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Abstract

Motivation: The acid dissociation constant (pKa) is a critical parameter to reflect the ionization ability of chemical
compounds and is widely applied in a variety of industries. However, the experimental determination of pKa is
intricate and time-consuming, especially for the exact determination of micro-pKa information at the atomic level.
Hence, a fast and accurate prediction of pKa values of chemical compounds is of broad interest.

Results: Here, we compiled a large-scale pKa dataset containing 16 595 compounds with 17 489 pKa values. Based
on this dataset, a novel pKa prediction model, named Graph-pKa, was established using graph neural networks.
Graph-pKa performed well on the prediction of macro-pKa values, with a mean absolute error around 0.55 and a
coefficient of determination around 0.92 on the test dataset. Furthermore, combining multi-instance learning,
Graph-pKa was also able to automatically deconvolute the predicted macro-pKa into discrete micro-pKa values.

Availability and implementation: The Graph-pKa model is now freely accessible via a web-based interface (https://
pka.simm.ac.cn/).

Contact: hljiang@simm.ac.cn or myzheng@simm.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The acid dissociation constant pKa, an equilibrium constant
defined as the negative logarithm of the ratio of the protonated
and deprotonated form of a compound, is a key parameter to de-
scribe the ionization ability of substances. It has been reported
that about two-thirds of marketed drugs are ionizable in the aque-
ous solution (Manallack, 2007). Hence, in the design of new
drugs, pKa is a crucial physical property to be considered, which
has profound effects on biological activities, ADMET (absorp-
tion, distribution, metabolism, excretion and toxicity) properties
and other properties of drugs (Charifson and Walters, 2014;
Manallack et al., 2013). Apart from the pharmaceutical industry,
the pKa is also related to environmental ecotoxicology, agricul-
ture and chemical industries. Hence, the fast and accurate predic-
tion of pKa values of chemical compounds from their structures is
of great interest.

Graph neural networks (GNN) are a type of neural network to
process graph structure data (Defferrard et al., 2016; Niepert et al.,
2016). Since first introduced into the prediction of molecular prop-
erties several years ago (Duvenaud et al., 2015), reports of different
GNN architectures and their successful applications have been rap-
idly accumulating in this field (Sun et al., 2020; Zhang et al., 2021).
However, so far, graph neural networks have rarely been applied in
the prediction of pKa, presumably because the pKa values are not
only molecular-level ‘global’ properties but also atomic-level ‘local’
properties (Fig. 1). The molecular-level ‘global’ properties refer to
the macro-pKa, the acid dissociation constant related to the observ-
able loss or gain of a proton from a molecule regardless of specific
ionization site. The ‘local’ properties refer to micro-pKa, the acid
dissociation constant related to the loss or gain of a proton from a
single titratable site (Işık et al., 2018). Apart from the macro-pKa, a
powerful pKa prediction model should also be capable of providing
micro-pKa information at the atomic level. Such information can
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not only enhance our confidence in the predicted results but also
provide useful reference information for the structural modification
of compounds, chemical reaction prediction and other related stud-
ies. However, for a molecule with multiple ionization sites, usually,
we can only measure one or a few macro-pKa values experimentally,
but not the micro-pKa values of all individual sites. Thus, it is intri-
cate to predict micro-pKa values, posing a significant challenge to
the overall prediction of pKa.

In 2019, Roszak et al. built a graph convolution model for the
prediction of the pKa value of the C-H bond in organic solvents and
applied this model to predict the products of hydrogen abstraction
reaction (Roszak et al., 2019). To the best of our knowledge, this
study was the only attempt to predict compound pKa with graph
neural networks. However, the training of their model relied on the
pKa dataset containing atomic level labels, which were mainly
obtained from quantum chemical calculation or molecules with a
single ionizable site. Hence, this method is difficult to extend to the
pKa prediction of heterogeneous chemical classes with multiple ion-
izable sites. Another alternative strategy to obtain micro-pKa data
is to assign the macro-pKa value of a molecule to its major respon-
sible ionization site and take it as an approximation of the micro-
pKa value. Recently, some pKa prediction models have used this
strategy (Hunt et al., 2020; Yang et al., 2020), but there are also
two significant problems. As illustrated in Figure 1, (i) for mole-
cules such as propane-1,2,3-triamine, there are multiple
sites having similar ionization capacity, this approximate treatment
may bring large errors; (ii) the selection of major responsible
ionization site is a non-trivial process and requires substantial
chemical domain knowledge, and in many cases, a macro-pKa

value could not be unambiguously assigned to one major ionizable
group.

