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Diabetic retinopathy (DR) is a diabetic complication affecting the eyes, which is the main cause of blindness in young and middle-
aged people. In order to speed up the diagnosis of DR, a mass of deep learning methods have been used for the detection of this
disease, but they failed to attain excellent results due to unbalanced training data, i.e., the lack of DR fundus images. To address the
problem of data imbalance, this paper proposes a method dubbed retinal fundus images generative adversarial networks (RF-
GANs), which is based on generative adversarial network, to synthesize retinal fundus images. RF-GANs is composed of two
generation models, RF-GAN1 and RF-GAN2. Firstly, RF-GAN1 is employed to translate retinal fundus images from source
domain (the domain of semantic segmentation datasets) to target domain (the domain of EyePACS dataset connected to Kaggle
(EyePACS)). (en, we train the semantic segmentation models with the translated images, and employ the trained models to
extract the structural and lesion masks (hereafter, we refer to it as Masks) of EyePACS. Finally, we employ RF-GAN2 to synthesize
retinal fundus images using the Masks and DR grading labels. (is paper verifies the effectiveness of the method: RF-GAN1 can
narrow down the domain gap between different datasets to improve the performance of the segmentation models. RF-GAN2 can
synthesize realistic retinal fundus images. Adopting the synthesized images for data augmentation, the accuracy and quadratic
weighted kappa of the state-of-the-art DR grading model on the testing set of EyePACS increase by 1.53% and 1.70%, respectively.

1. Introduction

DR is a common complication of diabetes. (e disease is
caused by the blocking of the blood capillaries that nourish
the retina when there is so much sugar in the blood, and then
cutting off the blood supply to the retina. DR can be graded
into 5 levels of severity (normal, mild, moderate, severe
nonproliferative diabetic retinopathy (NPDR), and prolif-
erative diabetic retinopathy (PDR)) according to the in-
ternational protocol [1]. Human ophthalmologists usually
identify and grade DR severity based on the number and size
of different DR-related lesions. In brief, microaneurysms are
the earliest clinically visible evidence of DR, which is the
main lesion of mild NPDR. Moderate NPDR contains not
only microaneurysms but also hard exudates and hemor-
rhages, but almost no soft exudates. Severe NPDR is
characterized by the presence of intra-retinal microvascular
abnormalities and soft exudate, and the absence of

symptoms of PDR. Due to the ischemia of the retina,
neovascularization is a significant factor of PDR. As DR
worsens, it can cause serious effects on a person’s vision or
even blindness. Early detection of DR is therefore important
for the protection of eyesight. But due to the limited medical
resources and time consumption of DR detection, methods
based on deep learning have prevailed in DR detection
recently.

References [2–8] adopted convolutional neural network
for DR grading and achieved certain results. However, due to
the unbalanced distribution of EyePACS [9] (normal ac-
counts for 73.48%, mild NPDR accounts for 6.96%, mod-
erate NPDR accounts for 15.07%, severe NPDR accounts for
2.48%, and PDR accounts for 2.01%), the grading perfor-
mance was not ideal. Although data augmentation (tradi-
tional data augmentation and advanced data augmentation
[10,11]), oversampling (random oversampling [12], SMOTE
[13], Borderline-SMOTE [14]), undersampling (Easy
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Ensemble [15], Balance Cascade [15]), and other traditional
methods can mitigate the problem to some extent, the poor
diversity of the images still limits model performance.

Generative adversarial network (GAN) [16] has taken off
and become mainstream in the field of image generation
since it was proposed by Goodfellow. GAN is optimized by
generator G and discriminator D in mutual games to yield
ideal outputs. Specifically, the generator G aims to generate
real images to deceive the discriminator D, while D tries to
distinguish between real images and generated images.
DCGAN [17] extends GAN by employing transposed
convolutional operations for upsampling; CGAN [18] adds
labels to both the generator and discriminator to control the
category of the synthesized images; WGAN [19] utilizes
gradient penalty during training and improves the loss
function, reducing the training difficulty of the model, and
mitigating the problem of mode collapse; BigGAN [20]
combines various novel techniques, and multiplies the
number of parameters and batch size, which greatly boosts
the performance of the model. Based on the favorable
performance of GAN in image generation, we utilize GAN to
synthesize retinal fundus images.

Specifically, the proposed RF-GANs is composed of two
generation models, RF-GAN1 and RF-GAN2. RF-GAN1
translates images from source domain to target domain, then
RF-GAN2 synthesizes retinal fundus images with Masks
((e segmentation features include optic disk, vessel,
microaneurysm, hemorrhages, hard exudates, and soft ex-
udates) extracted by semantic segmentation models and DR
grading labels. We adopt a two-stage generation of retinal
fundus images for three reasons. Firstly, the amount of
currently known DR-classification dataset is small. If we
solely apply RF-GAN1 to translate other DR-classification
dataset, we cannot get enough synthesized retinal fundus
images for data augmentation. Secondly, there are very few
retinal fundus images and Masks in the semantic segmen-
tation datasets that RF-GAN2 cannot get fully trained with
the Masks and images in the segmentation datasets. So, we
must extract enough Masks with semantic segmentation
models. (irdly, if we solely train segmentation model with
original segmentation datasets, the segmentation perfor-
mance on EyePACS is not ideal (Especially some small le-
sions and vessels) because of domain differences, which in
turn affects the quality of the retinal fundus images gen-
erated by RF-GAN2. So we apply RF-GAN1 for domain
adaption to help segmentation model extract more accurate
Masks. Training RF-GAN2 with more accurate Masks en-
hances the sensitivity of RF-GAN2 to lesion information and
DR grading labels, thus allowing RF-GAN2 to precisely
control the type and number of lesions according to the
given DR grading labels when synthesizing retinal fundus
images. So we use the combination of RF-GAN1 and seg-
mentation models to extract enough Masks from EyePACS;
then we use the extracted Masks, the corresponding retinal
fundus images, and DR grading labels to train RF-GAN2.

(e main contributions of this paper can be summarized
into threefold: (1) RF-GAN1 is proposed to narrow down the
domain gap between semantic segmentation datasets and
EyePACS. RF-GAN1 extends CycleGAN [21] by integrating

with Siamese Network (SiaNet) and adopting extra identity
loss [22] to optimize.(e number of the same class of SiaNet
is set to 1. To the best of our knowledge, we are the first to
perform domain adaption to reduce the domain differences
between the semantic segmentation datasets and EyePACS
to train segmentation models, providing large amount of
more accurate Masks to train retinal fundus image gener-
ation model. (2) We propose the retinal fundus images
generation model RF-GAN2 that precisely controls the DR
severity level. RF-GAN2 employs multi-scale discriminator
and two-stage generator to synthesize more realistic local
details. Moreover, the model is optimized by adversarial loss,
feature matching loss, perceptual loss, and classification loss
simultaneously. (3) We conduct both qualitative and
quantitative experiments to evaluate our method. Both the
ophthalmologists’ judgment and the quantitative assessment
demonstrate that this method can synthesize realistic retinal
fundus images. Moreover, utilizing the synthesized retinal
fundus images for data augmentation, a significant im-
provement in DR grading model performance is observed.

