
Age-related macular degeneration (AMD) is the leading 
cause of irreversible vision loss in people over the age of 65 
in the developed world [1]. In addition, AMD has become 
an important public health problem. AMD is divided into 
two clinical forms by international consensus: the dry 
type and the wet type [2]. “Dry” type is characterized by 
slow and progressive degeneration of the RPE and Bruch’s 
membrane. However, the development of choroidal neovas-
cular membrane (CNVM) is characteristic of the “wet” type 
and causes fluid leakage, RPE detachment, hemorrhage, 
exudation, and scarring [2].

Many studies are being conducted to understand the 
molecular mechanisms related to wet AMD and the role of 
genetics and environmental risk factors. Although the molec-
ular mechanisms of wet AMD remain unclear, it is postulated 
that oxidative stress, inflammation, and angiogenesis are 
important factors in pathogenesis [2,3]. Vascular endothelial 
growth factor (VEGF) has been shown to play a causal role 
in the development of CNVM [4]. Studies have demonstrated 
that anti-VEGF agents (bevacizumab, ranibizumab) are 

efficacious in treating CNVM in wet AMD, but they have 
limited efficacy [5]. Krebs et al. [6] showed that about 15% 
of patients with AMD did not respond sufficiently to anti-
VEGF treatment. The molecular mechanisms are not known, 
but new molecules such as miRNAs may play a role in the 
pathophysiology of wet AMD.

MiRNAs are small-noncoding molecules that have a 
critical function in gene expression [7]. It has been predicted 
that 30% of human genes may be regulated by miRNAs [8]. 
Studies have also shown that miRNAs play an important role 
in the development of the eye, ocular homeostasis, and ocular 
diseases [9]. A group of miRNAs has also been shown to 
play critical roles in different pathways in a laser-induced 
CNVM mouse model [10]. miR-31, miR-150, and miR-184 are 
significantly decreased in an ischemia-induced mouse model 
of retinal neovascularization and in a laser-induced mouse 
model of choroidal neovascularization in the absence of isch-
emia [11]. Intraocular injection with pre-miR-31 or pre-miR-
150 significantly reduced the size of the choroidal neovascular 
lesions. A recent study also demonstrated that knockdown of 
miR-23 and miR-27, which downregulate the antiangiogenic 
factors Sprouty2 and semaphorin 6A (Sema6A), is protec-
tive against laser-induced choroidal neovascularization [10]. 
miR-23a has also been found to be decreased in RPE cells 
from AMD donor eyes. In ARPE-19 cells, antisense-mediated 
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inhibition of miR-23a reduced cell growth, and adding a 
miR-23a mimic reduced hydrogen peroxide–induced oxida-
tive damage and Fas-mediated apoptosis [12].

miRNAs may have important therapeutic implications in 
wet AMD, but further studies must be conducted for possible 
effects of miRNAs in vascular disorders of the eye such as 
age-related macular degeneration. We aim to investigate the 
differential expression of miRNAs between patients with 
wet AMD and healthy controls and to assess the diagnostic 
potential of plasma miRNAs as biomarkers for early detection 
of AMD. Our study is the first clinical study in the literature 
regarding this aspect.

METHODS

Thirty-three patients (22 men, 11 women) who were newly 
diagnosed wet AMD with fundus examination, fundus 
f luorescein angiography (FFA), and optical coherence 
tomography (OCT) referred to Mersin University, Depart-
ment of Ophthalmology during September 2012–April 2013 
were included in the study. The control group consisted of 31 
people (17 men, 14 women). Controls were selected among 
healthy people with no history of cancer, chronic degen-
erative neurologic disease, diabetes, atopy, or autoimmune 
diseases and without ocular, systemic pathology, or allergies 
in general. All subjects were systematically interviewed about 
their current and lifetime smoking status and occupational 
risk factors for AMD. Peripheral blood samples of the patient 
and control groups were obtained and analyzed for expression 
of 384 miRNAs in plasma. The investigations were approved 
by the Medical Ethical Review Committee of the Academic 
Hospital of Mersin University (2012/255), and informed 
consent was obtained from all patients and controls according 
to the Declaration of Helsinki II (1975, revised 1983), and the 
study adhered to the ARVO statement on human subjects.

