from the anterior cingulate cortex ended locally in the inferior frontal cortex, while a decreased proportion of fibers ended distantly in

the precuneus and the posterior part of the corpus callosum (A). On the opposite, an increased proportion of fibers starting form the supramarginal gyrus

crossed the corpus callosum in patients with 22q11DS (B). To better visualize where the terminations of the streamlines were located on the cortex they were

displayed on the inflated surface. The color bar indicates the proportions of terminations.

https://doi.org/10.1371/journal.pone.0187493.g005
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As shown in Fig 7, reduced long-range connectivity in patients was observed bilaterally in

the parietal cortex, and the dorso-medial frontal cortex spanning trough the anterior cingulate

cortex in the left hemisphere and the right medial orbito-frontal/anterior cingulate cortex. We

also evidenced clusters of increased long-range connectivity in patients compared to controls

in the bilateral pre/postcentral cortex including the supramarginal gyrus, the left lingual cortex

and the right middle frontal cortex. Only the clusters of increased CI remained significant

after covarying for the total white matter volume. In summary, the patterns of changes in

long-range connectivity mostly recapitulated the clusters where we observed significant

between-group differences in the mean tracts’ length.

Fig 6. Between-group differences in short-range connectivity. The cortical maps represent statistical significance at p<0.01 (corrected) using a

threshold of 20 mm to define the proportion of short-range connections. The plots, further depict values and significance of the CIshort at different

thresholds ranging from 5 to 30 mm. We observed mainly clusters of reduced short connectivity in patients compared to controls (red/yellow). The cluster

of increased CIshort (blue scale) in patients did not remain significant after correcting for the white matter volume. The * indicate that the CIshort significantly

differed between controls and 22q11DS participants at that threshold.

https://doi.org/10.1371/journal.pone.0187493.g006
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Discussion

In this paper, we proposed an alternative method to compute, display and compare measures

of white matter connectivity in the cortical surface’s space. We argue that our method, which

leverages on the best surface-based registration techniques, provides a more reliable inter-sub-

ject registration compared to classical voxel-based registration techniques traditionally used in

most DTI studies [3–7]. With measures at each vertex, we also achieved a more fine-grained

resolution of connectivity indices over the cortex compared to existing methods. Studies trying

to increase the resolution of the connectivity information over the cortex used an alternative

Fig 7. Between-group differences in long-range connectivity. The cortical maps represent statistical significance at p<0.01 (corrected) using a threshold

of 60 mm to define the proportion of long-range connections. The plots, however, further depict values and significance of the CIlong at different thresholds

ranging from 30 to 60 mm. The clusters of increased and decreased long-range connectivity mostly recapitulated the topology of the between group

differences in mean tracts’ length. The * indicate that the CIlong significantly differed between controls and 22q11DS participants at that threshold.

https://doi.org/10.1371/journal.pone.0187493.g007
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approach, based on reducing the dimension of the nodes and building a high resolution con-

nectome [6, 21, 22]. In this study, we decided to map the white matter information on the cor-

tical space and obtain a measure of connectivity at each vertex. Our metrics do not carry the

information about the number of fibres connecting pairs of brain regions, but they provide

connectivity metrics for * 150’000 vertices over the cortical surface. Using the example of

22q11DS, we discuss in the next sections how our method can help revealing important aspects

of connectivity related to the patterns of short- and long-range connections, which are useful

for a better characterization of neurodevelopmental diseases. Finally, we argue that, in a devel-

opmental framework, the projection of the connectivity information on the cortical surface

will be critical to shed light on the relationship between cortical morphology and white matter

connectivity.

Previous investigations using tractography to reveal white matter alterations in patients

with 22q11DS mostly found reduced long-range connections [50] and reduced efficiency [51],

both suggesting altered brain integration in these patients. Integration reflects impaired com-

munication between distant brain areas [31], is essential for high order cognitive processes

[32], and has been showed to develop with age, accompanied by a reduction in brain segrega-

tion [33–35]. We hypothesised that our long-range connectivity index could capture alter-

ations in distant connections, thus confirming impaired integration in patients with 22q11DS.

Indeed, we have shown reduced proportion of long-range connections in these patients in the

bilateral superior frontal and parietal cortex, left anterior and dorsal cingulate cortex and right

medial orbitofrontal cortex. Interestingly, these brain regions are involved in high order cogni-

tive functions. Furthermore, in our previous study [79] we found reduced structural connec-

tivity between nodes of the central executive network, a fronto-parietal network involved in

cognition and executive functions. Altered cognitive functions have been reported in patients

with 22q11DS, and we argue that these cognitive impairments may be related to underlying

alterations in connectivity patterns. For instance, disrupted long-range connectivity in the

inferior parietal cortex may be responsible for the impairments in mathematics and learning

abilities observed in patient with 22q11DS [40]. Furthermore, dysconnectivity of the superior

frontal and anterior cingulate cortices may be associated with psychotic symptoms, as showed

by our previous studies investigating functional connectivity [80], variability of the blood oxy-

gen-level dependent signal [81], structural connectivity [82], and structural covariance of cor-

tical thickness [83]. However, our results reporting group differences in the long-range CI

should be taken with caution. As reported in Supporting Information (S1 and S2 Figs), the

reliability of our long-range CI was poor in some brain areas. A strong overlap was evident

between the cluster of increased long-range CI in the patients on the right hemisphere Fig 7

and a region of poor reliability of the long-range CI. However, the same was not true for the

other clusters showing significant group differences. Furthermore, we showed that this poor

reliability was related to the accuracy of tractography, and not on the way our indices are com-

puted. Despite the low accuracy of tractography reconstructions is a known issue, addressing it

was beyond the aim of this study. However, we also found that the long-range connectivity

index was highly variable between subjects. Therefore, this may have prevented us from show-

ing exhaustive results in how the proportion of long-range fibers is affected in patients with

22q11DS.