2. Related Work

2.1. GAN in Medical Image Synthesis. Applying GAN to
synthesize images to address the shortage of large and di-
verse datasets has been widely used in medical image pro-
cessing. Kuang et al. [23] employed an encoder to map the
latent space of benign lung nodules and malignant lung
nodules to guide generator to synthesize corresponding lung
CT images. Yang et al. [24] proposed an extra structure-
consistency loss based on the modality of independent
neighborhood descriptor to improve CycleGAN for unsu-
pervised MR-to-CT synthesis. Zunair and Hamza [25]
adopted adversarial training and transfer learning to convert
normal and pneumonia chest X-ray to COVID-19 chest
X-ray. Jiang et al. [26] extended CGAN by employing dual
generators and dual discriminators that introduced a dy-
namic communication mechanism to improve CGAN to
synthesize lung computed tomography (CT) images, then
combined the generated lung CT images with non-
pulmonary CT to get COVID-19 chest X-ray. Jin et al. [27]
employed a new, richer convolutional feature enhanced
dilated-gated generator (RicherDG) to synthesize 3D tumor
lesions in CT images.

2.2. GAN in Retinal Fundus Image Synthesis. In recent years,
there has been an interest in utilizing GAN to synthesize retinal
fundus images. Costa et al. [28] implemented an adversarial
auto encoder for the task of retinal vessel trees synthesis and
then they adopted the generated vessel trees as an intermediate
stage for the generation of retinal fundus images, which was
accomplished with GAN. (e use of adversarial auto encoder
can synthesize more morphological vessel trees, increasing the
diversity of generated retinal fundus images. But, they did not
take the lesions into consideration when synthesizing retinal
fundus images, so the lesion information is not obvious in the
generated retinal fundus images. Zhao et al. [29] proposed to
extend style transfer to the generator to increase the diversity of
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the synthesized retinal fundus images.(is method was capable
of synthesizing multiple images based on a single vessel tree.
However, the DR severity level of the synthesized image was set
the same as the input image, whichwould introduce noise when
the synthesized images were applied to DR grading task. Diaz-
Pinto et al. [30] proposed a new retinal fundus image syn-
thesizer and a semi-supervised learning method for glaucoma
assessment based on DCGAN. However, the generated images
contained only peripheral part of the optic disc, and had a
limited application. Niu et al. [31] utilized pathological de-
scriptors extracted from the reference images as guidance to
generate retinal fundus images. (is method allowed for the
manipulation of the location and number of lesions but did not
allow for precise control of DR severity level. Burlina et al. [32]
used two separate progressively grown generative adversarial
networks (ProGANs) to synthesize referable and nonreferable
age-related macular degeneration (AMD) images, respectively.
(is separate framework facilitated the generator to better learn
the potential space of referable AMD and nonreferable AMD,
improving the quality of the synthesized retinal fundus images.
But, this study only generated two types of AMD retinal fundus
images (referable AMD and nonreferable AMD). Yoo et al. [33]
used CycleGAN to reduce artifacts in retinal fundus images to
improve the image quality. But in several cases, as the artifact
became more obscure, the checkerboard-like artifact became
more prominent in generated images. Tavakkoli et al. [34] used
a two-stage generator based on CGAN and used retinal fundus
images as inputs for fluorescein angiography (FA) generation.
(e method could produce high-quality FA images even when
the quality of their counterparts was relatively low. But, they did
not perform longitudinal studies of benefits of the proposed
method in evaluating disease progression. Lim et al. [35]
adopted StyleGAN [36] as generator and ResNet-50 as dis-
criminator to synthesize retinal fundus images with latent
variable. (ey first trained the GAN model using all DR-
grading-level retinal fundus images before fine-tuning with the
desired highDR-grading-level retinal fundus images, and finally
selecting probable synthetic images with an existing discrimi-
nator. (is approach enhanced the sensitivity of the model to
retinal fundus images of high DR grading level but had a re-
duced ability to generate normal retinal fundus images. Wang
et al. [37] proposed a multichannel-based GAN (MGAN),
which could generate a series of subfundus images, including
effective local features, and all the subfundus images were
combined to obtain themost representative feature of the entire
fundus images. In this way, their method could deal with the
challenge that effective DR features are diffuse in high-reso-
lution fundus images. But, they mainly aimed to obtain a good
discriminator for semi-supervised DR grading, and the gen-
erated images were not uniform with the real images some-
times. Yang et al. [38] added short connection structure in the
generator and replaced convolutional layer with dense con-
nection blocks in the discriminator for retinal vessel segmen-
tation. (e addition of short connection structure solved the
problem of network degradation and gradient disappearance,
which made the training of generator more stable, and the
addition of dense connection blocks strengthened the transfer of
features. But, the model was trained on small datasets, and the
generalizability of the model was poor. Previous methods of

generating retinal fundus images have relied excessively on
manually annotated vessel trees ((ey cannot generate accurate
vessel trees automatically), but the existing datasets of vessel
trees are small. Besides, they cannot control theDR severity level
of the synthesized images. In order to compensate for the above
limitations, we employ RF-GAN1 to translate images from
source domain to target domain to enable semantic segmen-
tation models extract more accurate Masks to train RF-GAN2.
(en, we utilize trained RF-GAN2 to synthesize high-fidelity
retinal fundus images using the Masks and DR grading labels.

3. Proposed Method

RF-GANs proposed in this paper consist of two generation
models, RF-GAN1 and RF-GAN2. (is section first intro-
duces the overall framework of RF-GANs, and then intro-
duces RF-GAN1 and RF-GAN2, respectively.

3.1. Overall Framework. RF-GANs consists of two genera-
tion models: RF-GAN1, which aims to bridge the domain
gap between the semantic segmentation datasets and Eye-
PACS, and RF-GAN2, which is used to synthesize retinal
fundus images with Masks extracted by semantic segmen-
tation models and DR grading labels. (e overall framework
is shown in Figure 1.

(e pipeline includes two steps; in the first step, we employ
RF-GAN1 to translate retinal fundus images from source do-
main to target domain. (en, we adopt HR-Net [39] (HR-Net
maintains a high-resolution representation by concatenating
high-resolution to low-resolution convolutions in parallel, and
enhances the high-resolution representation by performing
multi-scale fusion repeatedly across parallel convolutions. HR-
Net has achieved excellent results in human pose estimation,
and we find in our experiments that HR-Net also has good
performance for the segmentation of structural and lesion
information in retinal fundus images) to extract the Masks of
images in EyePACS. In the second step, we apply RF-GAN2 to
synthesize retinal fundus images with Masks and DR grading
labels. Algorithm 1 gives the details of our proposed methods.