Plasma preparation and RNA isolation: With venipuncture, 
3 ml venous blood was collected in sterile siliconized 7.5% 
EDTA-containing tubes. Plasma samples were collected via 
centrifuging the EDTA blood samples at 2280 ×g for 15 min 
within 2 h of collection. Plasma samples were transferred 
to a clean microcentrifuge tube followed by a second high-
speed centrifugation step at 15,000 ×g for 5 min at 10 °C to 
remove cell debris and fragments. The plasma samples were 
aliquoted and stored at −80 °C until RNA extraction. Total 
RNA (including miRNAs) was extracted from plasma by 
using the High Pure miRNA Isolation Kit (Roche diagnostic 
GmbH, Mannhein, Germany) according to the manufacturer’s 
instructions and then stored at −80 °C for further processing.

Reverse transcription reaction: Total RNA samples (2 µl) 
were reverse transcribed using the TaqMan MicroRNA 

Reverse Transcription Kit in combination with the Megaplex 
RT Primer Human Pool Set A (Applied Biosystems, Foster 
City, CA), allowing simultaneous reverse transcription of 
384 miRNAs. Briefly, 2 µl of total RNA was supplemented 
with Megaplex RT primer mix (10X), RT buffer (10X), Multi-
Scribe Reverse Transcriptase (50 U/µl), dNTPs with dTTP 
(100 mM), MgCl2 (25 mM), and RNase inhibitor (20 U/µl) 
in a total reaction volume of 5 µl. The reverse transcription 
(RT) reaction was used (40 cycles of 16 °C for 2 min, 42 °C 
for 1 min and 50 °C for 1 s, followed by a final reverse tran-
scriptase inactivation at 85 °C for 5 min). cDNA samples were 
kept at −80 °C until PCR analysis.

Preamplification of cDNA: For preamplification, 2 µl of 
cDNA samples were transferred into a clean 96-well plate, 
and 8 µl of DNA suspension buffer was added on the top 
of the cDNAs and mixed by pipetting up and down five to 
six times. One fifth of the diluted RT product (2 µl) was 
preamplified using the Applied Biosystems TaqMan PreAmp 
Master Mix (2X) and Megaplex PreAmp Primers (5X) in a 
5 µl PCR reaction. The primer pool consisted of forward 
primers specific for each of the 384 miRNAs and a universal 
reverse primer (Applied Biosystems). The preamplification 
cycling conditions were as follows: 95 °C for 10 min, 55 °C 
for 2 min and 75 °C for 2 min followed by 14 cycles of 95 °C 
for 15 s, and 60 °C for 4 min.

miRNA expression determination using microfluidic high-
throughput qRT-PCR: Each chip profiled 64 samples for 
the expression level of 96 miRNAs. Preamplified cDNA 
samples were diluted with low-EDTA (0.1 mM) TE buffer 
(1:5). About 490 μl TaqMan Universal PCR Master Mix (no 
AmpErase UNG; Applied Biosystems) and 49 μl (20X) GE 
sample loading reagent (Fluidigm, San Francisco, CA, PN 
85,000,746) were mixed, and 3.85 μl was pipetted into a 
96-well plate; then 3.15 μl of diluted preamplified cDNA was 
added into each well and mixed. Then 5 μl of this mixture 
was pipetted into the sample inlets of a 96.96 dynamic array 
(Fluidigm), and 4.5 μl of miRNA TaqMan probe and primers 
(Applied Biosystems) were pipetted into assay inlets of a 96.96 
dynamic array. The Biomark IFC controller HX (Fluidigm) 
was used to distribute the assay mix and sample mix from the 
loading inlets into the 96.96 dynamic array reaction chambers 
for quantitative real-time PCR (qRT-PCR) with the Fluidigm 
integrated microfluidic circuit technology. qRT-PCR was 
performed using the high-throughput Biomark real-time PCR 
system (Fluidigm). The cycling conditions were as follows: 
The thermal mix protocol was followed by 50 °C for 2 min, 
70 °C for 30 min and 25 °C for 5 min. Then the UNG and 
Hotstart protocol was followed by 50 °C for 2 min and 95 °C 
for 5 min. Finally, the PCR cycle was followed by 40 cycles 
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of 95 °C for 15 s (denaturation) and 60 °C for 60 s (annealing). 
The real-time qPCR analysis software provided amplification 
curves, color-coded heat maps, and the cycle threshold (Ct). 
Threshold and linear baseline correction were automatically 
calculated for the entire chip.