Multi-instance learning (MIL) is a kind of weakly supervised
learning algorithm for data with only coarse-grained labels (Zhou,
2018). In classic MIL, the training set is composed of many ‘bags’,
each of which contains a series of ‘instances’. A bag is labeled as
positive if containing at least one positive instance; otherwise, it is
labeled as negative. The goal of MIL is to train a classifier that can
correctly label unseen bags. Due to the ability to provide instance-
level interpretation, MIL has attracted extensive attention in many
classification tasks such as medical image analysis, text classification
and video annotation (Carbonneau et al., 2018; Wang et al., 2019;
Zhou et al., 2017). However, so far, MIL has rarely been used in re-
gression tasks. This is because a necessary prerequisite for obtaining
instance labels through MIL is that there should be a clear mathem-
atical relationship between instance labels and bag labels. This rela-
tionship is common in classification tasks (such as ‘or’ relationship)
but rare in regression tasks. For pKa, there is a relatively clear rela-
tionship between macro-pKa and micro-pKa. For example, Figure 1

shows the formula between macro-pKa and micro-pKa of basic
compounds.

Here, combining multi-instance learning and graph neural net-
works, we designed a novel pKa prediction model named Graph-
pKa. In Graph-pKa, a molecule is regarded as a ‘bag’, and those
ionizable atoms in this molecule are regarded as ‘instances’. It
means that the macro-pKa value of a molecule is designated as the
label of a bag, which is available in the training set, and the un-
available information regarding to the micro-pKa values of ioniz-
able sites are considered as the labels of instances. Under this
scheme, Graph-pKa can follow the MIL framework to learn the
labels of instances through training against the labels of bags
(Fig. 2). Furthermore, it should be noted that those molecules con-
taining multiple ionization sites may have multiple macro-pKa

values. In this work, we only consider the most acidic and basic
pKa values, which are key parameters that can unambiguously
and concisely describe the ionization capabilities of compounds.
Some chemical information websites, including ChEMBL
(Gaulton et al., 2017) and DrugBank (Wishart et al., 2018) also
describe the prediction for the pKa of compounds in terms of the
most acidic and basic pKa values.

2 Materials and methods

2.1 S-pka dataset
A large pKa dataset named S-pKa was compiled, mainly from three
main sources: (i) datasets used in several previous studies on pKa, (ii)
a free software named QSAR Toolbox, (iii) manual extraction from
various literature. Those chemical structures from different sources
were standardized and then merged. The structure standardization
procedure includes removing all salts from molecules, neutralizing
charged molecules, and standardizing SMILES strings. In addition,
considering that the accuracy of publicly available experimentally
determined pKa values was often dubious (Rupp et al., 2011), each
data would undergo manual inspection to ensure that it belongs to
the most acidic or basic pKa value of its corresponding molecule be-
fore adding to the S-pKa dataset. The detailed processes of data col-
lection and cleaning is given in Supplementary Material and
Supplementary Figure S1. The S-pKa dataset can be separated into
an acidic subset and a basic subset, containing the most acidic pKa

values of 9043 chemical structures and the most basic pKa values of
8436 chemical structures, respectively (Supplementary Fig. S2a).
The distribution of pKa values in the acidic and basic subset is
shown in Figure 3a. The most acidic pKa values varied from -3.3 to
40, while the most basic pKa values varied from -10.1 to 14. Since to
learn micro-pKa via MIL is a critical concept utilized in the estab-
lishment of the Graph-pKa model, the acidic or basic ionizable sites
of compounds in the S-pKa dataset are all enumerated and displayed
(Fig. 3b). In this study, the acidic ionizable sites are defined as non-
carbon atoms connected with at least one hydrogen atom, and the
basic ionizable sites are defined as nitrogen atoms with no positive
formal charge. The distribution of the molecular weight of com-
pounds across the S-pKa dataset is also shown in Supplementary
Figure S2b.