3.2. RF-GAN1. Two tailored requirements for RF-GAN1
need to be met during translating: (1)(e translated datasets
have a similar style to EyePACS. (2) (e structures (optic
disc, fundus blood vessels, etc.) and lesions (micro-
aneurysms, hard exudates, soft exudates, hemorrhages, etc.)
of the retinal fundus images remain unchanged after
translating. Based on the above discussions, RF-GAN1 needs
to meet the two constraints of style transfer and retention of
detailed information, so the loss function of RF-GAN1 is

LRF−GAN1 � LStyle + λLInfo, (1)

where LStyle denotes style transfer loss, LInfo denotes in-
formation retention loss, and λ is the balance parameter
between the two losses.

Since the images from semantic segmentation datasets
and the images from EyePACS are not paired, the style
transfer can be regarded as an unpaired image-to-image
transfer task. Due to the excellent performance of CycleGAN
in unpaired image-to-image transfer task, RF-GAN1 is
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extended on the basis of CycleGAN. Suppose G denotes the
generator from the source domain S to the target domain T,
F denotes the generator from the target domain T to the
source domain S, DS denotes the discriminator of the source
domain S, and DT denotes the discriminator of the target
domain T. (e loss function of style transfer is

LStyle � LAdv F, DS, T, S( 􏼁 + LAdv G, DT, S, T( 􏼁

+ λ1Lcyc(G, F) + λ2Lide(G, F, S, T).
(2)

In equation (2), LAdv denotes the adversarial loss, Lcyc
denotes the cycle-consistency loss, and Lide denotes the
target domain identity constraint. LAdv makes the distri-
bution of retinal fundus images generated by the generator
as close to the distribution of real retinal fundus images as
possible, Lcyc indicates the direction of the style transfer of
the retinal fundus images and Lide helps preserve the color
of the translated retinal fundus images. (e equations of
LAdv(F, DS, T, S), LAdv(G, DT, S, T), Lcyc(G, F),
Lide(G, F, S, T) are

LAdv F, DS, T, S( 􏼁 � ExS ∼ S DS xS( 􏼁 − 1( 􏼁
2

􏽨 􏽩 + ExT ∼ T DS F xT( 􏼁( 􏼁
2

􏽨 􏽩, (3)

LAdv G, DT, S, T( 􏼁 � ExT ∼ T DT xT( 􏼁 − 1( 􏼁
2

􏽨 􏽩 + ExS ∼ S DT G xS( 􏼁( 􏼁( 􏼁
2

􏽨 􏽩, (4)

Lcyc(G, F) � ExS ∼ S F G xS( 􏼁( 􏼁 − xS

����
����1􏽨 􏽩 + ExT ∼ T G F xT( 􏼁( 􏼁 − xT

����
����1􏽨 􏽩, (5)

Lide(G, F, S, T) � ExS ∼ S F xS( 􏼁 − xS

����
����1􏽨 􏽩 + ExT ∼ T G xT( 􏼁 − xT

����
����1􏽨 􏽩. (6)

In equations (3)–(6), denotes the image from source
domain, and denotes the image from target domain.

Due to the high-resolution requirements of medical
images, RF-GAN1 changes the generator of CycleGAN to
two-stage coarse-to-fine generator [40]. (e structures of
generator and discriminator of RF-GAN1 are shown in
Figure 2.

As illustrated in Figure 2, Gm is the generator of the first
stage, of which inputs are images of size 256× 256. It is
composed of encoding blocks, residual blocks, and decoding
blocks. (e structure of Gm is exactly identical to that of
CycleGAN except that the number of residual blocks is nine
and there is no 7× 7 convolutional operation at the last layer
of the decoding block. (e final outputs of Gm are feature
maps with shape of 256× 256× 64. In the second stage, the
inputs of Gn are images of size 512× 512. Gn consists of
encoding blocks, residual blocks, and decoding blocks. In the
encoding blocks, the kernel size of the first convolutional
layer is 7, and the kernel size of the second convolutional
layer is 3. We configure the convolutional operations with a
stride of 2 to replace pooling operations. In order to enable
Gn to inherit the global features learned by Gm, the inputs of
the first residual block of Gn are the element-wise sum of the
outputs of the second convolutional layer of Gn and the

outputs of the last layer of Gm. Gn employs three residual
blocks. (e hyper-parameter settings of the transposed
convolutional operations in decoding blocks are similar to
that of the convolutional operations in the encoding blocks.
Finally, RF-GAN1 synthesizes transferred retinal fundus
images. (e synthesized images and the images of target
domain are input into the discriminator D to distinguish
between the real and the synthesized. (e generator and the
discriminator are optimized through the adversarial process.

In extensive experiments, we find that solely employing
the above generator and discriminator for style transfer will
lead to the loss of retinal fundus images details. To solve the
issue, we integrate the generation model with SiaNet of
which the number of the identical class is 1 on the one hand,
and adopt identity loss to optimize the generation model on
the other hand. (e overall framework of RF-GAN1 is
shown in Figure 3 and the upper part is SiaNet.(e structure
of SiaNet is shown in Table 1.

(e loss function of SiaNet is Contrastive Loss [41],
which helps SiaNet pull close the translated retinal fundus
image and its counterpart in the source domain, and push
away the translated retinal fundus image and any other
retinal fundus images in the target domain. (e equation of
Contrastive Loss is:

source domain target domain structural and lesion masks generated fundus images

RF-GAN1
HRNet
Merge

RF-GAN2

Figure 1: (e pipeline of synthesizing retinal fundus images.
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Lcon i, x1, x2( 􏼁 � (1 − i) max(0, m − d){ }
2

+ id2. (7)

(e equation of d is

d �
x1

x1
����

����2 + ε
−

x2

x2
����

����2 + ε

���������

���������2
. (8)

In equation (7), and are a pair of input vectors. d
measures the similarity between the two input vectors x1 and
x2. (e calculation of d is illustrated in equation (8), where ϵ
is a small nonzero constant. i is the binary label of the input
vector pair and x2. If x1 and x2 are positive pairs, then i� 1.
If x1 and x2 are negative pairs, then i� 0. We define G(xS)

and xS, F(xT) and xT as two positive vector pairs, G(xS) and
xT, F(xT) and xS as two negative vector pairs. m represents
the classification boundary of x1 and x2. For the best per-
formance of the model, we set m� 2.

In addition to the loss in equation (2), we adopt identity
loss LID to enhance the stability of information retention.

LID � E G xS( 􏼁 − xS( 􏼁⊙M xS( 􏼁
����

����2􏽨 􏽩, (9)

where G denotes the generator from source domain to target
domain, xS denotes the image from source domain, M(xS)

denotes the Masks of xS, and ⊙ denotes Hadamard product.
(e identity loss LID forces generator to preserve the local
details of the retinal fundus images when performing style
transfer.