Normalization and relative quantification of plasma miRNA 
expression: To eliminate the normalization problem for 
miRNA expression in plasma, depending on the absence 
of stable RNA, we used the global mean normalization 
method for normalizing plasma miRNA expression. The 
miRNA expression data were normalized according to the 
global mean normalization strategy [13]. The global mean 
normalization of the miRNA qRT-PCR data was performed 
with GenEx Professional 5 software (MultiD Analyses AB, 
Goteborg, Sweden). The relative expression of miRNAs was 
calculated with the comparative ΔCT (ΔΔCT) method. Fold 
change (FC) was calculated with equation 2−ΔΔCt [14].

RESULTS

A total of 64 individuals were enrolled in the present study, 
including 33 patients with AMD and 31 controls. Table 1 
presents the characteristics of the subjects. The mean age of 
the study group was 72.12±8.75 years and the control group 
62.68±7.13 years. The mean age was significantly different 
between the groups (p<0.05), but the gender distribution and 
the hypertension profile were similar in the groups (p>0.05; 
Table 1).

Plasma samples from 33 patients with AMD and 31 
control subjects were examined for the expression of the 
384 miRNAs using high-throughput qRT-PCR. Forty-nine 
miRNAs were expressed in both groups (Table 2). Among 

these miRNAs, 16 miRNAs were aberrantly expressed, of 
which 11 miRNA were significantly downregulated and five 
upregulated in the patient group comparing with the control 
group (Figure 1, Table 3). In addition, we determined that 
ten miRNAs (miR-26b-5p, miR-27b-3p, miR-29a-3p, miR-
139-3p, miR-212-3p, miR-324-3p, miR-324–5p, miR-532-3p, 
miR-744-5p, and miR-Let-7c, respectively) were expressed 
only in the patient group.

Statistical analysis: Statistical analysis was performed with 
the SPSS software package, version 17.0 for Windows (SPSS, 
Chicago, IL). Power calculations for testing the sample size 
were performed using the PASS software package program 
(NCSS, LLC, UT, version 11.0 for Windows; desired study 
power, 80%; α error=0.05, two-tailed). Chi-square (χ2) was 
used to evaluate the distribution of hypertension and gender 
among the patients and the control subjects. The age of both 
groups was compared with an independent sample t test. 
Expression data were controlled for normal distribution with 
the Shapiro-Wilk test. According to the test results, all data 
were not normally distributed. The Mann–Whitney U-test 
was used to detect differences in the expression of plasma 
miRNAs between the patients and healthy subjects. Results 
are expressed as mean ± standard deviation (SD). A p value 
of <0.05 was considered significant.

DISCUSSION

Although various risk factors have been reported, the patho-
physiology of wet AMD remains unclear. In recent studies, 
miRNAs have been found to play a critical role in pathological 
angiogenesis, oxidative stress, and inflammation, which have 
important roles in this disease. However, studies investigating 

Table 1. Characteristic of control and patients with AMD.