2.2 Graph-pKa model
The architecture of Graph-pKa is shown in Figure 2. It begins by
describing each molecule as an undirected graph where nodes and
edges correspond to atoms and chemical bonds, respectively. The
molecular graph is then input into the graph neural layers where
atoms receive the message of other atoms in the molecule and use the
aggregated messages to update their own features. The graph neural
layer in Graph-pKa is the same as our previously developed Attentive
FP (Xiong et al., 2020), a molecular representation learning scheme
that uses a graph attention mechanism. Here, six graph neural layers
are stacked in Graph-pKa for the extraction of atom features.

The major difference between Graph-pKa and other graph neural
networks lies in the approach to deal with the features of nodes
extracted by graph neural network layers. In molecular graph neural
networks such as GCN (Duvenaud et al., 2015), MPNN (Gilmer et al.,

Fig. 1. The relationship between macro- and micro-pKa of basic compounds.

pKa(macro) refers to the macro-pKa; pKa
1, pKa

2 and pKa
3 refer to the micro-pKa
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2017) and Attentive FP (Xiong et al., 2020), those node features
are aggregated with various pooling operations such as average
pooling and Set2Set to generate the features of the whole molecule,
which are next used to fit and predict the molecular properties.
However, in Graph-pKa those learned node features are directly
fed into a fully connected (FC) layer to predict the pKa values of
atoms. Since some atoms in molecules are not ionizable, their pre-
dicted pKa values will be masked. In the acidic and basic pKa pre-
diction model, the mask values are respectively positive infinity
and negative infinity. Finally, the macro-pKa values of molecules
are calculated according to the approximate mathematical rela-
tionships between them and the predicted pKa values of ionizable
atoms. More specifically, given an atom Ai with features Xi, the
above process can be formulated as follows:

In acidic pKa prediction model:

pKa acidicð Þ
i ¼ FC Xið Þ (1)

pKa acidicð Þ
i ¼ pKaðacidicÞ

i; Ai 2 P

inf ; Ai 62 P

(
(2)

pKa acidicð Þ ¼ �log
XN
i¼1

10�pKa acidicð Þ
i

 !
(3)

In basic pKa prediction model:

pKa basicð Þ
i ¼ FC Xið Þ (4)

pKa basicð Þ
i ¼ pKaðbasicÞ

i; Ai 2 Q

�inf ; Ai 62 Q

(
(5)

pKa basicð Þ ¼ log
XN
i¼1

10pKa basicð Þ
i

 !
(6)

where FC is referred to a fully connected neural network layer, P is
the acidic ionizable sites, Q is the basic ionizable sites, N is the num-
ber of heavy atoms in a molecule, inf is the positive infinity,
pKaðacidicÞ and pKaðbasicÞ are the most acidic/basic pKa values of a
molecule.

Obviously, formula 3 and 6 are the key formulas for MIL. Yang
et al. also had used formula 6 to calculate the macro-pKa values in
their study (Yang et al., 2020). Here, we provided the derivation of

formula 3 and 6 in Supplementary Material and Supplementary
Figure S3.

2.3 Implement of Graph-pKa and other benchmark

methods
In Graph-pKa, the conversion from a SMILES string to an undirect-
ed graph and initialization for it was implemented with the DGL-
LifeSci package. The representations of the graph were initialized
with eight kinds of atom features and four kinds of bond features
(Supplementary Table S1). The Graph-pKa model was implemented
using the PyTorch and DGL. The loss function used to train Graph-
pKa was MSELoss. Attentive FP and four machine learning models,
including SVM, RF, XGBoost and ANN were implemented as base-
line models. XGBoost was implemented with the XGBoost package,
SVM, RF and ANN were implemented with the Scikit-learn pack-
age. Attentive FP is a graph neural network with the same GNN
layers as Graph-pKa but without MIL, which was also implemented
as a control for model performance evaluation. For baseline models
except Attentive FP, the molecular fingerprints used to encode the
molecular structures were a kind of combined molecular fingerprint
that integrated eight types of common molecular fingerprints includ-
ing CDK, Estate, CDK graph only, MACCS, PubChem,
Substructure, Klekota-Roth and 2D atom pairs. Those molecular
fingerprints had 9121 bits in total and were calculated using
PaDEL(Yap, 2011).