(rough the coordination of CycleGAN, SiaNet, and
identity loss, RF-GAN1 can synthesize images which not
only possess the style of target domain but also preserve local
details. (e loss function of RF-GAN1 is

LRF−GAN1 � LAdv F, DS, T, S( 􏼁 + LAdv G, DT, S, T( 􏼁 + λ1Lcyc(G, F) + λ2Lide(G, F, S, T) + λ3Lcon + λ4LID, (10)

Require:
(e semantic segmentation datasets XS � XS1 , XS2 , . . . , XSM􏼈 􏼉(XSi � x

Si

1 , x
Si

2 , . . . , x
Si

NSi

􏼚 􏼛), the EyePACS dataset

XT � xT
1 , xT

2 , . . . , xT
NT

􏽮 􏽯 and corresponding DR grading labels YT � yT
1 , yT

2 , . . . , yT
NT

􏽮 􏽯, the number of structures and lesion
categories that we want to segment N, the number of semantic segmentation datasets M.
Process:
Stage 1: Bridge the domain gap:
for m� 0 to M do
Train RF-GAN1 with XSm and XT.

end for
for m� 0 to M do
Translate images from source domain to target domain with trained RF-GAN1 to get 􏽢X

Sm .
end for
//We get 􏽢X

S
� 􏽢X

S1 , 􏽢X
S2 , . . . , 􏽢X

SM
􏼚 􏼛.

Stage 2: Get the Masks:
for n� 0 to N do
Train HR-Net with 􏽢X

S.
end for
for n� 0 to N do
Segment XT to get structural or lesion masks with the trained HR-Net.

end for
Merge the segmented structural and lesion masks together to get the Masks.
Stage 3: Train RF-GAN2 and synthesize retinal fundus images:
for epoch� 0 to EPOCH do
for i� 0 to NT do
Train RF-GAN2 with XT, Masks, YT.

end for
end for
Use trained RF-GAN2 to synthesize retinal fundus images with Masks and DR grading labels.

ALGORITHM 1: (e algorithm of RF-GANs.
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where λ1, λ2, λ3, and λ4 control the weights of different
losses. We set λ1 � 10, λ2 � 5, λ3 � 5, and λ4 � 2. (e first
three losses belong to style transfer loss, and the last two
losses belong to information retention loss.

3.3. RF-GAN2. Since RF-GAN2 needs to achieve accurate
control of DR severity level of synthesized images, RF-GAN2
is improved based on CGAN. (e structure of RF-GAN2 is
shown in Figure 4.

To synthesize high-resolution retinal fundus images, RF-
GAN2 employs a two-stage coarse-to-fine generator. As
shown in the upper part of Figure 4, Gx is the generator of
the first stage, and the inputs of Gx are Masks of size
256× 256 and DR grading labels y. Gx consists of encoding
blocks, residual blocks, and decoding blocks. (e encoding
blocks employ three convolutional layers. (e kernel size of
the first convolutional layer is 7 and the kernel size of other
two convolutional layers is 3. We configure convolutional
operations with a stride of 2 to replace pooling operations for
downsampling, and a ReLU and batch normalization [42]
are adopted after each layer.(e number of residual blocks is
nine, which is used to increase the depth of the network and
learn deep representations of the features of retinal fundus
images. (e decoding blocks consist of two transposed
convolutional layers. (e kernel size of the transposed
convolutional layers is 3, and the hyper-parameter settings
are the same as the convolutional layers in the encoding

real image

Gm Gn

256×256×64
128×128×128

256×256×64 512×512×32 512×512×32
256×256×64

256×256×64

128×128×128

128×128×128

64×64×256

64×64×256

63×63×512

62×62×1

Residual Block
Residual Block

…

generated image

Figure 2: (e generator and discriminator of RF-GAN1. Gm is the generator of the first stage, Gn is the generator of the second stage, andD
is the discriminator.

G

F

DS DT

source domain target domain

SiaNet con

Adv

cyc

ide

ID

Figure 3: Overall framework of RF-GAN1. (e upper part is
SiaNet and the lower part is the generation model, which is im-
proved on the basis of CycleGAN. (e specific architecture of the
generator and discriminator is shown in Figure 2.
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blocks. (e final outputs of Gx are feature maps with shape
of 256× 256× 64. Gy is the generator of the second stage, and
the inputs of Gy are Masks of size 512× 512. Gy is composed
of encoding blocks, residual blocks, and decoding blocks.
(e encoding blocks employ two convolutional layers. (e
kernel size of the first convolutional layer is 7, and the kernel
size of the second convolutional layer is 3. (e remaining
settings are the same as the convolutional layers in Gx. (e
inputs of the first residual block of Gy are the element-wise
sum of the outputs of the last layer of Gx and the outputs of
the second convolutional layer of Gy acquires global in-
formation learned by Gx. Gy employs three residual blocks.
In the decoding blocks, we firstly employ a transposed

convolutional layer with the kernel size of 3, and then we
adopt a convolutional layer with the kernel size of 7 to
synthesize retinal fundus images. Other settings are the same
as the convolutional layers corresponding to the encoding
blocks of Gy.

For the purpose of differentiating between high-reso-
lution synthesized images and real images, we employ multi-
scale discriminator. Specifically, we employ three discrim-
inators D1, D2 andD3 with the same structure, but their
input image sizes are 512× 512, 256× 256, and 128×128,
respectively. Although the structure of D1, D2 andD3 are
identical, the coarsest scale discriminator D3 has the largest
receptive field and contains more information about the

Table 1: (e structure of SiaNet.

Input Layer Output
(512, 512, 3) Conv (64,4× 4), LReLU, pool (128, 128, 64)
(128, 128, 64) Conv (64,4× 4), LReLU, pool (32, 32, 128)
(32, 32, 128) Conv (64,4× 4), LReLU, pool (8, 8, 256)
(8, 8, 256) Conv (64,4× 4), LReLU, pool (2, 2, 512)
(1, 2048) FC (2048×128), LReLU, dropout (1, 128)
(1, 128) FC (128× 64), normalize (1, 64)

Multi-scale Inputs Discriminators

Perceptual Network

128×128

256×256

512×512
synthesize image real image

VGG-19 Structure

Percept

Adv

FM

ClsG
lo

ba
l A

ve
ra

ge
 P

ol
lin

g

Gx Gy

Y

+

256×256×64 256×256×64
256×256×64128×128×128 128×128×128

64×64×256 Residual Block
Residual Block

512×512×32 512×512×32

…

Figure 4: (e overall architecture of RF-GAN2. (e upper part is a coarse-to-fine two-stage generator, and the lower parts are multi-scale
discriminator and perceptual network based on the VGG-19 backbone, respectively.
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global perspective of the image, which can guide the gen-
erator to synthesize holistic retinal fundus images structure
and some big lesion patterns, and the finest scale discrim-
inator D1 has the smallest receptive field which can guide the
generator to synthesize more local details, particularly some
small lesions.