Characteristic Control (n=31) AMD (n=33) P value
Sex      
Male 17 22 0,443
Female 14 11  
Age (years) 62,68±7,13 72,12±8,75 0,001*
Hypertension      
Yes 16 17 0,994
No 15 16  
Involvement      
Bilateral — 5  
Unilateral — 28  
Cataract operation      
Phakic — 24  
Pseudophakic — 9  
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the relationship between disease and miRNAs have remained 
at the cellular or animal models [15,16]. To the best of our 
knowledge, a clinical study has not been conducted. In our 
clinical study, we aimed to analyze the relationship between 
wet AMD and miRNA. This aspect of the study has the 
distinction of being the first clinical study in the literature. If 
this relationship can be clearly demonstrated, early diagnosis 
and screening tests can be developed, and new treatment 
alternatives can be demonstrated in individuals genetically 
predisposed. We have included updated names for miRNAs 
in parentheses according to the miRBase database.

Xu et al. [17] found that miR-140 (new name: miR-140-3p) 
is highly expressed in the adult retina but is not detectable in 
RNA from the brain or other tissues. In our study, we found 
that miR-140-3p expression decreased significantly in the 
patient plasma (FC: 2.81, p=0,029). Based on this study, we 
believe miR-140-3p plays a role in normal functioning of the 
retina, and this may cause degradation in normal functioning 
of the retina.

In vitreous humor from patients with ocular diseases 
(retinal detachment, macular hole, and uveal melanoma), miR-
374a (new name: miR-374a-5p) was low expressed compared 
to the serum [18]. In our study, miR-374a-5p was significantly 
downregulated in the plasma from patients with AMD (FC: 
12.92, p=0.026). Decreased expression of miR-374-5p may 
play an active role in the development of wet AMD like the 
other listed ocular diseases.

Studies have shown that although some miRNAs are 
angiogenic, others are antiangiogenic. Shi et al. [19] deter-
mined that decreased miR-223 (new name: miR-223-3p) levels 
in vivo were also associated with a marked increase in angio-
genesis in the murine retina and hind limb. In addition, Shen 
et al. [11] determined that miR-106a (new name: miR-106a-5p) 
was substantially increased in the mice model of ischemia-
induced retinal neovascularization. Suarez et al. [20] showed 
that miR-17–5p had proangiogenic activity. In our study, 
miR-223-2p, miR-106a-5p, and miR-17–5p significantly 
increased in the plasma of patients with AMD compared to 
the control group (FC: 1.65, p=0.013; FC: 3.45, p=0.001; FC: 
2.77, p=0.0001, respectively). An increase in these miRNAs 

Figure 1. Fold change of miRNAs 
is significantly downregulated 
and upregulated in patients with 
age-related macular degeneration 
compared to the control group.

Table 3. Upregulated and downregulated miRNAs, which target the VEGF-A gene.

 miRNAs miRNA Target gene
Up Regulated miRNAs miR-20b-5p VEGF-A
  miR-24–3p VEGF-A
  miR-106a-5p VEGF-A
  miR-17–5p VEGF-A
Down Regulated miRNAs miR-335–5p VEGF-A

In this study, upregulated and downregulated miRNAs which target the VEGF-A gene was determined by 
Mirwalk and Mirtarbase.

http://www.molvis.org/molvis/v20/1057
http://www.mirbase.org
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html
http://mirtarbase.mbc.nctu.edu.tw/index.php
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can cause wet AMD by triggering angiogenesis. In the future, 
if the relationship between them is understood more clearly, 
molecules that block these miRNAs can be developed.