2.4 Model training and evaluation
In the experiment of predicting macro-pKa, the S-pKa dataset was
randomly split into training/validation/test set in a 70:15:15 ratio.
Graph-pKa and other models were trained on the same training set.
The best set of hyperparameters for each model were determined
based on the result on the validation set. The search ranges and opti-
mal values of these hyperparameters are provided in Supplementary
Table S2. The final model performance was assessed on the test set
and two external tests set through three independent runs. The met-
rics for evaluating model performance were mean absolute error
(MAE), root mean squared error (RMSE) and coefficient of deter-
mination (R2). The structural similarity between the two molecules
was calculated using the 1024-bit Morgan2 fingerprints and the
Tanimoto coefficient.

In the experiment of predicting micro-pKa, about 500 molecules
that possessed multiple different acidic/basic ionization sites and
whose dominant ionization sites had been uniquely assigned by
Hunt et al. (2020) were extracted as test data. Those molecules were

Fig. 2. The schematic representation of the proposed Graph-pKa model
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then removed from the S-pKa Dataset. Graph-pKa was retrained on
the remaining dataset with the same set of hyperparameters previ-
ously used. The metrics for evaluating the model are consistency
rate and difference values. Consistency rate is the probability that
the dominant ionization sites of molecules selected by Graph-pKa

are the same as that of human experts. Different value is used to
quantify the degree of divergence between Graph-pKa and human
experts. They are calculated as follows:

ci ¼ 1; hi 2 Gi

0; hi 62 Gi

�
(7)

consistency rate ¼ 1

n

Xn

i¼1

ci (8)

difference value ¼ Abs f gið Þ � f hið Þ
� �

(9)

where hi is the most acidic/basic atom of molecule i selected by
human experts, Gi is the most acidic/basic atoms of molecule i pre-
dicted by Graph-pKa, gi is an arbitrary element in Gi, the reason
why Gi is a collection is that some molecules have multiple domin-
ant ionization sites with the same ionization ability, f is referred to a
function of Graph-pKa for atomic pKa prediction.

3 Results and discussion

3.1 Comparison with benchmark methods
In order to evaluate the performance of Graph-pKa, four conven-
tional machine learning models were implemented and taken as
benchmark methods. A kind of combined molecular fingerprints
was used as the representation of molecules and the input of these
machine learning models, due to its good performance on a previous
study for pKa prediction (Mansouri et al., 2019). The comparison
between Graph-pKa and other models was carried out on the S-pKa

dataset that was randomly divided into training, validation and test
set. The performances of those models on the test set are shown in
Figure 4. Among the four machine learning models, ANN and
XGBoost performed comparatively well, which was consistent with
some previous studies (Mansouri et al., 2019; Yang et al., 2020).
However, the performances of these two models still obviously fell
behind Graph-pKa, which achieved a MAE around 0.55 and a R2

around 0.92 on the test sets (Fig. 4a and b). As known, the perform-
ance of QSAR models is closely related to the similarity between
predicted molecules and the molecules of the training set. To evalu-
ate the generalization capability of different models, we also calcu-
lated the pairwise similarity of test set molecules to the training set
molecules, and split the test set molecules into five individual subsets
according to their maximum similarity to training set molecules
(Supplementary Table S3). Then, the MAE of those models on each
subset was compared. As shown in Figure 4c and d, the Graph-pKa

outperformed other machine learning models on nearly all similarity
subsets, which demonstrated it possesses high robustness and gener-
alization ability. For the molecules with max similarity higher than
0.5 to the training set, the MAE of the model was lower than 0.65.
If using it as the threshold for acceptable errors, 81.1% of test mole-
cules were within the applicability domain of the models.
Furthermore, the performance of Attentive FP on macro-pKa predic-
tion was not better than that of Graph-pKa, meaning that MIL could
endow Graph-pKa with the prediction ability of micro-pKa without
significant trade-off on its prediction ability of macro-pKa.