In this paper, we devise a multi-task loss to optimize the
generator and discriminator, i.e., adversarial loss, feature
matching loss, perceptual loss, and classification loss. (e
equation of adversarial loss is

LAdv � 􏽘
n�1,2,3

E Dn(c, x) − 1( 􏼁
2

􏽨 􏽩 + E Dn(c, G(c, y))( 􏼁
2

􏽨 􏽩,

(11)

where Gx and Gy are collectively called G, x denotes the
retinal fundus image, n represents images of different sizes,
and y denotes the DR grading label of the retinal fundus
image. And, c denotes different scale Masks input to Gx and
Gy, we fuse them into one conditional map denoted as c. In
order to enhance the stability of training, we adopt feature
matching loss LFeat match. Specifically, we extract features
from the middle layers of the discriminators and make the
generator match the intermediate representations between
real retinal fundus images and synthesize retinal fundus
images. Feature matching loss LFeat match can provide more
accurate guidance to the generator, enhancing the medical
fidelity of the generated retinal fundus images. (e equation
of feature matching loss is

LFeat match � 􏽘
n�1,2,3

E D
p
n (c, x) − D

p
n (c, G(c, y))

����
����1􏽨 􏽩􏼐 􏼑,

(12)

where n denotes images of different sizes, and p denotes the
pth intermediate layer of the discriminator, p ∈ [1, 5]. Due to
the excellent performance of perceptual loss on super res-
olution generation and style transfer, we employ perceptual
lossLPercept to optimize the discriminator and generator. In
such a context, using perceptual loss can enhance the local
details of the synthesized retinal fundus images. (e
equation of perceptual loss is

LPercept � 􏽘
n�1,2,3

E F
q
(x) − tF

q
n(G(c, y))

����
����1􏽨 􏽩􏼐 􏼑, (13)

where n denotes images of different sizes, F denotes per-
ceptual network based on VGG-19 [43] backbone, q denotes
the qth intermediate layer of the perceptual network, qϵ[1, 5].
We adopt classification loss to precisely control the DR
severity level of the synthesized retinal fundus images, so
that the generator can control the type and number of le-
sions according to the DR grading labels. (e equation of
classification loss is:

LCls � 􏽘
n�1,2,3

LCE Dn(x), y( 􏼁 + LCE Dn(G(c, y)), y( 􏼁,

(14)

whereLCE denotes cross entropy loss. Combining the above
losses, the loss function of RF-GAN2 is

LRF−GAN2 � LAdv + λ1LFeat match + λ2LPercept + λ3LCls,

(15)

where λ1, λ2, and λ3 denote the weights of different losses.
We set λ1 � 5, λ2 � 5, λ3 � 1.

4. Experiments and Results

4.1. Datasets and Preprocessing. In this paper, we mainly
exploit five datasets: EyePACS, FGADR [44], IDRiD [45],
DRIVE [46], and a private DR grading dataset provided by a
local hospital (We call it private dataset). EyePACS is
exploited to acquire Masks so that RF-GAN2 can synthesize
retinal fundus images with them and can be used as training
and testing set of DR grading models.(e Seg-set of FGADR
is employed to train the lesion segmentation models, and the
Grade-set of FGADR is employed to evaluate DR grading
models. IDRiD is employed to train the optic disc seg-
mentation model. DRIVE is adopted to train the fundus
vessel segmentation model. (e private dataset is adopted to
evaluate the performance of the DR grading models. (e
detailed introduction about the five datasets is given below.

EyePACS :(e dataset is provided by EyePACS, con-
taining 35126 training images and 53576 testing im-
ages, all of which only have DR grading labels.
FGADR :(e dataset consists of a Grade-set which
contains 1000 retinal fundus images with only DR
grading labels and a Seg-set, which contains 1842
retinal fundus images with pixel-level annotations of
lesions—microaneurysms, hard exudates, soft exu-
dates, hemorrhages, etc.
IDRiD :(e dataset contains a total of 81 images, each
with pixel-level annotations of the optic disc and DR
lesions, such as microaneurysms, hard exudates, soft
exudates, hemorrhages.
DRIVE : A total of 40 images are included in the
dataset, 33 of which do not show any signs of diabetic
retinopathy while 7 of which show signs of mild dia-
betic retinopathy. Each image has pixel-level annota-
tions of fundus vessels.
Private dataset :(e dataset is collected from a local
hospital and labeled by three ophthalmologists. (e
private dataset has 2758 retinal images with different
criteria for DR grades 0 to 4.

For the purpose of enhancing the contrast of the retinal
fundus images in EyePACS to improve the accuracy of DR
grading, we conduct contrast limited adaptive histogram
equalization (CLAHE) on the retinal fundus images. (e
number of images in FGADR, IDRiD, and DRIVE datasets is
very small compared with EyePACS, which harms the per-
formance of domain adaption. We conduct clipping, flipping,
rotation on FGADR, IDRiD, and DRIVE datasets, and
undersample EyePACS.

4.2. Experiments and Results of RF-GAN1. In this section,
semantic segmentation datasets (IDRiD, DRIVE and
FGADR) are adopted as source domain, and EyePACS as
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target domain. We employ RF-GAN1 to translate images
from source domain to target domain, and utilize the
translated images to train HR-Net. (en, we apply the
trained HR-Net (We adopt U-Net [47], PSPNet [48],
DeepLab v3 [49], and HR-Net as segmentation models, and
finally we find that using HR-Net is the best for segmen-
tation of vessels, optic discs, and various lesions) to extract
Masks from EyePACS.

For visual comparisons, we employ CycleGAN to
translate images from segmentation datasets to EyePACS.
(en, we select 300 retinal fundus images translated by
CycleGAN and RF-GAN1, respectively, and ask two pro-
fessional ophthalmologists to evaluate the images. Part of the
translated images is shown in Figure 5. Furthermore, we use
the datasets translated by CycleGAN to train HR-Net, and
apply the trained HR-Net to extract Masks. (en, we choose
300 Masks extracted by HR-Net trained by original seg-
mentation datasets, segmentation datasets translated by
CycleGAN, and segmentation datasets translated by RF-
GAN1, and ask two professional ophthalmologists to
evaluate theMasks, too. Part of the extractedMasks is shown
in Figure 6.

We summarize the feedback of the two ophthalmolo-
gists. (e first is for the evaluation of translated images. (e
style of images translated by CycleGAN is almost unchanged
and remains similar to the style of original FGADR.
Moreover, there is partial loss of fine lesion information after
translation (as is illustrated in Figure 5). However, the fi-
delity of the retinal fundus images translated by RF-GAN1 is
better. (e style is similar to that of EyePACS and the local
details of the images are better maintained than that of
CycleGAN after translation. Although there are still errors
after translation by RF-GAN1, the impact on HR-Net
training is not significant.