Sabatel et al. [21] demonstrated that overexpression 
of miR-21 (new name: miR-21-5p) represses laser-induced 
CNV in mice. They determined that miR-21 exhibits 
antiangiogenic function by targeting RhoB expression in 
endothelial cells. Zhou et al. [22] also determined that sub-
retinal delivery of miR-24 (new name: miR-24-3p) mimics 
represses laser-induced CNV in vivo. We determined that 
expression of miR-21-5p downregulated whereas miR-24-3p 
expression upregulated significantly in patient plasma (FC: 
3.19, p=0.045; FC: 1.58, p=0.045, respectively). A decrease in 
miR-21-5p expression can cause CNVM, and an increase in 
miR-24-3p expression could be a compensation mechanism. 
Nevertheless, more studies must be conducted to investigate 
the relationship between them. These studies could suggest 
that the balance between angiogenic and antiangiogenic 
miRNAs favor angiogenic miRNAs.

Some studies investigated the relationship between 
miRNAs and VEGF. Studies indicate that miR-192 (new 
name: miR-192-5p) downregulated the expression of Bcl-2, 
Zeb2, and VEGF-A in vitro and in vivo [23]. In addition, He et 
al. [24] found that miR-342 (new name: miR-342-3p) expres-
sion was upregulated in VEGF-negative tumors compared 
with VEGF-positive tumors in breast cancer tissues. These 
studies showed that VEGF expression was decreased while 
miR-192-5p and miR-342-3p expression was increased. In 
our study, we determined that the expression of miR-192–5p 
and miR-342-3p was downregulated significantly in patient 
plasma (FC: 3.54, p=0.007; FC: 2.65, p=0.001, respectively). 
Due to the decrease in these miRNAs, VEGF expression may 
be increased, and we believe that pathological angiogenesis 
occurred because of decreased VEGF expression. Mimics of 
these miRNAs may be developed in the future and may be 
used in treatment. Hua et al. [25] investigated the relation-
ship between miRNAs and VEGF. The researchers found 
that miR-20a (new name: miR-20a-5p) was downregulated in 
hypoxia-induced CNE cells. The researchers also observed 
that miR-20a and miR-92a act have antiangiogenesis activity, 
targeting the VEGF-A transcript. We found plasma miR-
20a-5p was significantly upregulated in patients with AMD 
(FC: 2.02, p=0.035). Increased miR-20a-5p may compensate 
for the increase in miR-24-3p. Studies should be conducted to 
evaluate the relationship between miRNAs and VEGF.

miRNAs are known to play a role in the inflammation 
process, which is also believed to be an element in the devel-
opment of wet AMD. Kutty et al. [26] clearly showed that 
miR-146b-5p was expressed in human RPE cells in culture 

and the expression was highly induced by proinflammatory 
cytokines. These results showed for the first time that miR-
146b-5p expression was regulated by interferon (IFN)-γ, 
potentially via the Janus kinase/signal transducers and acti-
vators of transcription (JAK/STAT) pathway. In the present 
study, miR-146b-5p was significantly decreased in the plasma 
of patients with AMD compared to the control subjects (FC: 
8.68, p=0.006). We suggest that miR-146b-5p could play a 
role in inflammatory processes underlying AMD or other 
retinal degenerative diseases through their ability to nega-
tively regulate the nuclear factor-κB pathway by targeting 
the expression of interleukin-1 receptor-associated kinase 1 
(IRAK1).

Bai et al. [27] showed that in aging mesangial cells, the 
expression level of miR-335 (new name: miR-335-5p) and 
miR-34a was significantly upregulated, whereas the predicted 
target genes (superoxide dismutase-2 [SOD2, OMIM 147460] 
and thioredoxin reductase-2 [TXNRD2, OMIM 606448]) of 
miR-335 and miR-34a were markedly downregulated. miR-
335-5p and miR-34a could inhibit superoxide dismutase-2 
and thioredoxin reductase-2 expression through binding to 
the corresponding binding sites in the 3′- untranslated regions 
(UTRs) of the superoxide dismutase-2 and thioredoxin reduc-
tase-2 genes. In this study, we detected down expression of 
miR-335–5p in AMD (FC: 7.0, p=0.019). This decreased 
expression might have developed to control oxidative stress 
in a more comfortable way.