3.2 Evaluation on external datasets
The performance of Graph-pKa was further validated by testing
against two external datasets that were obtained from two blind
pKa prediction challenges named SAMPL6 and SAMPL7. These two
challenges were launched by the Drug Design Data Resource
Community in 2018 and 2020, respectively. The SAMPL6 dataset
comprises 24 kinase inhibitor-like molecules with 31 experimental
pKa values, and the SAMPL7 dataset comprises 22 molecules (most
are sulfonamides) with 20 experimental pKa values. There are two
pKa values not belonging to the most acidic or basic pKa values in
the SAMPL6 dataset and two molecules without corresponding ex-
periment pKa values in the SAMPL7 dataset, they were excluded
from this testing. The performances of Graph-pKa and some com-
monly used software and models on these two external datasets are
shown in Table 1 and Supplementary Table S4. Graph-pKa achieved
a low MAE of 0.594 and 0.758 as well as a high R2 of 0.918 and
0.839 on SAMPL6 and SAMPL7 datasets, respectively, comparable
to the performance of those commercial software established based
on large collections of proprietary data.

Although our Graph-pKa model has achieved satisfactory predic-
tion performance, there are potentially two limitations. Frist,
Graph-pKa is only trained to predict the most acidic and basic pKa

values and its capability to predict other types of pKa values such as
the 2nd strongest acidic and basic pKa values has not been fully eval-
uated. This is mainly because of the difficulty in the collection,
cleaning, and labeling of this kind of training data. Second, the tau-
tomerism of molecules has not been taken into account in Graph-
pKa, which means that the model will give different prediction
results for different tautomers of the same molecule. We leave this
issue to follow-up studies, such as averaging the predicted values of
different tautomers.

3.3 Performance on micro-pKa prediction
Macro-pKa values can describe the ionization degree of the molecule
in the solvent but can’t pinpoint the ionization state of each atom in
this molecule. To acquire more comprehensive knowledge about the
ionization of molecules, the prediction of micro-pKa values is equal-
ly important. Thus, the performance of Graph-pKa on predicting
micro-pKa was also evaluated here. Unfortunately, the experimental
determination of micro-pKa values is highly complicated, and there
is currently no available micro-pKa dataset. Given this situation, a
Turing-like test was designed to determine if Graph-pKa exhibited
the intelligent behavior (i.e. to designate the most acidic/basic atoms

Fig. 3. The distributions of simple compound properties in the S-pKa dataset. (a)

The experimental pKa values. (b) The number of ionizable sites
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in a molecule structure) that was indistinguishable from that of a
human expert. The results of expert judgments were obtained from
a recent work of Hunt et al. for pKa prediction (Hunt et al., 2020),
where each pKa value in their collected dataset (Hunt’s dataset) and
two external test sets (Jensen’s dataset and SAMLP6 dataset) was
carefully inspected and assigned to a specific site by human experts.
As shown in Figure 5a, the overall consistency rates between the
most acidic/basic atoms predicted by Graph-pKa and the most acid-
ic/basic atoms selected by the human experts were over 90%. To
further quantify the degree of divergence between Graph-pKa and
human experts on those controversial molecules, the difference val-
ues of the predicted pKa between the most acidic/basic atoms pre-
dicted by Graph-pKa and those selected by the human experts are
shown in Figure 5b. It could be observed that the difference values
of 80% these controversial molecules were within 1.2 pKa units,
which indicated that the divergences between Graph-pKa and
human expert mainly derived from those molecules whose several
atoms had similar ionization capability.