(e second is for the evaluation of Masks. HR-Net
trained by the original datasets can detect relatively obvious
hemorrhages and hard exudates but not soft exudates. In
addition, the models are not sensitive to some small
structures or lesions, such as microaneurysms, smaller areas
of hard exudate, hemorrhage, and some small vessels (as
shown in the second column of Figure 6, only a proportion
of obvious hemorrhages and hard exudates are extracted, but
most lesions, as well as fine vessels, are not extracted by HR-
Net). HR-Net trained by datasets translated by CycleGAN
are more sensitive to small areas of hard exudates compared
to the models trained directly by original datasets, but still
fails to segment soft exudates as well as microaneurysms and
some fine vessels (as shown in the third column of Figure 6,
we can see some fine areas of hard exudates, but can hardly
notice microaneurysms, soft exudates, and some fine ves-
sels). (e segmentation performance of HR-Net trained by
datasets translated by RF-GAN1 is better. (e models can be
successful in segmenting fine areas of hard exudates and
hemorrhages, as well as soft exudates. Besides, the models
are more sensitive to microaneurysms and small vessels (as
shown in the fourth column of Figure 6, HR-Net is able to
extract not only obvious lesions such as hard exudates and
hemorrhages but also lesions that are not easy to segment
such as microaneurysms, soft exudates. In addition, HR-Net

performs well for the segmentation of fine vessels). Although
there are still errors in the Masks, they are within tolerable
limits.

From the evaluation of ophthalmologists, we can see that
RF-GAN1 is better for the style transfer of retinal fundus images
to improve the segmentation performance on EyePACS. And,
we analyze the following reasons for this situation. Firstly, the
reason behind the poor domain adaption performance of
CycleGAN might be that the model falls into the local mini-
mum. (e generator can deceive the discriminator by syn-
thesizing images that are very close to original retinal fundus
images, but the discriminator does not have enough discrim-
inant ability to distinguish them. Secondly, the excellent domain
adaption performance of RF-GAN1 is due to two reasons. (1)
SiaNet can pull different fundus images away to avoid themodel
falling into local minimum, so as to perform style transfer
favorably. (2) Plugging SiaNet and identity loss into generation
model increases themodel’s attention to local details, so that the
synthesized images can better retain the information of
structures and lesions.

Since EyePACS has no pixel-level annotations, it is
impossible to quantitatively evaluate the segmentation
performance of the models trained by the datasets translated
by RF-GAN1 on EyePACS. So in the supplemental material,
we use the segmentation dataset to validate the segmentation
ability of combining HR-Net with RF-GAN1 for DR-related
lesions and fundus vessels to show the domain adaptation
ability of RF-GAN1 for retinal fundus images.

Input CycleGAN RF-GAN1

Figure 5: (e performance demonstration of domain adaption by
RF-GAN1 and CycleGAN. From left to right, they are input images
from FGADR, the corresponding images translated by CycleGAN,
and the corresponding images translated by RF-GAN1, respec-
tively. Red boxes indicate local details lost after translation.
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4.3. Experiments andResults of RF-GAN2. In this section, we
train RF-GAN2 with the Masks, and the corresponding
retinal fundus images and DR grading labels until they
converge. (en, we utilize Masks and DR grading labels to
synthesize 10000 retinal fundus images with RF-GAN2 for
each DR severity level (there are some low-quality images in
the generated fundus images, but we do not process them
because the number is small and have little impact on DR
grading model training). In order to quantitatively assess the
synthesized images, we use Frechet inception distance (FID)
[50] and sliced wassertein distance (SWD) to evaluate the
images. In addition, the synthesized images are added into
the training set of EyePACS for data augmentation, and we
evaluate the performance of the DR grading models on the
testing set of EyePACS, FGADR, and private dataset.

4.3.1. Performance Demonstration. Part of the synthesized
images is shown in Figure 7. It should be noted that the
EyePACS adopted for training RF-GAN2 is processed by
CLAHE, so the style of synthesized images resembles that of
the EyePACS processed by CLAHE. As can be seen from the
upper part of Figure 7, given Masks and DR grading labels,
RF-GAN2 can synthesize high-fidelity retinal fundus im-
ages, and the appearance and number of lesions in the

images can be manipulated by the DR grading labels. (e
lower part of Figure 7 shows the details of the synthesized
images.(e structural information such as optic disc, fundus
vessels, macula, and the pathological information such as
microaneurysms, hemorrhages, soft exudates, and hard
exudates can be clearly seen.

4.3.2. Comparison with Other Models. FID is a commonly
used image quality evaluation metric, which is a measure
to calculate the distance of feature vectors between the
real images and the synthesized images. FID is calculated
by computing the Frechet distance of the Gaussian dis-
tribution constructed by features extracted from the real
and synthesized images in Inception-v3 [51]. (e lower
the score, the higher the similarity between the synthe-
sized images and the real images, and the better the image
quality. SWD is also a commonly used image quality
evaluation metric. SWD is usually employed to evaluate
the quality of high-resolution images. It is calculated by
evaluating the statistical similarity of real images and
synthesized images. (e lower the SWD, the higher the
image quality. We quantitatively evaluate the retinal
fundus images synthesized by RF-GAN2, CGAN, Pix2Pix
[52], and Tub-sGAN [29] with FID and SWD. (e results
are shown in Table 2 and the synthesized images by
different models are shown in Figure 8.

From Table 2, we can see that retinal fundus images
synthesized by RF-GAN2 achieve a FID score of 7.03 and a
SWD score of 11.28, which is better than Tub-sGAN and
other baseline models. From the visual perspective of
Figure 8, two ophthalmologists make the following com-
ments on the synthesized retinal fundus images by different
models. (e retinal fundus images synthesized by CGAN
can only see the fundus outline and some of the main
fundus vessels, and cannot see detailed information of
structures and lesions. Pix2Pix can synthesize fundus
vessels and lesion information but cannot generate fine
fundus vessels and clear macular.(e retinal fundus images
generated by Tub-sGAN are generally satisfactory, but
sometimes the macular regions are less precise. RF-GAN2
is superior to the previous three methods in that it can
produce retinal fundus images with clear structural in-
formation, such as fine fundus vessels and macular areas, as
well as realistic lesion information, such as hemorrhages
and hard exudates.

(ere are several reasons behind RF-GAN2’s superiority
to other models. Firstly, training HR-Net with the seg-
mentation datasets translated by RF-GAN1 improves the
segmentation performance of HR-Net on EyePACS.
(erefore, we obtain more accurate Masks to train RF-
GAN2, increasing RF-GAN2’s sensitivity to lesions. Sec-
ondly, RF-GAN2 employs two-stage generator, from coarse
to fine. (e second-stage generator inherits the global fea-
tures extracted by the first-stage generator to further syn-
thesize local details, so that the image quality is higher.
Finally, the introduction of classification loss can control the
category and number of lesions according to DR grading
labels, synthesizing more diverse retinal patterns.