Our results showed reduced short-range connections in patients with 22q11DS in regions

including the inferior precentral gyrus bilaterally, the left precuneus, calcarine and paracen-

tral/posterior cingulate cortices. Studies conducted in patients with polymicrogyria showed

reduced proportion of short range-connections, presumably caused by altered laminar organi-

zation and reduced number of neurones that would be associated to impaired axonal connec-

tions [58]. Several findings converged in showing reduced cortical gyrification in patients with
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22q11DS in widespread brain areas [53–57]. Among these investigations, two used a local gyri-

fication index [55, 57] and identified with high resolution specific regions of reduced folding

patterns in 22q11DS. These clusters were located in the bilateral pre- and post-central gyri,

posterior cingulate gyrus, orbitofrontal, medial and middle frontal cortex, parieto-temporal

junction, right supramarginal and superior temporal gyri, left occipital pole. In the present

study, we observed in the same population of patients a decreased proportion of short-range

tracts in the pre- and post-central and posterior cingulate cortices (Fig 6), thus preliminarily

pointing to a concomitant alteration of gyrification and proportion of short tracts in these

regions. The advantage of the connectivity index described in this study is that, as the local gyr-

ification index, it is expressed at each cortical vertex and therefore, the two measures can be

directly compared, giving a precise measure of concomitant alteration of cortical folding and

connectivity that may indicate an altered developmental process occurring already during

early embryonic stage. Indeed, it has been proposed that cortical folding rely on the tension

exerted by the white matter fibers during the embryonic maturation of neural structures [84].

Therefore, additional investigations would be necessary to show if the reduction in short-

range connections is directly associated to reduced gyrification in patients with 22q11DS.

This work bears some limitations, principally due to the weaknesses of DTI acquisitions

and deterministic tractography algorithms for the reconstruction of the white matter stream-

lines [85]. Indeed, DTI methods cannot resolve multiple fibers’ orientations within the same

voxel, thus being unable to accurately reconstruct streamlines in regions where crossing fibers

are present [86]. However, this limitation was partially solved by the use of two tensors tracto-

graphy for the reconstruction of the white matter tracts. Furthermore, our algorithm can be

applied with other acquisitions (such as DSI) or other tractography techniques (e.g. probabilis-

tic tractography) that allow a more reliable reconstruction of such complexes fibers’ bundles.

Also, one could argue that we loose important information about the specific location of the

fibers’ extremities when displaying measures of mean length, or of short- or long-range con-

nectivity on the cortex. While this is certainly true, this limitation also applies to some extent

to voxel-based measures of FA, RD or AD. However, our approach uses reconstructed stream-

lines where the information about the extremities can be retrieved and displayed for vertices

of interest, as we showed in Fig 5. We thus felt that reducing the inherent multidimensional

nature of the connectivity data by integrating the length information for only one of the fibers’

extremity was an innovative manner to quantify white matter connectivity, that has the main

advantage of bringing the connectivity information in the cortical surface space for further

integration with other cortical metrics. Finally, another possible artefact of the current algo-

rithm is the fact that, as we consider fibres within a radius of 5mm, the same streamline may

contribute to both sides of a gyrus. However, as showed in Supporting Information (S4 Fig),

the geometry of the fibers ending in sulcal and gyral regions does not differ.

Conclusions

To conclude, in this study we presented an algorithm to map the white matter pathways to the

cortical surface and quantify white matter connectivity patterns over the cortex using measures

of fibers’ length. In a sample of patients with 22q11DS, we revealed impairments in short- and

long-range connections, which mirror previously reported dysfunctional integration in the

syndrome and might represent a biological substrate for cognitive difficulties and psychotic

symptoms typically observed in individuals with the syndrome. Finally, we suggested that

these measures can be used together with measures of cortical morphology to understand the

relationship between altered brain development and underlying connectivity in individuals

with typical development or with neurodevelopmental diseases.
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Supporting information

S1 Fig. Intra Class Correlation for the short- and long-range connectivity index (CI).

(DOCX)

S2 Fig. Coefficient of variation for the short- and long-range connectivity index (CI).
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S3 Fig. Proportion of white matter tracts ending in sulci or gyri in control participants

(left) and in patients with 22q11DS (right). The number of terminations is a weighted value

normalized by the length of the streamlines.
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S4 Fig. Angles between vertices’ normal and fibers terminating in sulci and gyri.
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S5 Fig. White matter tracts connecting the clusters of significant difference in the mean

tract length. Panel A) and B) indicate the left and right hemispheres respectively. The left and

right columns display the fibers starting from the clusters of significant difference in mean

path length in one control (left column) and one patient with 22q11DS (right column). The

column in the middle shows the clusters of significant difference in mean path length in

patients with 22q11DS compared to controls. The figures show that in the clusters where the

mean path length is reduced in patients the density of long fibers connecting that cluster is

reduced as well. On the opposite, in correspondence of the clusters of increased average path

length in the patients the density of long fibers in higher than in controls.
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