Some examples of agreement and disagreement between Graph-
pKa and human experts are respectively shown in Figure 5c and d.
In the assignment of the most acidic atoms, two controversial mole-
cules of note were A1 and A2, and most of the others were hydroxa-
mic acid derivatives. Hunt et al. attributed the acidities of
hydroxamic acid derivatives all to their hydroxyls. In fact, the dis-
sociation ability of hydroxylic hydrogen and amino hydrogen in
hydroxamic acids was quite similar (Bartmess, 2010) (also see R1,
R2 in Fig. 5e, http://ibond.nankai.edu.cn), and the prediction results
of Graph-pKa supported their equivalent protonation potential. In
the assignment of the most basic atoms, the two most controversial
molecules were B1 and B2. Our prediction for B1 was supported by
a record from PubChem that the pKa value of the amine in B1 was
7.75 (https://pubchem.ncbi.nlm.nih.gov/compound/135398737). In
addition, the basicity of the 1,3,4-Oxadiazol ring in B2 should be
very weak, given that the pKa of 1,3,4-thiadiazole was only -4.9 (R3
in Fig. 5e, https://www.scripps.edu/baran/heterocycles/Essentials1-
2009.pdf). According to Graph-pKa prediction, the basicity of B2
was attributed to the pyridine ring, instead of the 1,3,4-Oxadiazol
ring. This assignment was further confirmed by quantum chemical
calculation. As shown in Supplementary Figure S4, the protonation
energies of nitrogen atom in the pyridine ring were -5.25 kcal/mol,
significantly lower than that of nitrogen atoms in the 1,3,4-
Oxadiazol ring (4.74 and 5.39 kcal/mol). The methods of quantum
chemistry calculation are described in Supplementary Material.
Besides, two molecules (B3, B4) in SAMPL6 datasets (Işık et al.,
2018), whose dominant ionization sites have been determined by

nuclear magnetic resonance, are also shown in Figure 5d. The pre-
dicted results of Graph-pKa were consistent with the experimental
results. The above results demonstrated that Graph-pKa performed
outstandingly in the prediction of micro-pKa. It is impressive that in
many cases the capability of Graph-pKa to locate the most acidic/
basic sites of molecules is equivalent to or better than that of human
experts, while all the chemical insight has been learned without

Fig. 4. The performance of the various model on macro-pKa prediction on the S-pKa dataset. (a,b) The MAE and R2 of those models on the test dataset. (c,d) The MAE of those

models for acidic (c) and basic (d) pKa prediction on a series of similarity subsets. Error bars represent standard deviations

Table 1. Performance of Graph-pKa and other models on the

SAMPL6 and SAMPL7 external test sets

Dataset Model name Model class MAE RMSE R2

SAMPL6

Epik Scana Commercial 0.784 0.962 0.857

Epik Microa Commercial 0.783 0.972 0.854

ACD/pKaa Commercial 0.550 0.783 0.905

MoKaa Commercial 0.854 0.970 0.854

ChemAxona Commercial 1.007 1.248 0.759

Hunt’s modelb Academic 0.687 0.864 0.885

Yang’s XGBb Academic 0.767 1.011 0.842

Yang’s NNb Academic 0.832 1.141 0.799

OPERAd Academic 0.970 1.283 0.619

Graph-pKa Academic 0.594 0.726 0.918

SAMPL7

Epik Scanc Commercial 1.121 1.648 0.508

ChemAxonc Commercial 0.559 0.708 0.909

Yang’s XGBc Academic 1.476 1.622 0.523

Yang’s NNc Academic 0.932 1.156 0.758

OPERAd Academic 2.135 2.515 �3.752

Graph-pKa Academic 0.758 0.934 0.839

The bold entries in the “MAE”, “RMSE”, and “R2” columns represent the

best results in corresponding datasets.
aThe results are cited from a summary of the SAMPL6 challenge results.

(https://github.com/samplchallenges/SAMPL6/blob/master/physical_proper

ties/pKa/analysis/).
bThe results are cited from articles of Hunt et al. (2020) and Yang et al.

(2020).
cThe results of Epik predictions are from Schrödinger Suite 2017; the

results of ChemAxon predictions are from ChemAxon Marvin Suite 20.15.0.

The results of Yang’s XGB and Yang’s NN are from a webserver (http://pka.

luoszgroup.com/prediction).
dThe results are from OPERA 2.7. Nine pKa values that OPERA2.7 failed

to predict were excluded.
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explicit supervision in multi-instance learning. It can be expected

that when there are more available training data in the future, the
capability will be further improved.