Original No CycleGAN RF-GAN1

Figure 6: (e segmentation performance of the segmentation
models trained by different datasets. From left to right, they are
original images from EyePACS annotated by ophthalmologists, the
corresponding Masks segmented by HR-Net trained by original
segmentation datasets, the corresponding Masks segmented by
HR-Net trained by segmentation datasets translated by CycleGAN,
and the corresponding Masks segmented by HR-Net trained by
segmentation datasets translated by RF-GAN1. (e white, red,
green, blue, and cyan parts in theMasks indicate vessels, optic discs,
hard exudates, hemorrhages, and soft exudates segmented by the
segmentation models, respectively.
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4.3.3. Data Augmentation by Synthesis for DR Grading.
(is section verifies whether adding the synthesized images
into training set for data augmentation can be beneficial for
training DR grading models. We train 3 baseline models
(VGG-19, ResNet-50 [53], Inception-v3), two competitive
DR grading models AFN [54] and Zhou et al. (DenseNet-
121) [44] with and without data augmentation by synthe-
sized images. We only modify the output dimension of the
last fully connected layer to 5 for baseline models. We
employ classification accuracy and quadratic weighted
kappa for evaluation. We test them on the testing set of
EyePACS, and the experimental results are shown in Table 3.
In order to evaluate the generalization ability of the grading

models, we test the trained models on FGADR and our
private dataset, and the results are shown in Table 4. Table 5
shows the classification accuracy of different DR severity
levels with ResNet-50 when testing on the testing set of
EyePACS with and without data augmentation by synthesis.
Figure 9 illustrates the AUC (For each DR severity, we view
the current DR severity level as positive class and the other
severity levels as negative classes) of ResNet-50 for each DR
severity with and without data augmentation by synthesis.

In Tables 3–5, Fake denotes 50000 synthesized images.
Table 3 shows that the accuracy and quadratic weighted
kappa of each DR grading model on the testing set of
EyePACS increase on average by 1.63% and 1.82%, re-
spectively. (e accuracy and quadratic weighted kappa of
competitive DR grading models AFN and Zhou (DenseNet-
121) increase by 1.49%, 1.68% and 1.53%, 1.70%, respec-
tively, proving the effectiveness of our method. In order to
assess the generalization ability of the trained models, we test
the model on the private dataset and Grade-set of FGADR
((e classification models are not fine-tuned on these two
datasets before). As shown in Table 4, we find that the
accuracy and quadratic weighted kappa increase on average
by 1.24%, 1.35% and 1.04%, 1.13% on private dataset and
Grade-set of FGADR, respectively, when adding synthesized
images into training set for data augmentation, which proves
the generalization ability of the DR grading models trained
by synthesis. As can be seen from Table 5, the classification
accuracy of each DR severity level of ResNet-50 increases by
1.35%, 1.73%, 1.43%, 2.38%, and 1.78%, respectively. Sim-
ilarly, in Figure 9, the AUC of each DR severity level of
ResNet-50 increases by 0.0088, 0.0146, 0.0047, 0.0141, and
0.0089, respectively. (e accuracy and AUC of each DR
severity level increases, especially for high severity level,
where there are not many images. Besides, the increase in
AUC for mild NPDR is also significant, and we believe that
the data augmentation by synthesis allows DR grading
model to learn more about the distinguishable features
between mild NPDR and normal retinal fundus images,
which leads to an increase in AUC. Based on the above
experiments, we can conclude that RF-GANs can synthesize
realistic retinal fundus images and be beneficial for training
DR grading models.

5. Discussion

5.1. Training Stability. Since there are many loss functions
applied in RF-GAN1 and RF-GAN2, we would like to plot
the loss curve and show the images generated from different
epochs to check the stability of the model training. Figure 10
shows the loss curve of RF-GAN1 (Figure 10(a)) and RF-
GAN2 (Figure 10(b)), and we plot points every 20 iterations.
Figure 11 illustrates the synthesized retinal fundus images
from different epochs by RF-GAN1 (Figure 11(a)) and RF-
GAN2 (Figure 11(b)). Figure 10(a) shows the loss curve of
translating images from FGADR to EyePACS, and other two
loss curves of RF-GAN1 (DRIVE to EyePACS and IDRiD to
EyePACS) is similar to Figure 10(a). It can be seen from
Figure 10(a) that the model fluctuates a lot at the beginning,
and the model converges after about 14000 iterations, but

0 0 0 000

1 1 1 1 11

2 2 2 2 2 2

3 3 3 3 3 3

4 4 44 4 4

Figure 7: Retinal fundus images synthesized by RF-GAN2. (e
upper part, the first row shows the original images from EyePACS,
the second row shows the Masks extracted from original images,
and the subsequent rows are normal, mild, moderate, severe NPDR
and PDR retinal fundus images synthesized with the Masks in the
second row andDR grading labels, and the lower part is the detailed
display of the synthesized images.
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still fluctuates a little after convergence. As can be seen from
Figure 11(a), the global features, including optic disc,
macula, and blood vessels in the whole fundus, are almost
translated at 20th epoch (About 4000 iterations). Small le-
sions and structures, such as hemorrhages and fine vessels,
are transferred at 60th epoch (About 12000 iterations). After
80 epochs (About 16000 iterations), the fundus images
basically complete translation, at which point the model
converges. From Figure 10(b), we can see that the model
training is unstable, and the model converges after 40,000
iterations, but still has some fluctuations. As can be seen
from Figure 11(b), the synthesized images get global styling

feature and components at 40th epoch (About 16000 iter-
ations), such as the relative position of the optic disc, vessels.
At the 80th epoch (About 32000 iterations), some low-
quality pictures appear, such as abnormal macular areas and
loss of fine vessels, which indicate the fluctuations of RF-
GAN2. From 100 to 120 epochs (About 40000 to 50000
iterations), the generated fundus images gradually stabilize
and the model begins to converge. We can see that the
application of a large number of loss functions is likely to
cause instability during model training, which is unavoid-
able. However, the loss functions applied by RF-GAN1 and
RF-GAN2 are beneficial to increase the accuracy and

Table 2: FID and SWD evaluation of synthesized retinal fundus images.

AVG.FID AVG. SWD× 103

CGAN 19.45 31.94
Pix2Pix 15.24 27.92
Tub-sGAN 9.67 15.92
RF-GAN2 7.03 11.28

Real Images CGAN Pix2Pix Tub-sGAN RF-GAN2

Figure 8: Visual comparison with other models.(e first column shows original retinal fundus images from EyePACS, the second to fourth
columns show retinal fundus images synthesized by CGAN, Pix2Pix, Tub-sGAN, and RF-GAN2, respectively.

Table 3: (e classification results with and without data augmentation by synthesis on the testing set of EyePACS.