Previous studies on the search for plasma/serum miRNA-
based disease biomarkers generally focused on individual 
disease-specific miRNAs. Therefore, although a specific 
miRNA plasma/serum alone may help to distinguish between 
patients and healthy controls, a panel of miRNAs has greater 
potential to offer a more specific diagnosis. In the validation 
phase of the present study, we determined ten miRNAs that 
showed AMD-specific expression (miR-26b-5p, miR-27b-3p, 
miR-29a-3p, miR-139-3p, miR-212-3p, miR-324-3p, miR-
324-5p, miR-532-3p, miR-744-5p, and miR-let-7c).

N-(4-hydroxyphenyl)-retinamide (4-HPR), a retinoic acid 
derivative, induces reactive oxygen species generation and 
apoptosis in cultured human RPE cells treatment increased 
the expression of miR-26b (new name: miR-26b-5p) in 
ARPE-19 cells [28]. In our study, we found that miR-26b-5p 
was expressed only in the patient group. Oxidative stress in 
RPE cells has an important role in the development of wet 
AMD, and expression of this miRNA might be a response 
to oxidative stress in patients. Early detection or screening 
tests can be developed if the relationships between them are 
defined clearly.

http://www.molvis.org/molvis/v20/1057
http://www.ncbi.nlm.nih.gov/omim/?term=147460
http://www.ncbi.nlm.nih.gov/omim/?term=606448
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Kuehbacher et al. [29] showed that inhibition of miR-27b 
significantly reduces endothelial cell sprouting in an in vitro 
setting. Urbich et al. [30] showed that miR-27a/b promotes 
angiogenesis by targeting endogenous angiogenesis inhibitor 
semaphorin 6A (SEMA6A) and controlling endothelial 
sprouting. Biyashev et al. [31] demonstrated that delta like 
ligand 4 (Dll4) and sprouty homolog 2 (Spry2) were targets 
of miR-27b and therefore the effectors of miR-27b action on 
the angiogenic switch. We also determined expression of this 
miRNA only in the patient group. These studies showed that 
miR-27-3p and angiogenesis were closely associated. Another 
study showed that miRNA-29a (new name: miR-29a-3p) 
targeted VEGF-A and inhibited tumor growth [32]. In our 
study, we found that miR-29a-3p was expressed only in the 
patient group. This expression might have occurred to inhibit 
VEGF-A, which is known to have increased expression in 
wet AMD.

In our study, we determined that miR-25-3p, miR-410, 
miR-574-3p, and miR-660-5p expression was significantly 
decreased in the patients’ plasma while miR-139-3p, miR-
212-3p, miR-324-3p, miR-324-5p, miR-532-3p, miR-744-5p, 
and miR-let-7c were expressed only in the patient group. To 
date, many studies with these miRNAs are limited to cancer 
patients [33-38]. The relationship between these miRNAs and 
other disease has not been clearly revealed. These miRNAs 
might have relationships with angiogenesis, inflammation, 
and oxidative stress, which are responsible for the develop-
ment of cancer. Therefore, we believe that these miRNAs 
might also be responsible for the development of wet AMD.

In our study, the mean age of the patient group was 
significantly higher than that of the control group. This 
might be a disadvantage for our study since miRNA expres-
sion levels can change with advancing age. At the same 
time, incidence of AMD and systemic diseases increases 
with advancing age. Thus, finding healthy older individuals 
without ocular and systemic diseases can be difficult.

In conclusion, these differentially expressed miRNAs 
might be novel targets for further investigation of the molec-
ular pathogenesis and management of AMD. We suggest 
that these miRNAs may be potential candidates for novel 
biomarkers in wet AMD. Our results should be confirmed 
with larger studies, and further studies for investigating the 
biologic function and origin of circulating plasma miRNAs 
should be conducted in the future.
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