3.4 Visualization of the atomic embeddings
In order to visualize the features of the atoms learned by the Graph-
pKa model, the embeddings in the last hidden layer of several types

of acidic ionization sites in the training data were extracted and sub-
mitted to principal component analysis. As shown in Figure 6, after
training, the atomic embeddings from phenol hydroxyl, carboxyl,

and sulfonamide groups were respectively gathered together.
However, the distributions of atomic embeddings from alcoholic hy-
droxyl and amide groups were still relatively dispersed. These pat-

terns suggest that alcoholic hydroxyl or amide groups in different
chemical environments exhibit relatively larger variances, posing
challenges for accurate micro-pKa prediction. We speculated that a

possible reason was that, although alcoholic hydroxyl and amide
groups widely existed in the training set, they have less contribution

to the macro-pKa of the whole molecule due to their weak acidity.

Fig. 5. Application of Graph-pKa to predict the dominant ionization sites of molecules. (a) The consistency rates between the prediction of Graph-pKa and the judgment of

human experts. (b) The distribution of difference values representing the degree of divergence between Graph-pKa and human experts on controversial molecules. (c,d) Some

examples of molecules on which the predictions of Graph-pKa and human experts are consistent (c) and different (d), the arrows and circles denote to the dominant ionization

sites selected by Graph-pKa and human experts, respectively, red and blue numbers, respectively, denote to the predicted acidic and basic pKa values of atoms by Graph-pKa.

(e) Some molecules and their pKa values for reference

Fig. 6. Visualizing the atomic embeddings in last hidden layer using principal com-

ponent analysis
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Therefore, they had lower weights and were less supervised during
model training. Three molecules and their atomic embeddings visu-
ally display such a situation. After training, the atomic embeddings
from carboxyl groups of the three similar molecules are close,
whereas the atomic embeddings from amide groups of the three mol-
ecules are dispersed. Apparently, adding more samples whose dom-
inant ionization groups are alcoholic hydroxyl groups or amide
groups into training data may alleviate this problem.

3.5 Web server for the prediction of pKa

For the convenience of the community, a free web server wrapping
the Graph-pKa model has been developed (https://pka.simm.ac.cn/).
This web server was built using the python language and could be
simultaneously accessed by multiple users. The web server can take
multiple types of inputs including drawing a molecule from the mo-
lecular editor or uploading a txt/mol/sdf file. There are two main
functions in this web server: pKa prediction and similarity search
(Supplementary Fig. S5). In the pKa prediction module, the most
acidic/basic pKa values and their corresponding micro-pKa values of
the input molecule are predicted. The Monte Carlo dropout is used
to evaluate the uncertainty of the prediction results and calculate the
95% confidence interval of the predicted value (Gal and
Ghahramani, 2016). It is noteworthy that, due to our definition of
possible ionization sites and the processing of input molecules, the
web server does not support the pKa prediction for C-H bonds and
ionized molecules. In the similarity search module, the most acidic/
basic atoms of the molecules from the S-pKa dataset and the most
acidic/basic atoms of the molecule input by the user are first pre-
dicted by Graph-pKa. Then, the embeddings of those predicted most
acidic/basic atoms in the last hidden layer are extracted. Finally, the
Euclidean distances between the atomic embeddings of the input
molecule and that of the molecules in the S-pKa dataset are calcu-
lated. If the Euclidean distance is close enough (the threshold is set
as less than 0.05), molecules are considered to be similar, and for
each input molecule, up to four similar molecules and their experi-
mentally determined pKa values will be output for reference.

4 Conclusions

In this work, we have developed a novel in silico pKa prediction
model named Graph-pKa. Combining multi-instance learning into
graph neural network, Graph-pKa not only outperforms those con-
ventional machine learning models based on molecular fingerprints
in predicting macro-pKa, but more significantly, can learn the
micro-pKa values of atoms through training against the macro-pKa

values of molecules. A Turing-like test demonstrated that it gained
chemical insights to locate the most acidic/basic sites of molecules,
which compared favorably with that of human experts. Such micro-
pKa inference ability greatly enhances the interpretability and prac-
ticability of this model. Furthermore, in Graph-pKa, the fitting and
prediction of macro-pKa are all dependent on the reasoning of
micro-pKa, which can also avoid shortcut learning to some extent
(Geirhos et al., 2020). In the end, a Web application based on
Graph-pKa model has been made freely available at https://pka.
simm.ac.cn.
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