Training set EyePACS (%) EyePACS + Fake (%)
Metric Acc Kappa Acc Kappa
VGG-19 84.95 82.15 86.49 83.85
ResNet-50 86.27 83.86 88.07 85.91
Inception-v3 85.67 83.34 87.44 85.29
AFN 87.53 85.69 89.02 87.37
Zhou 89.46 88.48 90.99 90.18
Zhou: the method of Zhou (DenseNet-121).

Table 4: (e classification results with and without data augmentation by synthesis on private dataset and Grade-set of FGADR.

Testing set Private dataset (%) FGADR grade-set (%)

Training set EyePACS EyePACS+ Fake EyePACS EyePACS+ Fake
Metrics Acc Kappa Acc Kappa Acc Kappa Acc Kappa
VGG-19 82.13 75.83 83.38 77.19 81.48 75.53 82.51 76.67
ResNet-50 83.25 76.72 84.43 78.01 82.91 76.42 83.93 77.69
Inception-v3 82.63 76.12 83.87 77.48 81.95 75.82 82.96 76.88
AFN 84.22 77.92 85.47 79.27 83.78 77.50 84.86 78.53
Zhou 86.43 82.12 87.70 83.52 85.92 84.72 87.00 85.89
Zhou: the method of Zhou (DenseNet-121).
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diversity of the generated retinal fundus images. So we
choose to use multi-loss functions and carefully monitor the
synthesized images and loss curves.

5.2.Diversity. We question the use ofMasks and DR grading
labels to generate retinal fundus images to increase the
diversity of the dataset. Specifically, we want to know
whether the generated retinal fundus images are identical to
the original images, so we compare the synthesized images
with the original images. As shown in Figure 12, we choose
some examples of generating retinal fundus images from the
original images to verify the diversity of the synthesized
images. In Figure 12, they are original images, the corre-
sponding Masks extracted by the trained HR-Net and the
synthesized images from top to bottom. (e DR severity of
the synthesized images is from 0 to 4 from left to right. Both
the original and generated images in the first column are
normal retinal fundus images, and we observe that the
synthesized images have clearer detail information than the
original images, which is very helpful for DR grading. (e
DR severities of the original and synthesized images in the
second and third columns are mild NPDR and moderate
NPDR, respectively. To facilitate observation, we mark the
lesions with bounding boxes in the original images and the
generated images, respectively. We observe that the

synthesized images have essentially the same structural
information as the original images. Moreover, we observe
that the categories of lesions remain essentially the same, but
the number and appearances of different lesions and loca-
tions change, which increases the diversity of the dataset
while ensuring that the DR severity of the synthesized
images remains unchanged. (e fourth and fifth columns
show that we use the Masks of normal retinal fundus images
to synthesize severe NPDR and PDR retinal fundus images,
respectively. We can see that although neither the original
retinal fundus images nor the Masks contain lesion infor-
mation, we can still generate retinal fundus images of the
corresponding DR severity level by specifying the DR
grading labels when synthesizing them. From the above
examples, we can see that our method is capable of syn-
thesizing visually different retinal fundus images condi-
tioned on the given DR grading labels and Masks, increasing
the diversity of the dataset.

5.3. Limitations. Although our approach is capable of
synthesizing high-quality retinal fundus images, there are
still some limitations that need to be further addressed.
Figure 13 illustrates three main kinds of failure cases
observed in the synthesized images. Figure 13(a) shows
that the image is not sufficiently round. Since the shape of
the generated retinal fundus image is influenced by the
vessel trees obtained by segmentation models, if the
distribution of the vessel in the Masks is not rounded
enough, then the generated retinal fundus images may
also be affected. Figure 13(b) shows the case where the
structures and lesions’ information of the image cannot
be clearly seen due to low illumination (As shown in the
bottom part of Figure 13(b)). Although we use CLAHE to
enhance the contrast of fundus images in EyePACS, some
low-quality images are still present. Influenced by these
images, RF-GAN2 occasionally generates low-quality
retinal fundus images like Figure 13(b). In Figure 13(c),
the boundary of the optic disc is not clear and this is due
to two reasons. On the one hand, the optic disc mask we
obtain during segmentation is not precise enough and
thus affects the shape of the optic disc in the generated
fundus images. On the other hand, the boundary of the
optic disc in the original fundus image is not clear, so the
generator transforms the part which is not the optic disc
into the optic disc part in the generated image. In ad-
dition to the above problems in generating images, the
two-stage generation of retinal fundus images by this
method is also somewhat cumbersome, but this ensures
that we can generate high-quality retinal fundus images.

Table 5: (e classification accuracy (%) of ResNet-50 for each DR severity level.

EyePACS (%) EyePACS+ Fake (%)
Grade 0 93.76 95.11
Grade 1 47.27 49.00
Grade 2 76.26 77.69
Grade 3 84.12 86.50
Grade 4 84.35 86.13
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Figure 9: AUC of ResNet-50 for each DR severity with and without
synthesis. Real denotes original retinal fundus images in the testing
set of EyePACS, Fake denotes 50000 synthesized retinal fundus
images.
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Figure 10: Loss curve of RF-GAN1 (a) and RF-GAN2 (b). Loss_S and Loss_T in Figure 10(a) indicate the loss curve of the generator F and
the generator G in RF-GAN1, respectively.
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Figure 11: Illustrations of the synthesized images from different epochs by RF-GAN1 (a) and RF-GAN2 (b).
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Figure 12: Examples of generating retinal fundus images from the original images. (e blue boxes and green boxes indicate the lesions of
hemorrhages and hard exudates, respectively.
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6. Conclusion

(is paper proposes a retinal fundus image generation method
RF-GANs based on generative adversarial network, which
consists of RF-GAN1 and RF-GAN2. RF-GAN1 translates
images from source domain to target domain to improve the
structures and lesions’ segmentation performance of HR-Net
for the images from EyePACS. RF-GAN2 employs the Masks
and DR grading labels to synthesize retinal fundus images.
Experiments show that HR-Net trained by translated datasets
get better segmentation performance for structures and lesions
related to DR on EyePACS, and the retinal fundus images
synthesized by RF-GAN2 are superior to the mainstream
generation model and Tub-sGAN in FID and SWD. When
adding the synthesized images into training set for data aug-
mentation, the accuracy and quadratic weighted kappa of DR
gradingmodels (VGG-19, ResNet-50, Inception-v3, AFN, Zhou
(DenseNet-121)) on the testing set of EyePACS increase on
average by 1.63% and 1.82%, respectively. We also demonstrate
the generalization ability of the models by using Grade-set of
FGADR as well as the private dataset to test the trained DR
grading models. Besides, the accuracy and AUC of each DR
severity level on ResNet-50 all improves. (e results show that
RF-GANs hold promise for the future. However, we also notice
that mild NPDR images are often misclassified as normal
images because they are close to normal retinal fundus images,
which significantly reduce the classification accuracy. In future
work, we will explore how to enhance the sensitivity of DR
grading models for mild NPDR retinal fundus images by GAN.
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